
Appears in IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, 2005.

Integrated learning of saliency, complex features, and object detectors from
cluttered scenes

Dashan Gao Nuno Vasconcelos
Department of Electrical and Computer Engineering,

University of California, San Diego
dgao@ucsd.edu nuno@ece.ucsd.edu

Abstract
A novel procedure for object detection from cluttered

scenes is proposed. It consists of an integrated solution
to the problems of learning 1) a saliency detection mod-
ule tuned to a class of objects of interest, 2) a set of com-
plex features that achieves the optimal trade-off, in a mini-
mum probability of error sense, between discrimination and
generalization ability, and 3) a large-margin object detec-
tor. All stages of the new procedure have some degree of
biological motivation and this is shown to enable a com-
putationally efficient solution that is scalable to problems
containing large numbers of object classes. Experimental
evidence is given in support of the arguments that different
levels of feature complexity are optimal for different object
classes, and that optimal features range from parts to tem-
plates, depending on the variability of the object class.

1. Introduction
With the formulation of object detection and recognition

as statistical classification problems and the advent of pow-
erful classification architectures, the last decades have wit-
nessed major improvements in detection and recognition ac-
curacies. Yet, there are still various aspects in which the cur-
rent state of understanding of these problems is too limited
to allow the design of systems with the robustness and flex-
ibility required by most practical applications. One of the
significant limitations of current recognizers is a require-
ment for carefully controlled training, usually performed
with large training sets that are manually assembled and
pre-processed. This results in extremely lengthy data col-
lection procedures that make it difficult to rapidly deploy a
classifier for a given class of objects, if a training set is not
already available for that class.

Lately, however, the vision community has started to
investigate a new formulation of the detection/recognition
problem, usually referred to as recognition from cluttered
scenes, where it is assumed that the training examples are
not previously segmented [2, 5, 4, 9, 10]. For example, a
training set of faces will contain images where the faces are

shown in front of some background scene that occupies the
bulk of the image area. One aspect that makes the new for-
mulation fundamentally different from the traditional, un-
cluttered, learning problem is the very unbalanced nature of
the available example labels. While in the “negative” class
every image region can be confidently assumed to be a “neg-
ative” example, for the “positive” class the situation is quite
different. In fact, while each training image in this class is
labeled as containing the object of interest, it is not clear
which image regions are really “positive” or “negative” ex-
amples. This implies that every image neighborhood could
potentially be of interest for learning, and leads to a poten-
tially very large (and noisy) training set. Hence, in addi-
tion to the standard problems in detection and recognition
(how to find good features, how many should be used, how
to design an effective classifier) recognition from cluttered
scenes requires the ability to learn which regions of each
training image are informative for the task at hand, namely
which regions contain the objects of interest.

This can be seen as a saliency problem, i.e. the problem
of determining the image regions that are salient for de-
tection/recognition purposes. Given a reasonable saliency
module, it should be possible to extract a set of image re-
gions containing the objects of interest, and then apply to
this training set (complemented with a set of negative ex-
amples which are usually easy to find) any of the existing
procedures for the design of object detectors or recogniz-
ers. Overall, the problem has two major components: 1)
the identification of training examples and 2) the design
of the classifier itself. Given that neither the saliency nor
the classification stage are likely to be perfect, it appears
that significant gains might be possible by integrating the
two stages. The classifier should certainly improve when
saliency is more accurate (because it will have access to a
cleaner training set) and the saliency stage should be able to
improve with feedback from the classifier (regarding image
regions that it considered salient but were clearly identified
by the classifier as not containing the object of interest).

This is the problem addressed by this work, where we
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present an integrated solution for saliency and classification
in the context of object detection problems. The work in-
cludes various contributions that address significant open
questions for this problem. The first is a discriminant for-
mulation of saliency that is optimal in a classification sense
and produces saliency locations which are most informative
in the sense of identifying the object of interest. The second
is an iterative procedure that relies on classification results
to improve saliency, and on the improved saliency results to
obtain a better classifier. The third is a procedure to gener-
ate a hierarchy of features of increasing complexity, which
allows fine control over the trade-off between discriminant
power (which increases with complexity) and generaliza-
tion ability (which tends to decrease with increasing com-
plexity). The fourth is a biologically inspired, and com-
putationally efficient, mechanism for feature selection from
overcomplete feature sets, that balances discrimination and
redundancy reduction.

Overall, our results show that it is possible to simultane-
ously learn, in a strictly discriminant fashion, 1) a saliency
detection module tuned to the object class of interest, 2) a
set of complex features that achieve an optimal trade-off be-
tween discrimination and generalization for the detectionof
objects in that class, and 3) a large-margin object detector. It
is also shown that different levels of feature complexity are
optimal for different object classes, and that the optimal fea-
tures range from parts to templates, depending on the vari-
ability of the class. All stages of our algorithm have some
degree of biological motivation and this is shown to enable
a computationally efficient solution that is scalable to prob-
lems containing large numbers of object classes, without
compromising optimality in a classification sense.

2. Related work

Learning to segment and recognize objects from clut-
tered scenes is a topic that has received an increased amount
of attention in recent years [1, 2, 5, 4, 9, 10]. A common
theme to current approaches to this problem is to represent
an object as a collection of parts. This leads to two fun-
damental questions: how to extract these parts from clut-
tered images, and how to represent them. The first problem
is usually solved in one of two ways. The first is to ran-
domly crop image patches from the images in the training
set, at a wide range of scales, and then select those which
are informative with respect to the object class [4]. This
is a strategy of least commitment which guarantees that no
fundamentally important patches will be lost due to coarse
sampling. On the other hand, in order to guarantee coverage
of the object of interest in its entirety, this approach usually
requires sampling a very large number of image locations.
This makes the subsequent step of patch selection compu-
tationally intensive and, so far, this method has only been
demonstrated on databases of small images.

An alternative approach is to rely on a saliency detec-
tor to find a set of “interest points” in each training im-
age [2, 5, 9, 10]. While drastically more efficient, from a
computational point of view, this approach has weaker per-
formance guarantees from an accuracy standpoint, because
the definitions of saliency in current used are unrelated to
the detection problem. Instead, saliency is usually defined
as some universal property that salient image regions must
exhibit. Particularly popular definitions are that the image
region must 1) contain specific visual attributes, such as
edges or corners [6], or 2) exhibit a significant amount of
complexity, where complexity can be defined in multiple
ways [8, 7]. Since these definitions do not constrain salient
regions to be informative with regards the detection prob-
lem (e.g. are not tuned in any form to the class of objects
to be detected) they tend to produce a collection of interest
points that are only weakly guaranteed to have any relation
to the object of interest. This increases the difficulty of the
design of representative object parts, which has to be very
robust to the presence of training outliers. The complex-
ity is, in this way, shifted to the representation stage, which
tends to be computationally intensive for these methods.

With respect to the representation of object parts, while
some have argued for the use of simple features (e.g. lo-
cal descriptors such as PCA, or SIFT [7]) [5, 9, 10], others
have proposed complex ones (image patches) [2, 4]. Being
more closely tuned to the objects of interest, complex fea-
tures are certainly more discriminant. On the other hand,
the response of simple features tends to exhibit less variabil-
ity when images are subject to spatial image deformations,
noise, or other perturbations. Overall, feature complexity
is, for object detection, the main variable for controlling
the trade-off between discriminant power and generaliza-
tion ability (invariance) faced by any classifier. It therefore
appears that best results should stem from 1) considering a
hierarchy of features that span the continuum from simple
to complex, and 2) learning the appropriate level of feature
complexity for each detection problem.

3 Integrated saliency and object detection
In this work, we address all problems discussed above by

proposing an integrated solution for learning saliency maps,
object detectors, and features. In particular we propose an
iterative procedure, illustrated by Figure 1, consisting of the
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Figure 1. A hierarchical model for integrated learning of
saliency maps, object detector, and complex features.
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following steps. We start by selecting the most discriminant
subset among a set of simple features (the discrete cosine
transform - DCT - descriptors), which is used to generate
a discriminant saliency map. Image patches are then ex-
tracted from the most salient locations and used to train an
object detector. Using standard cross-validation the patches
that are most likely to be positive examples are passed to a
feature extraction module. The resulting features are more
complex than the initial set and more tuned to the object
class of interest. The process is then iterated and the com-
plexity of the features allowed to increase at each iteration.
The result is a feature hierarchy, that ranges from simple
(DCT descriptors) to complex (image patches), allowing ex-
plicit control of the trade-off between discriminant power
and generalization ability. A saliency map and an object
detector are produced at each level of this hierarchy.

3.1. Salient feature selection

To avoid the lack of specificity of existing saliency de-
tectors, we rely on a new formulation of saliency, denoted
by discriminant saliency, which is intrinsically grounded
on the recognition problem [11]: it equates saliency to the
search for the visual attributes that best distinguish a visual
concept from all other concepts that may be of interest. This
leads to the formulation of saliency as discriminant feature
selection for the one-vs-all classification problem that op-
poses the target image class (Y = 1) to all others (Y = 0).

3.1.1 Discriminant saliency detection
As shown in [11], discriminant saliency detection can be
implemented through the combination of a scalable feature
selection module and a biologically inspired saliency archi-
tecture, as follows.

1. images are projected into aK-dimensional feature
space, and the marginal distribution of each feature re-
sponse under each classPXk|Y (x|i), i ∈ {0, 1}, k ∈
{0, . . . ,K − 1}, is estimated by a histogram (24 bins
were used in the experiments in this paper). The fea-
tures are then sorted by descending marginal diversity,

md(Xk) =< KL[PXk|Y (x|i)||PXk
(x) >Y (1)

where < f(i) >Y =
∑M

i=1 PY (i)f(i), and

KL[p||q] =
∫

p(x) log p(x)
q(x)dx is the Kullback-Leibler

divergence between p and q [12].
2. features which are discriminant because they are in-

formative about the background class (Y = 0) but not
the class of interest (Y = 1), i.e. H(Xk|Y = 1) <

H(Xk|Y = 0), or that have too small energy to allow
reliable inferences,V ar(Xk) < Tv, are eliminated.

3. the features of largest marginal diversity are selected
as salient for the class of interest. The number of
features that are salient for each class is determined
through a cross-validation procedure, as described in
section 3.2.1.

4. a saliency mapSD(x) is generated by projecting the
image into the subspace spanned by the salient fea-
tures, and combining the resulting projectionsRi(x)
according toSD(x) =

∑n

i=1 ωiR
2
i (x). The spatial

support of the salient feature with the strongest re-
sponse at each location is selected to be the scale asso-
ciated with that location.

5. Salient locations are determined by non-maximum
suppression. The location of largest saliency and its
spatial scale are first found, and all the neighbors of
the location within a circle of diameter equal to this
scale are then suppressed (set to zero). The process
is iterated until all locations are either selected or sup-
pressed.

The method is made scale adaptive by including features of
different resolution in the candidate feature set.

3.1.2 Class-specific feature sets
Unlike simple generic features, such as wavelet or DCT fil-
ters, class-specific feature sets learned from training images
tend to be highly over-complete. This implies that they con-
tain subsets of features which are highly redundant.

Feature selection in the presence of strong dependencies
is, computationally, a much more demanding process than
when such dependencies are not present. In particular, ac-
counting for dependencies requires either 1) modeling joint
densities, a process that has exponential complexity in the
order of the dependency sets, or 2) penalizing the train-
ing samples that are well explained by the previously se-
lected features, as is done by boosting [13]. Our experience
with various existing feature selection methods, from both
camps, is that that they would significantly compromise the
computational efficiency of discriminant saliency.

Furthermore, we would like to embed feature selection
in the computation of the saliency map itself, as some de-
pendencies may have great impact on the latter while oth-
ers may be irrelevant. To achieve this goal, we propose a
biologically inspired feature selection procedure that com-
bines aspects of the two feature selection strategies. As in
the case of the simple features, we start by ordering the
feature set according to the marginal diversity. We then
pick features sequentially, in a manner that maximizes dis-
crimination but penalizes redundancies. This penalty is im-
plemented with the prime biological mechanism for redun-
dancy reduction, non-maximum suppression, resulting in an
example-re-weighting method for selecting features.

The use of non-maximum suppression to penalize de-
pendencies is probably best understood by considering Fig-
ure 2, which presents an example in the context of face de-
tection. A set of features, shown in (b), is initially available
in result of the MMD-based selection step. These features
are highly discriminant but also redundant. A reference im-
age, shown in (a), is first randomly selected and individ-
ual saliency maps produced for that image (shown in (c))
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(a) (b)
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Figure 2. Illustration of non-maximum suppression. (a) A ref-
erence image. (b) Three features (c) Saliency maps (d) Saliency
maps after suppression.

by considering one feature at a time. The largest response
among these saliency maps is then found, and the corre-
sponding feature selected. Non-maximum suppression then
consists of subtracting the saliency map of the selected fea-
ture to all the others (shown in (d)). The process is iter-
ated using the suppressed saliency maps until either 1) all
features are selected, or 2) all the remaining saliency maps
are below a threshold (set to zero in all results presented in
this paper). As illustrated in Figure 2, the middle feature
is highly redundant with the leftmost feature, and there-
fore discarded after non-maximum suppression. Overall,
the proposed combination of feature selection and genera-
tion of the saliency map has great computational efficiency.

3.2 Learning complex features
The saliency maps of the previous section can be seen as

soft segmentation masks for the object of interest. In this
section we present a method that relies on these masks to
learn complex features tuned to that object. Given that ex-
tracting complex features from areas not covered by the ob-
ject of interest is likely not to be very useful, the extraction
of complex features requires 1) determination of the best
number of features to construct saliency maps, and 2) elim-
ination of outlier locations in the resulting saliency maps.
We refer to the combined process as theextraction of rep-
resentative object locations. Once it is done, a collection
of object patches can be obtained by retrieving the inlier
salient locations, and a new set of features, more complex
and tuned to the object, can be learned. We refer to this
process as thegeneration of complex features.

3.2.1 Extraction of representative locations
We adopt a cross-validation strategy for the extraction of
representative locations. The basic idea is to start from
the saliency maps associated with images that contain the
object of interest and extract image patches located at the
points whose saliency is above a threshold (some examples

are shown as circles in Figure 3). This produces a set of pos-
itive (object) examples. Repeating the process on images
known not to contain the object produces a set of difficult
negative (non-object) examples. The two sets are then used
to learn a classifier. The process is repeated for all possible
numbers of features used in saliency map design. By moni-
toring test error it is possible to determine the optimal value
for this number.

The main difficulty associated with this procedure is that
both the training and testing sets of the positive class are
corrupted: because saliency is not perfect, they usually
contain outlying background patches. To increase the ro-
bustness to this problem we adopt, as measure of classi-
fier goodness, the probability of error on the task of clas-
sifying images, rather than patches. After all, this is the
only data for which there is unmistakable ground truth. Im-
ages are classified in two steps. First, the image patches
extracted from an image by the saliency detector are clas-
sified individually. Next, if at least one of the individual
patches is classified as positive, the image is assigned to the
object class. If all patches are negative, the image is as-
signed to the negative class. The ROC equal error rate (i.e.
p(Truepositive) = 1−p(Falsepositive)) of the resulting
detector is used as a measure of the performance.

A support vector machine was used in the experiments,
and the distance to the classification boundary was adopted
as the measure for selecting the image patches, from the
positive class, to be passed to the next stage. In particular
only positive patches at a distance larger than the margin
were selected. Some examples are shown in Figure 3.

3.2.2 Generation of complex features
The image patches extracted from representative locations
are usually good prototypes for the object of interest. Nev-
ertheless, because they are extracted from particular images,
they tend to be too specifically tuned to the particular ob-
jects and viewing conditions captured by those images. It
is, therefore, unlikely that they will generalize well if di-
rectly used as features for object detection [3]. Instead,
good features must balance discrimination with robustness
to variations in object appearance. As suggested in [3], one
possibility to increase robustness is to reduce spatial resolu-
tion (or complexity). To generate features with a given level
of complexity, we approximate the salient image patches
by the best linear combination of a pre-specified number of
simple features. In particular, ifI is a salient image patch
and {b1, b2, . . . , bN} a set ofN simple features, the best

Figure 3. Examples of image patches accepted (white circles)
and rejected (black circles) by the SVM.
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Figure 4. Saliency maps generated with features of different
complexity (k ∈ {1, 4, 16, 64} from the second to the last col-
umn).

approximation of complexityk is defined as the subset of
k features whose linear combination best approximates the
patch in the least squares sense

min
n1 . . . nk

an1
. . . ank

||I −
k∑

i=1

ani
bni

||2, 1 ≤ ni ≤ N (2)

When the simple feature set is complete, the approximation
error is monotonically decreasing onk and can always be
made zero by makingk = N . In this work we rely on a set
of 8 × 8 DCT features to compose the simple feature set.
This set is orthogonal and complete.

4 Results and discussion
The performance of the proposed object detection archi-

tecture was evaluated on the Caltech database, using the ex-
perimental set up proposed in [5].

4.1 Performance of complex salient features

Figure 4 shows some examples of saliency maps gen-
erated at different stages of the feature complexity hierar-
chy (k ∈ {1, 4, 16, 64}) for the face class. The simple and
generic features used in the first stage appear to be sufficient
for some scenes, but are not very selective for others, where
they respond quite strongly to various areas of background.
It is, however, clear that even for the simplest features the
face regions always originate a strong response. At later
stages, where the saliency is computed with complex fea-
tures, the response is clearly stronger on the faces areas than
the background, for all scenes.

To evaluate the saliency maps objectively we compared
them, as well as the detected salient locations (in Figure 5),
with ground truth, manually obtained by placing a rectan-
gle around each face. The results are shown in Figure 6.
The first measure is the percentage of the total energy of the
saliency map that was contained in the ground truth box.
Figure 6(a) presents the cumulative sum of this measure for
features of different complexity. It can be observed that the
saliency is more spread over the image for simple features

Figure 5. Salient locations detected with features of different
complexity (k ∈ {1, 4, 16, 64} from the second to the last col-
umn). Circles are salient locations accepted (white) or rejected
(black) by the SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

saliency energy inside the ground truth area

ac
cu

m
ul

at
iv

e 
su

m

1
4
8
16
32
64

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

overlap with the ground truth area

ac
cu

m
ul

at
iv

e 
su

m

1
4
8
16
32
64

(a) (b)
Figure 6. Comparison between saliency maps, generated with
features of different complexity, and the ground truth on theface
database. Cumulative distribution of (a) percentage of salient en-
ergy inside the ground truth box, and (b) overlap between salient
locations and ground truth.

than for complex features, confirming the observations of
Figure 4. For example, the saliency maps generated by sim-
ple features have more than70% of their energy inside the
ground truth area13% of the times, while for more complex
features this percentage is always above50%.

The second measure, whose cumulative sums are shown
in Figure 6(b), is the relative overlap between the bounding
box of the salient location and the ground truth. IfA andB

are two bounding boxes, the relative overlap is defined as

overlap(A,B) =
|A ∩ B|

|A ∪ B|
(3)

where|A| is the area ofA. Again, complex features show
better performance, but the differences are less significant.

Figure 7. Six salient features generated at each stage of the fea-
ture complexity hierarchy (k ∈ {1, 4, 16, 64} from top to bottom).
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Figure 8. Seven of the salient features learned for airplanes by
combinations of 32 DCT features.

Figure 9. Saliency maps generated with features of different
complexity, for the motorbike and airplane classes (k ∈ {1, 4, 16}
from the second to the last column).

This indicates that, even though the simple features respond
more strongly in non-face areas, the strongest response is
already quite reliably aligned with the face location. Over-
all, the best results are obtained with complex features com-
posed by a linear combination of 16 simple features.

This result is probably best understood by investigating
the salient features learned at each stage, as shown in Fig-
ure 7. In the first stage, salient features tend to be verti-
cal bars, containing only very low frequency information
about faces. As the complexity increases, and more high
frequency information is added to the features, they start to
look more like faces. In the final stages, where all 64 sim-
ple features are used, the features become face templates
cropped from individual images. As discussed above, these
templates are too tuned to individual faces and cannot ac-
count well for the variation inside the face class. In result,
they lead to worse saliency maps than the ones of interme-
diate complexity.

We finalize the discussion on saliency by presenting, in
Figure 9, saliency maps generated by features of complex-
ity k ∈ {1, 4, 16} for the motorbike and airplane classes.
In general terms, the conclusions derived for the face class
hold for these classes as well. The only significant differ-
ence is that, while for faces the learned complex features
tend to be templates, for these classes they are parts, as can
be seen from Figure 8. This shows that optimal complex
features can range between the two types, depending on the
variability of the object class.

4.2 Object detection
In this section, we evaluate the performance of the SVM

classifiers at each stage of the hierarchy. Figure 10 presents
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Figure 10. Classification rates for SVM designed at each stage.

the ROC equal error rates obtained at the different stages.
For the face class, and consistently with the results of Fig-
ure 6, the best performance is achieved with the complex
features of complexityk = 16. It is quite interesting, how-
ever, to realize that for the other two classes, motorbike and
airplanes, simpler features actually work best. From the im-
ages of these two classes, shown in Figure 9, it is clear that
these classes contain significantly more variability in ap-
pearance, pose, and scale than the faces. It is, therefore,
not surprising that the performance of the complex features
degrades in this case.

Another interesting observation is that, although there
are mislabeled examples in the positive training set used to
design the classifiers at all stages, these classifiers do not
exhibit great difficulty in eliminating the mislabeled image
patches and, consequently, generate good candidate features
for the next stage. This is illustrated by Figure 3.
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