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ABSTRACT
We introduce a new model for semantic annotation and retrieval
from image databases. The new model is based on a probabilis-
tic formulation that poses annotation and retrieval as classification
problems, and produces solutions that are optimal in the minimum
probability of error sense. It is also database centric, by establish-
ing a one-to-one mapping between semantic classes and the groups
of database images that share the associated semantic labels. In
this work we show that, under the database centric probabilistic
model, optimal annotation and retrieval can be implementedwith
algorithms that are conceptually simple, computationallyefficient,
and do not require prior semantic segmentation of training images.
Due to its simplicity, the annotation and retrieval architecture is
also amenable to sophisticated parameter tuning, a property that is
exploited to investigate the role of feature selection in the design of
optimal annotation and retrieval systems. Finally, we demonstrate
the benefits of simply establishing a one-to-one mapping between
keywords and the states of the semantic classification problem over
the more complex, and currently popular, joint modeling of key-
word and visual feature distributions. The database centric prob-
abilistic retrieval model is compared to existing semanticlabeling
and retrieval methods, and shown to achieve higher accuracythan
the previously best published results, at a fraction of their compu-
tational cost.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval Models; I.4.8
[Scene Analysis]: Object Recognition; G.3 [Probability and Sta-
tistics]: Probabilistic Algorithms

General Terms
Algorithms,Measurement,Experimentation

Keywords
Image retrieval, automatic image annotation, supervised learning
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Content-based image retrieval, the problem of searching large
image repositories according to their content, has been thesubject
of a significant amount of research in the recent past [21]. While
early retrieval architectures were based on the query-by-example
paradigm, which formulates image retrieval as the search for the
best database match to a user-provided query image, it was quickly
realized that the design of fully functional retrieval systems would
require support for semantic queries [18]. These are queries spec-
ified through a natural language description of the visual concepts
of interest, and require the textual annotation of the images in the
database. Since manual image labeling is a costly operation, there
is currently great interest in the automatic extraction of semantic
descriptors from images. Both semantic retrieval and automatic
image annotation are instances of the more general problem of
learning a mapping between images and keywords. In this work
we show that such a mapping can be learned effectively and effi-
ciently under adatabase centricview of the information retrieval
(IR) problem, denoted byprobabilistic retrieval.

To motivate the advantages of database centric retrieval, it is
helpful to consider the limitations of the traditional,query centric,
view of IR. Under this view, the goal of a retrieval system is to rank
database documents according to their relevance/irrelevance to the
query. This poses the retrieval problem as one of binary classifica-
tion (arelevantvs anirrelevantclass). While binary classifiers are
a well understood area of machine learning, the retrieval problem
introduces a twist that is rarely considered in the learningliterature:
because the relevance of a document with respect to a query cannot
be defined until the latter is known, the relevant/irrelevant classifier
can only be designed once the query is available. This introduces
two notable constraints on the design of classifiers for retrieval. The
first, which derives from the need to answer the query quickly, is a
tight upper bound on training complexity. The second, due tothe
fact that typical queries only contain one example (or a few)from
the relevant class, and none from the irrelevant, is scarcity of train-
ing data. These constraints are quite difficult to reconcilewith the
learning requirements, in terms of both training time and training
set size, of most state-of-the-art classifiers.

The alternative proposed by the database centric formulation is
to ground the classes on the database, rather than on the query. In
the simplest case, this is done by defining each entry in the data-
base (e.g. document or image) as an independent class. The re-
trieval problem is then defined as that offinding the database class
to which the query belongs. The main advantage is that the classi-
fier is defined by the database, not the query, and can therefore be
learned off-line. This allows time to train more powerful classifiers,
based on sophisticated data representations, e.g., mixtures [24] or
hidden Markov models [20]. Furthermore, because classifiertrain-
ing is based on theentire database, rather than just the examples



provided in the query, the resulting parameter estimates are signif-
icantly more reliable than what is feasible under the query centric
formulation. Overall, by eliminating the two major bottlenecks of
query centric retrieval, the database centric formulationcan lead to
significantly better retrieval performance.

Since database centric retrieval can be seen as a nearest neigh-
bor search, under a suitable distance measure (the probability of
the query given the database class), it is subjacent to the matching-
based retrieval systems that have been popular since the early days
of image retrieval [23, 16, 17, 9, 10, 12, 22, 13]. The precise
probabilistic formulation was eventually formalized in [5, 27] and
appears to have been rediscovered by the IR community at large,
through the language modeling work of Ponte and Croft [19], a
few years later. While the inherent benefits of longer training times
and better model estimates are now fairly well understood, it has
one additional advantage (over query centric retrieval) that does
not appear to be widely appreciated. To identify this advantage, it
is necessary to analyze the retrieval process in light of thecausal re-
lationships (from class to observations) that follow from the gener-
ative interpretation of any classification problem. While the query
centric formulation poses the query as a source, which produces
binary observations (database entries) in the relevant andirrelevant
classes, the roles are reversed by the database centric formulation,
where the query becomes an observation drawn from one of the
many classes in the (source) database. This distinction is important
when query and database concepts have different “granularity”.

This is the case of semantic retrieval, where the query is an im-
age but the database classes are generic semantic concepts such as
“sky” or “grass”. Due to this unbalance, answering the (query cen-
tric) question of whether the database concepts are relevant requires
an ability to generalize that retrieval systems rarely possess. For ex-
ample, when faced with a query consisting of a patch of brightblue
sky, query centered retrieval systems need to somehow inferthat
sky could also be orange (and consequently infer that all images
of sunsets are relevant). This problem is easily eliminatedunder
the database centric formulation, by simplydefining the database
classes as the semantic concepts of interest. In terms of implemen-
tation, the only difference (with respect to non-semantic retrieval)
is that one probability distribution is estimated per concept (using
all the images that contain the concept) rather than per image. How-
ever, when compared to query centric retrieval, this makes for a
substantial difference at retrieval time: while query centric retrieval
requires a relevance judgment forall types of imagesin the relevant
class froma single example, database centric retrieval only requires
a similarity judgment forone image(the query) from theprobabil-
ity distribution of the entire class. From a generalization point of
view, the former is anextrapolationproblem, while the later only
requiresinterpolation. In this sense, database centric retrieval is a
significantly easier problem.

In this work, we show that the database centric probabilistic re-
trieval model has various interesting properties for both automatic
image annotation and semantic retrieval. In particular it is shown
that, under this model, optimal (in a minimum probability ofer-
ror sense) annotation and retrieval can be implemented withalgo-
rithms that are conceptually simple, computationally efficient, and
do not require prior semantic segmentation of training images. Due
to its simplicity, the annotation and retrieval architecture is also
amenable to sophisticated parameter tuning, a property that is ex-
ploited to investigate the role of feature selection in the design of
optimal annotation and retrieval systems. Finally, we demonstrate
the benefits of simply establishing a one-to-one mapping between
keywords and the states of the semantic classification problem over
the more complex, and currently popular, joint modeling of key-
word and visual feature distributions. The database centric prob-
abilistic retrieval model is compared to existing semanticlabeling
and retrieval methods, and shown to achieve higher accuracythan

the previously best published results, at a fraction of their compu-
tational cost.

2. SEMANTIC LABELING AND RETRIEVAL
Consider a databaseT = {I1, . . . , IN} of imagesIi and a se-

mantic vocabularyL = {w1, . . . , wL} of semantic labels, or key-
words,wi. The goal of semantic image annotation is to, given an
imageI, extract the set of keywords, or caption,w that best de-
scribesI. The goal of semantic retrieval is to, given a keyword
w, extract the images in the database that contain the associated
visual concept. In both cases, learning is based on a training set
D = {(I1,w1), . . . , (ID,wD)} of image-caption pairs.

Under database centric probabilistic retrieval, both labeling and
retrieval are formulated as classification problems. Mathematically,
this requires introducing 1) a random vectorX of visual features,
2) a random variableW , which takes values in{1, . . . , L}, so that
W = i if and only if X is a sample from the conceptwi, and
3) the set of corresponding class-conditional densitiesPX|W (x|i),
i ∈ {1, . . . , L} for the distribution of visual features given the se-
mantic class. Using well known results in statistical decision the-
ory [6], it is not difficult to show that both labeling and retrieval can
be implemented with minimum probability of error if the posterior
probabilities

PW |X(i|x) =
PX|W (x|i)PW (i)

PX(x)
(1)

are available, wherePW (i) is a prior probability for theith seman-
tic class. For annotation, the minimum probability of errorrule is
to, given a set of query feature vectorsx, pick concept

i
∗(x) = arg max

i
PW |X(i|x) = arg max

i
PX|W (x|i)PW (i).

(2)
For semantic retrieval, given conceptwi, the optimal rule is to se-
lect the database image of index

j
∗(wi) = arg max

j
PW |X(i|xj) =

PX|W (xj |i)PW (i)

PX(xj)
(3)

wherexj is the set of feature vectors extracted from thejth data-
base imageIj . In both cases, the ordering by decreasing posterior
probability is a minimum probability of error ranking for the re-
maining keywords or images.

3. ESTIMATION OF CLASS DENSITIES
Given the collection of semantic class densitiesPX|W (xj |i), ∀i, j,

both annotation and retrieval are relatively trivial operations. They
simply consist of the search for the solution of (2) and (3), respec-
tively, wherePW (i) can be estimated by the relative frequencies of
the various classes in the database andPX(x) =

P
i
PX|W (x|i)

PW (i). However, the estimation of the class densities raises two
interesting questions. The first is computational complexity: if the
database is large, the direct estimation ofPX|W (x|i) from the set
of all feature vectors extracted from all images that contain the con-
ceptwi is usually infeasible. One solution is to discard part of the
data, but this is suboptimal in the sense that important training cases
may be lost. Section 3.1 discusses more effective alternatives. The
second is whether it is possible to learn the densities of semantic
concepts in the absence of a semantic segmentation for each image
in the database. This is the subject of Section 3.2.

3.1 Density Estimation
One possibility to reduce the complexity of estimatingPX|W (x|i),

which we denote bymodel averaging,is to decompose the estima-
tion in two steps. First, a density estimate is produced for each im-
age, originating a sequencePX|L,W (x|l, i), l ∈ {1, . . . D} where
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Figure 1: Illustrative example of the process of learning semantic class densities. Graphs (a)-(c) show three examples of the feature distributions
of individual images. Graph (d) presents the feature distribution over 1,000 images. Although not necessarily dominant in any image, the concept
density (shown in red) dominates over the entire training set.

L is a latent variable that indicates the image number. The class
density is then obtained by averaging the densities in this sequence

PX|W (x|i) =
1

D

X
l

PX|L,W (x|l, i). (4)

While the overall amount of data to be processed remains constant,
each density estimate only involves the feature vectors extracted
from one image. This allows the estimation to be performed in
memory and results in significantly faster estimates1. Furthermore,
images which contribute to various semantic concepts no longer
need to be reprocessed for each of them. The fact that this is the
case for most images adds another significant layer of computa-
tional savings.

While training complexity is substantially decreased, model av-
eraging leads to class-conditional distributions that aretoo expen-
sive to evaluate. Consider, for example, the case where eachesti-
mate is a Gaussian mixture

PX|L,W (x|l, i) =
X

k

π
k
i,lG(x, µ

k
i,l, Σ

k
i,l), (5)

where
P

k
πk

i,l = 1 andG(x, µ, Σ) is a Gaussian of meanµ and
covarianceΣ. Direct application of (4) leads to

PX|W (x|i) =
1

D

X
k,l

π
k
i,lG(x, µ

k
i,l, Σ

k
i,l) (6)

i.e. aD-fold increase in the number of Gaussian components per
mixture. Since, at annotation time, this probability has tobe evalu-
ated for each semantic class, straightforward model averaging can
lead to an extremely slow annotation process. One efficient alter-
native is to adopt the hierarchical density estimation method pro-
posed in [26] for image indexing. This method is based on a mix-
ture hierarchy where children densities consist of different combi-
nations of subsets of their parents components. A formal definition
is given in [26], we omit the details for brevity. The important point
is that, under this model, it is possible to estimate the parameters
of the class mixture directly from those of the mixture resulting
from model averaging. Assuming that this hasDK components of
parameters

{πk
j , µ

k
j , Σk

j }, j = 1, . . . , D, k = 1, . . . , K. (7)

the estimation can be done with an extension of the expectation-
maximization (EM) algorithm which clusters the Gaussian compo-
nents into aT -component mixture, whereT is the number of com-
ponents at the class level. Denoting by{πt

c, µ
t
c, Σ

t
c}, t = 1, . . . , T

1Because hierarchical mixture density estimation is not theend-goal of this
work, the characterization of complexity is rather informal. A precise char-
acterization is available in [26]. We would, however, like to emphasize that
the gains are substantial. For example, the experiments described in Sec-
tion 6 would simply not have been feasible without hierarchical estimates.

the parameters of these components, the algorithm iteratesbetween
the following steps.
E-step: compute

ht
jk =

�
G(µk

j ,µt
c,Σt

c)e
− 1

2
trace{(Σt

c)−1
Σ

k
j
}
�πk

j
N

πt
cP

l

�
G(µk

j
,µl

c,Σl
c)e

− 1
2

trace{(Σl
c)−1Σk

j
}
�πk

j
N

πl
c

, (8)

whereN is a user-defined parameter (see [26] for details).
M-step: set

(πt
c)

new =

P
jk

ht
jk

DK
(9)

(µt
c)

new =
X
jk

w
t
jkµ

k
j , wherew

t
jk =

ht
jkπk

jP
jk

ht
jkπk

j

(10)

(Σt
c)

new =
X
jk

w
t
jk

h
Σ

k
j + (µk

j − µ
t
c)(µ

k
j − µ

t
c)

T
i
. (11)

Note that the number of parameters in each image mixture is or-
ders of magnitude smaller than the number of feature vectorsin the
image itself. Hence the complexity of estimating the class mixture
parameters is negligible when compared to that of estimating the
individual mixture parameters for all images in the class. It fol-
lows that the overall training complexity is dominated by the latter,
i.e., only marginally superior to that of model averaging and signif-
icantly smaller than that associated with direct estimation of class
densities. On the other hand, the complexity of evaluating likeli-
hoods is exactly the same as that achievable with direct estimation,
and significantly smaller than that of model averaging.

One final interesting property of the EM steps above is that they
enforce a data-driven form of regularization which improves gener-
alization. This regularization is visible in (11) where thevariances
on the left hand-size can never be smaller than those on the right-
hand side. We have observed that, due to this property, hierarchical
class density estimates are much more reliable than those obtained
by direct learning.

3.2 Modeling classes without segmentation
Many of the concepts of interest for semantic annotation or re-

trieval only occupy a fraction of the images that contain them.
While objects, e.g. “bear” or “flag”, are prominent examplesof
these concepts this property also holds for more generic semantic
classes, e.g. “sky” or “grass”. Hence, most images are a combina-
tion of various concepts and, ideally, the assembly of a training set
for each semantic class should be preceded by 1) careful semantic
segmentation, and 2) identification of the image regions contain-
ing the associated visual feature vectors. In practice, themanual
segmentation of all database images with respect to all concepts
of interest is infeasible. A pressing question is then whether it is



possible to estimate the densities of a semantic class without prior
semantic segmentation, i.e. from a training set containinga signif-
icant percentage of feature vectors from other semantic classes.

This question has been studied in the machine learning literature,
where the it is usually referred to asmultiple instancelearning [14].
While the problem is still not completely understood, thereis strong
empirical evidence that, if enough images containing the concept of
interest are available, the best fit to the density of its training set is
a good approximation to the concept density. The basic idea is that,
while all images will have probability mass on the region of the
feature space associated with the concept, the remaining probabil-
ity mass (due to the appearance of other concepts in the images) is
uniformly spread out throughout the space (because the appearance
of the remaining concepts is random). Since it has to integrate to
one, this uniform component tends to have small amplitude (in par-
ticular when the feature space is high dimensional). Hence,while
the density of the concept may not be dominant in any individual
image, the consistent appearance makes it dominant over theen-
tire training set. This is illustrated in Figure 1 which presents a
simulation of this effect, when all classes are Gaussian of mean
µ ∈ [−100, 100] and varianceσ ∈ [0.1, 10] and the ensemble con-
tains of1, 000 training images with three semantic concepts (the
concept of interest, withµ = 20 andσ = 3, and two others se-
lected at random).

An example on a real image database is provided by Figure 2
which illustrates the quality of the semantic density estimates in-
directly, by presenting their performance in a semantic segmen-
tation task. In this example, each training image was brokeninto
8×8 pixel neighborhoods, and a feature vector extracted from each
neighborhood. All densities were modeled as Gaussian mixtures,
and the semantic densities were learned over a set of training im-
ages derived from the Corel data set (see Section 6 for a detailed
discussion of this dataset and the features used). The same fea-
ture extraction procedure was then applied to a set of test images,
and each feature vector classified into one of the semantic classes
present in the image (the semantic classes were obtained from the
caption provided with the image). Figure 2 depicts the classindexes
that produced the largest posterior probability at each image loca-
tion, illustrating how each pixel is assigned to each of the classes
(class indexes are represented in the color bar on the right image).
The class at each image locationx was determined by

i
∗(x) =

�
arg maxi PW |X(i|x), ifPW |X(i|x) > τ
0, otherwise. (12)

whereτ = 0.5, PW |X(i|x) was computed as in (1) with

PX(x) = PX|W (x|i)PW (i) + PX|W (x|¬i)PW (¬i),

and the training set for “no classi” consisted of all training images
that did not contain the classi in their set of semantic labels. In or-
der to facilitate the visualization, the posterior maps shown on the
right were obtained by adding a constant, the index of the class as-
sociated with the largest posterior, to that posterior. Regions where
all posteriors were below threshold are declared “undecided”. Fi-
nally, the segmentation map was blurred with a Gaussian filter.
Note that, overall, this procedure results in very reasonable seg-
mentations, indicating that the density estimates are veryreason-
able approximations to the true concept densities.

4. MODEL TUNING
One of the important properties of the database centric proba-

bilistic retrieval formulation is that, due to the simplicity of the
retrieval model, it enables the implementation of sophisticated pa-
rameter optimization procedures. For example, given the interpre-
tation of semantic annotation and retrieval as classification prob-
lems, it is well known that the selection of good image features
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Figure 2: Original images (left column) and their maximum posteri-
ors (right column) at each image neighborhood (Undec. meansthat no
class has a posterior bigger thatτ in (12)).

is an important requirement for accurate performance. Given a
feature spaceZ, the goal of feature selection is to find the best
subsetX ⊆ Z of features, so as to enable accurate classification
with reduced model complexity. Optimal feature selection is usu-
ally a problem of significant complexity, which depends on both
the size of the training set (image database) and the complexity of
the adopted probabilistic models. Since, for large databases, most
models are too complex to enable any sophisticated feature selec-
tion, there is usually a dilemma of choosing between 1) a more
sophisticated model with poor features, or 2) a simpler model with
optimal features. The later option often provides better generaliza-
tion guarantees and ends up achieving the best performance [25].

To illustrate how optimal feature selection can be easily accom-
plished under the database centric probabilistic retrieval model, we
augment the basic architecture discussed so far with the feature
selection algorithm proposed in [28]. Given a set of complexity
constraints, this algorithm explores known statistical properties of
images to find a set of features that is optimal in a discriminant
sense, the maximization of mutual information between features
and class label, closely related to the minimization of Bayes error
rate. While, like most feature selection procedures, it is agreedy
algorithm, it is unique in the sense that it sequentially chooses fea-
tures so as to optimally balance three conflicting goals: 1) that the
features must be discriminative, 2) that the features must not be
redundant, and 3) that redundancy is acceptable if it is the source
of information about the class label. The two latter can be seen
as complexity penalties, and enable the computation of the optimal
solution without compromise of scalability, making the algorithm
viable in the semantic learning context. For brevity, we omit the
implementation details, they are available in [28].

5. KEYWORD DISTRIBUTIONS
While the solution of the semantic annotation and retrievalprob-

lems with recourse to database centric probabilistic retrieval is a
novel contribution of this work, there have been previous attempts
to solve these problems through probabilistic modeling (e.g., [2, 1,
3, 4, 7, 8, 11]). One aspect in which the solution now proposedis
fundamentally different from these efforts is the importance given
to word distributions: while the previous approaches aim tocreate



Table 1: Performance comparison of automatic annotation on the Corel dataset.
Models Co-occurrence Translation CRM CRM-rect MBRM Mix-Hier

#words with recall> 0 19 49 107 119 122 137
Results on all 260 words

Mean Per-word Recall 0.02 0.04 0.19 0.23 0.25 0.29
Mean Per-word Precision 0.03 0.06 0.16 0.22 0.24 0.23

joint models for words and visual features (some even aim to pro-
vide atranslation between the two modalities [7]), database centric
probabilistic retrieval aims for the much simpler goal of estimating
the visual feature distributions associated with each word. This
implies that there is no need to introduce very sophisticated word
probability models: word probabilities only influence the classifi-
cation through the class priorPW (i).

Although this may appear as an over-simplification, we contend
that it is more effective than estimating joint models, for three fun-
damental reasons. First, joint modeling can be quite complex, since
the relationship between language and vision are highly nuanced
and dependent on context. Second, the two modalities have funda-
mentally different representations (words are samples from discrete
sources of finite alphabet, visual features are samples fromcontin-
uous sources with open-ended vocabulary) and statistical learning
and inference tend to be difficult when that is the case. Finally,
the amount of training data is highly unbalanced: while eachim-
age may contribute thousands of feature vectors to the estimation
of the visual component of the model, it contributes a very small
number of observations to the text component. In result of all this,
joint models for language and vision tend to be unrealistic simpli-
fications of the underlying stochastic process, and the parameter
estimates of the text component can be highly unreliable (a signif-
icant number of semantic concepts only appear a few times in the
entire database [7]).

To illustrate these problems, we consider the semantic annotation
and retrieval model that, to the best of our knowledge, has achieved
the best existing results in experimental trials [8, 11]. This model
introduces a latent variableL that indexes the image in the data-
base, and assumes conditional independence between image fea-
turesX and captionsT, i.e.

PX,T(x, t) =

DX
l=1

PX|L(x|l)PT|L(t|l)PL(l) (13)

whereD is the database size. This enables individual estimation
of PX|L(x|l) andPT|L(t|l), and the overall density estimates are
obtained by model averaging. The likelihood of the text compo-
nent can be seen as weighting the contribution of each image to the
overall estimate of the distribution of visual features. The training
of the PT|L(T|l), l ∈ {1, . . . , D} is a maximum likelihood es-
timation based on the annotations associated with thelth training
image, and usually reduces to counting [8, 11]. At annotation time,
the possible captions for the queryI are ranked by either the joint
probability of (13) or the posterior probability

PT|X(t|x) =
PX,T(x, t)

PX(x)
. (14)

While the latter can be interpreted as the Bayesian decisionrule
for a classification problem with the states ofT as classes, such
class structure is not consistent with the generative modelof (13)
which enforces a causal relationship fromL to T. This leads to
a very weak dependency between the observationX and classT
variables, e.g., that they are independent givenL. Hence, there
is a mismatch between the class structure used for designingthe
probabilistic models (where the states of the latent variable are the

Figure 3: Comparison of the time complexity for the annotation of a
test image on the Corel data set.

classes) and that used for labeling and retrieval (which assume the
states ofT to be the classes). This can lead to decisions that are
suboptimal in a minimum probability of error sense.

It is important to note that database centric probabilisticretrieval
does not preclude the use of a joint distribution for visual features
and text. For example, in (2) and (3),PX|W (x|i) can be replaced
by

PX,T|W (x, t|i) =
1

Di

DiX
l=1

PX,T|L,W (x, t|l, i)

=
1

Di

DiX
l=1

PX|L,W (x|l, i)PT|L,W (t|l, i)

(15)

whereL is a latent variable that indexes the images containing con-
ceptwi, and we have assumed conditional independence between
text and visual features given the semantic class. This model is
equivalent to (13) but with the latent variableL restricted to the
images of theith semantic class, enabling consistency with the
minimum probability of error goal for annotation and retrieval. Al-
though the probability mass of the text component is highly con-
centrated on the word associated with semantic classi (for the
same arguments as in section 3.2) this component will also cap-
ture the co-occurrences with other words. It resembles the transla-
tion model [7], with the clusters in the feature space of [7] replaced
by the hierarchical estimates of the class densitiesPX|W (x|i) dis-
cussed in section 3.1. The text componentPT|W (t|i) is modeled
by a multinomial distribution, as in [11]. The comparison ofthe
performance achieved with this model and the text-free model pre-
viously discussed provides insight on the benefits of text modeling.
These are discussed in the following section.

6. EXPERIMENTAL RESULTS
To evaluate the performance of semantic annotation and retrieval

we relied on the Corel data set used in [7, 11, 8]. The translation
model of [7] was the first milestone in the area of semantic anno-
tation, in the sense of demonstrating results of practical interest.
After years of research, and various other contributions, the best
existing results are, to the best of our knowledge, those of[8]. We
therefore adopt an evaluation strategy identical to that used in this
work. In particular, all experiments discussed below are based on



the database introduced in [7]2, which consists of5, 000 images
from 50 Corel Stock Photo CDs, divided into three parts: a train-
ing set of4, 000 images, a validation set of 500 images, and a test
set of500 images. After model parameters are optimized using the
validation set, this is merged with the training set to builda new
training set of4, 500 images. Each image has a caption of 1-5 key-
words, and there are 371 keywords in the data set. With respect
to the visual component, the YBR color space was adopted, each
image decomposed into a set of overlapping8 × 8 windows, the
discrete cosine transform (DCT) applied to each window, andthe
image represented as a bag of feature vectors containing thefirst21
DCT coefficients of each color channel. Note that this feature set
is different from the one used in [7, 11, 8] (which consists ofcolor,
texture, and shape features).

6.1 Automatic Image Annotation
We start by assessing the performance of our model on the task

of automatic image annotation. Given an un-annotated image, the
goal is to automatically generate a caption which is then compared
to the annotation produced by a human. Similarly to [11, 8] wede-
fine the automatic annotation as the five semantic classes of largest
posterior probability. We then compute the recall and precision of
every word in the test set. For a semantic descriptorw, assuming
that there are|wH | human annotated images in the test set, and
the system annotates|wauto|, of which |wC | are correct, recall and
precision are given byrecall = |wC |

|wH |
, precision = |wC |

|wauto|
. As

suggested by [11, 8], the values of recall and precision are aver-
aged over the set of260 words that appear in the test set. Table 1
presents these results for both the approach now proposed (which
is denoted by ’Mix-Hier’) and various other previously proposed
methods (results borrowed from [11, 8]). Specifically, we con-
sidered: the co-occurrence model [15], the translation model [7],
the continuous-space relevance model (CRM-rect)[11, 8], and the
multiple-Bernoulli relevance model (MBRM) [8]. Note that the
Mix-Hier results assume a uniform distributionPW (i) of semantic
keywords in (2).

Overall, the method now proposed achieves the best performance.
When compared to the previous best results (MBRM) it exhibits a
gain of 16% in recall for an equivalent level of precision. Simi-
larly, the number of words with positive recall increases by15%.
Fig. 4 presents some examples of the annotations produced. Note
that when the system annotates an image with a descriptor notcon-
tained in the human-made caption, this annotation is frequently
plausible. Another important issue is the complexity of thean-
notation process. The complexity of CRM-rectangles and MBRM
is O(TR), whereT is the number of training images andR the
number of visual feature vectors per image. Mix-Hier has a signif-
icantly smaller time complexity ofO(CR), where C is the number
of classes (or image annotations). Assuming a fixed number of
feature vectorsR, Figure 3 shows how the annotation time of a test
image grows for Mix-Hier and MBRM, as a function of the number
of training images, on the Corel dataset.

6.2 Image Retrieval with Single Word Queries
To evaluate the performance of semantic retrieval, precision and

recall were computed as follows: when then top matches to a query
are retrieved, recall is the percentage of all relevant images that are
contained in that set and precision the percentage of then which are
relevant (where relevant means that the ground-truth annotation of
the image contains the query descriptor). Once again, we adopted
the experimental setup of [8], evaluating the retrieval performance
by the mean average precision. As can be seen from Table 2, for
ranked retrieval on Corel, Mix-Hier produces results superior to

2We would like to thank Kobus Barnard to make this dataset available for
our experiments.

Table 2: Retrieval results on Corel.
Mean Average Precision for Corel Dataset

Models All 260 words Words with recall> 0
Mix-Hier 0.31 0.49
MBRM 0.30 0.35

Table 3: Performance comparison between Mix-Hier and Mix-Hier-
SDK for the task of automatic annotation.

Models Mix-Hier Mix-Hier-SKD
#words with recall> 0 137 86

Results on all 260 words
Mean Per-word Recall 0.29 0.17
Mean Per-word Precision 0.23 0.20

Table 4: Performance comparison between Mix-Hier and Mix-Hier-
SDK for the task of image retrieval.

Mean Average Precision for Corel Dataset
Models All 260 words Words with recall> 0

Mix-Hier 0.31 0.49
Mix-Hier-SKD 0.20 0.27

those of MBRM. In particular, it achieves a gain of40% mean av-
erage precision on the set of words that have positive recall. Figure
5 illustrates the performance of the system on one word queries
for challenging visual concepts. Note the diversity of visual ap-
pearance of the returned images, indicating that the methodnow
proposed has good generalization ability.

6.3 Semantic Keyword Distribution
In this section we evaluate the benefits of including semantic

keyword distributions in the probabilistic model, i.e. using (15).
Tables 3 and 4 show a comparison between this model (denoted
by Mix-Hier-SKD) and the text-free Mix-Hier model in the tasks
of image annotation and retrieval, respectively (the results of Mix-
Hier are repeated to facilitate the comparison). Note that Mix-Hier
produces significantly better results in both tasks. We believe that
this is due to the factors discussed in Section 5: the difficulty of
combining continuous and discrete variables and the unreliability
of the estimates of keyword probabilities3.

6.4 Feature Selection
In this section we briefly discuss the performance improvement

of Mix-Hier resulting from the addition of the feature selection
method of Section 4. Figure 6 shows annotation results (number of
words with recall> 0, mean precision, and mean recall), while the
retrieval results (mean precision-recall for all words andfor words
of recall > 0) are presented in Figure 7. In all plots the perfor-
mance is shown as a function as the number of features selected
(number of subspaces of the feature space where the classifier is
defined). Note that, for both annotation and retrieval, the results
achieved with the best32 features are equivalent to those attained
on the full64-dimensional space, but have half complexity. While
these results support the argument that feature selection is benefi-
cial, the good performance of the complete feature set is somewhat
surprising: our previous experience with non-semantic retrieval is
that performance starts to degrade after16 to 32 features. We be-

3The results reported are the best achieved over a set of trials using different
strategies for regularizing the keyword probabilities.



Human sky jet snow fox sky buildings water bridge water pool
Annotation plane smoke arctic street cars train railroad athlete swimmers
Mix-Hier plane jet smoke arctic snow street buildings sky bridge locomotive swimmers people

Annotation flight prop polar fox ice bridge sky arch water train water pool athlete

Human grass forest bear polar coral fish buildings clothes mountain sky
Annotation cat tiger snow tundra ocean reefs shops street clouds tree
Mix-Hier cat tiger plants polar tundra reefs coral buildings street mountain valley

Annotation leaf grass bear snow ice ocean fan fish shops people skyline sky clouds tree

Figure 4: . Comparisons of annotations made by our system and annotations made by a Human subject.

Figure 5: Semantic retrieval results on Corel. Each row shows the top five matches to a semantic query. From top to bottom: five top matches for
’blooms’, ’mountain’, ’pool’ , ’smoke’, and ’woman’ .

lieve that the increased robustness of semantic retrieval is due to
the intrinsic data-driven regularization of hierarchicaldensity esti-
mation, as discussed in Section 3.1.

6.5 Generalization
We finish with an evaluation of the generalization ability ofthe

semantic retrieval model. Figure 8 presents the curves of average
precision-recall, and associated error bars, obtained over the entire
test set, but grouped by the number of available training examples
from the class of the query. Once again the results are somewhat
surprising, since the performance seems to improve for classes with

less training examples. This is likely to be due to the make-up of
the Corel dataset, where classes with few examples tend to con-
tain images with similar scenes. Nevertheless, these results suggest
that performance starts to stabilize at about100 examples: adding
more examples decreases the precision-recall variance, but does not
seem to affect its mean. This is an encouraging result, sinceit in-
dicates that semantic retrieval is feasible with small training sets.
On the other hand, it also indicates that the average curve ofpre-
cision recall over all queries should be taken with a grain ofsalt.
More realistic values would likely be obtained by discarding the se-
mantic classes with very few training examples. We have not done
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Figure 6: Automatic image annotation results using feature selection
(Mix-Hier-FS). The straight dashed-line shows the Mix-Hier result.
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Figure 8: Average curves of precision-recall, and error bars, for se-
mantic retrieval with classes of variable training set size.

so to maintain consistency with the experimental set-up previously
adopted in the literature.
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