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ABSTRACT

We introduce a new model for semantic annotation and retriev
from image databases. The new model is based on a probabilis-

tic formulation that poses annotation and retrieval assifiaation
problems, and produces solutions that are optimal in thénmoim
probability of error sense. It is also database centric,digt#ish-
ing a one-to-one mapping between semantic classes andoiyesgr
of database images that share the associated semantis. ldhel
this work we show that, under the database centric prolssibili
model, optimal annotation and retrieval can be implememtitid
algorithms that are conceptually simple, computationefficient,
and do not require prior semantic segmentation of trainmmages.
Due to its simplicity, the annotation and retrieval arctitee is
also amenable to sophisticated parameter tuning, a pyoibettis
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Content-based image retrieval, the problem of searchirgela
image repositories according to their content, has beesuhject
of a significant amount of research in the recent past [21]il&Vh
early retrieval architectures were based on the queryxbyrple
paradigm, which formulates image retrieval as the searchhi®
best database match to a user-provided query image, it vieldyqu
realized that the design of fully functional retrieval g would
require support for semantic queries [18]. These are quepec-
ified through a natural language description of the visuatepts
of interest, and require the textual annotation of the irsdgehe
database. Since manual image labeling is a costly operakiere
is currently great interest in the automatic extraction erhantic
descriptors from images. Both semantic retrieval and aatizm

image annotation are instances of the more general probfem o
learning a mapping between images and keywords. In this work
we show that such a mapping can be learned effectively and effi

exploited to investigate the role of feature selection endbsign of
optimal annotation and retrieval systems. Finally, we destrate

the benefits of simply establishing a one-to-one mappingdet
keywords and the states of the semantic classification @mobler
the more complex, and currently popular, joint modeling ey«
word and visual feature distributions. The database aeptob-
abilistic retrieval model is compared to existing semataheling
and retrieval methods, and shown to achieve higher acctinacy
the previously best published results, at a fraction ofrtbempu-
tational cost.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval Models; 1.4.8
[Scene Analysit Object Recognition; G.3Hrobability and Sta-
tistics]: Probabilistic Algorithms

General Terms
Algorithms,Measurement,Experimentation
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ciently under adatabase centriwiew of the information retrieval
(IR) problem, denoted bgrobabilistic retrieval

To motivate the advantages of database centric retrievad, i
helpful to consider the limitations of the traditionglery centri¢
view of IR. Under this view, the goal of a retrieval systenoisank
database documents according to their relevance/irmetevio the
query. This poses the retrieval problem as one of binansiflas-
tion (arelevantvs anirrelevantclass). While binary classifiers are
a well understood area of machine learning, the retrievablpm
introduces a twist that is rarely considered in the leartitegature:
because the relevance of a document with respect to a quamgtca
be defined until the latter is known, the relevant/irrelé\@assifier
can only be designed once the query is available. This intesl
two notable constraints on the design of classifiers foraedt. The
first, which derives from the need to answer the query qujég&lg
tight upper bound on training complexity. The second, dughéo
fact that typical queries only contain one example (or a fiean
the relevant class, and none from the irrelevant, is sgaofitrain-
ing data. These constraints are quite difficult to reconeité the
learning requirements, in terms of both training time amdhing
set size, of most state-of-the-art classifiers.

The alternative proposed by the database centric fornounlasi
to ground the classes on the database, rather than on the tuer
the simplest case, this is done by defining each entry in ttee da

base (e.g. document or image) as an independent class. The re

trieval problem is then defined as thatfiofding the database class
to which the query belongghe main advantage is that the classi-
fier is defined by the database, not the query, and can thereéor
learned off-line This allows time to train more powerful classifiers,
based on sophisticated data representations, e.g., eexi4] or
hidden Markov models [20]. Furthermore, because classier-
ing is based on thentire databasgerather than just the examples



provided in the query, the resulting parameter estimatesignif- the previously best published results, at a fraction ofrtbempu-
icantly more reliable than what is feasible under the queiytric tational cost.
formulation. Overall, by eliminating the two major bottésks of

query centric retrieval, the database centric formulatiam lead to 2. SEMANTIC LABELING AND RETRIEVAL

significantly better retrieval performance. . B . _
Since database centric retrieval can be seen as a neargist nei Co.n5|der a database = {T1,..., In} of |magesL and a se-
mantic vocabulanyC = {w,...,wr} of semantic labels, or key-

bor search, under a suitable distance measure (the privpalsl words,w;. The goal of semantic image annotation is to, given an

the query given the database class), it is subjacent to thehimg- h )
based retrieval systems that have been popular since tyedess 'magel— , extract the set of key\./vords., or captiow, .that best de-
of image retrieval [23, 16, 17, 9, 10, 12, 22, 13]. The precise scribesZ. The goal of semantic retrieval is to, given a keyword

probabilistic formulation was eventually formalized in B] and w, extract the images in the database that contain the atsicia

appears to have been rediscovered by the IR community &, larg visual concept. In both cases, Ie_arnlng IS based on a tsen

through the language modeling work of Ponte and Croft [19], a D = {(Z1, w1), ..., (Ip, wp)} of image-caption pairs.

few years later. While the inherent benefits of longer trajrtimes Upder database centric Pmb??"'s.“c retrieval, both Ilagmnd

and better model estimates are now fairly well understobdas reltrleval are fqrmulatgd as classification problem;. Maneitécally,

one additional advantage (over query centric retrievad) ttoes this requires mtrpducmg 1.) a random Vecxmf visual features,

not appear to be widely appreciated. To identify this adyget it %a_raryo!gm \(/janalbléjf/,);/v hich takeslva;ues "ﬁhl’ .5 L}, s0 th%t

is necessary to analyze the retrieval process in light ofdlusal re- hi vl a;n only 1 di IS al samp ed_rgm t|§ concenpt;, an

lationships (from class to observations) that follow frdra gener- .3) the set of corresponding class-conditiona ensmglg,v(xh),

ative interpretation of any classification problem. Whie guery L€ {.1’ o L} fOIj the distribution of wsugl featyres given the se-

centric formulation poses the query as a source, which esiu mantic plgss. U;lng well known results in stgtlstlcal qlmsthe-

binary observations (database entries) in the relevanirasievant ory [6], itis not difficult to show that both labeling and netral can

classes, the roles are reversed by the database centriglédion, be |mp|_e_r_nented with minimum probability of error if the pesor

where the query becomes an observation drawn from one of thepmbabllltles

many classes in the (source) database. This distinctiomgeritant ] Pxw (x]7) Pw (%)

when query and database concepts have different “gratyilari Py x (i[x) = — (1)
This is the case of semantic retrieval, where the query isman i

age but the database classes are generic semantic congeptsss  are available, wher@y (4) is a prior probability for theé'” seman-

“sky” or “grass”. Due to this unbalance, answering the (guem- tic class. For annotation, the minimum probability of ennale is

tric) question of whether the database concepts are releguires to, given a set of query feature vectorspick concept

an ability to generalize that retrieval systems rarely psssFor ex-

ample, when faced with a query consisting of a patch of bitie i"(x) = arg max Py x(i[x) = arg max Pxw (xi) Pw ().
sky, query centered retrieval systems need to somehow tim¢r 2)
sky could also be orange (and consequently infer that aljéea  For semantic retrieval, given concept, the optimal rule is to se-
of sunsets are relevant). This problem is easily eliminateder lect the database image of index

the database centric formulation, by simplgfining the database

Pxw (x;1i) Pw (7)
Px(x;)

wherex; is the set of feature vectors extracted from jhe data-
base imag€;. In both cases, the ordering by decreasing posterior
probability is a minimum probability of error ranking foretre-
maining keywords or images.

®)

classes as the semantic concepts of inteteserms of implemen- 7" (wi) = arg max Py x (i|x;) =
tation, the only difference (with respect to non-semartitieval) J

is that one probability distribution is estimated per cgid@ising

all the images that contain the concept) rather than peremgw-
ever, when compared to query centric retrieval, this makesaf
substantial difference at retrieval time: while query cieretrieval
requires a relevance judgment fdktypes of imagem the relevant
class froma single exampledatabase centric retrieval only requires
a similarity judgment foone imaggthe query) from therobabil- 3. ESTIMATION OF CLASS DENSITIES

ity distribution of the entire classFrom a generalization point of Given the collection of semantic class densifisgw (x;|i), V4, 7,
view, the former is arextrapolationproblem, while the later only ~ both annotation and retrieval are relatively trivial opignas. They
requiresinterpolation In this sense, database centric retrieval is a simply consist of the search for the solution of (2) and (83pec-

significantly easier problem. tively, wherePy (i) can be estimated by the relative frequencies of
In this work, we show that the database centric probalulisti the various classes in the database &gdx) = Y. Pxw (xi)
trieval model has various interesting properties for battomatic Py (). However, the estimation of the class densities raises two
image annotation and semantic retrieval. In particulas &hown interesting questions. The first is computational compyexf the
that, under this model, optimal (in a minimum probability exf database is large, the direct estimationfgfjy (x|i) from the set
ror sense) annotation and retrieval can be implementedalgid+ of all feature vectors extracted from all images that cantiaé¢ con-
rithms that are conceptually simple, computationally &ffit, and ceptw; is usually infeasible. One solution is to discard part of the
do not require prior semantic segmentation of training iesagpue data, but this is suboptimal in the sense that importantitrgicases
to its simplicity, the annotation and retrieval architeetis also may be lost. Section 3.1 discusses more effective altersmtiThe
amenable to sophisticated parameter tuning, a propertysthex- second is whether it is possible to learn the densities ofagéim
ploited to investigate the role of feature selection in tkeign of concepts in the absence of a semantic segmentation for macfe i
optimal annotation and retrieval systems. Finally, we destrate in the database. This is the subject of Section 3.2.

the benefits of simply establishing a one-to-one mappingdet . . .
keywords and the states of the semantic classification gnobler 3.1 Density Estimation

the more complex, and currently popular, joint modeling ey One possibility to reduce the complexity of estimatifig, i (x|i),
word and visual feature distributions. The database aeptob- which we denote bynodel averagingis to decompose the estima-
abilistic retrieval model is compared to existing semalheling tion in two steps. First, a density estimate is produced &ohém-

and retrieval methods, and shown to achieve higher acciinacy age, originating a sequend& . w (x|l, ), € {1,... D} where
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Figure 1: lllustrative example of the process of learning semantic @ss densities. Graphs (a)-(c) show three examples of the fie distributions
of individual images. Graph (d) presents the feature distibution over 1,000 images. Although not necessarily dominann any image, the concept

density (shown in red) dominates over the entire training se

L is a latent variable that indicates the image number. Thescla
density is then obtained by averaging the densities in ggssnce

ZPX‘LW (x],4). 4)

PX\W Xl

While the overall amount of data to be processed remaingaans
each density estimate only involves the feature vectoraeted
from one image. This allows the estimation to be performed in
memory and results in significantly faster estimat&urthermore,
images which contribute to various semantic concepts ngelion
need to be reprocessed for each of them. The fact that thieis t
case for most images adds another significant layer of canput
tional savings.

While training complexity is substantially decreased, elal/-
eraging leads to class-conditional distributions thattaceexpen-
sive to evaluate. Consider, for example, the case whereesdch
mate is a Gaussian mixture

Zﬂ—L lg X /uLh zl) (5)

PX\LW X|l 7

where}", 7F, = 1 andG(x, 1, ¥) is a Gaussian of megm and
covarianceX. Direct application of (4) leads to
Zﬂ-z lg X ,U/'Lb zl) (6)

PX\W X|

the parameters of these components, the algorithm itdratesen
the following steps.
E-step: compute

k

1 ty—1lsk,775 N
trace{(S =% J

[W“?MZEUS ztracel(®e) J}] 72

t
Ly = ~ -
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whereN is a user-defined parameter (see [26] for details).
M-step: set
o ht
iy = Zpl ©)
DK
! hiky
(o)™ = > whepy, wherew), = =1 — S (10)
ik ZJK kT
(B = D wh [BF+ (- u) () — )] QD)
gk

Note that the number of parameters in each image mixture is or
ders of magnitude smaller than the number of feature vettdre
image itself. Hence the complexity of estimating the claggume
parameters is negligible when compared to that of estimatie
individual mixture parameters for all images in the classfol
lows that the overall training complexity is dominated b thtter,

i.e., only marginally superior to that of model averagingd aignif-

i.e. aD-fold increase in the number of Gaussian components per icantly smaller than that associated with direct estinmatbclass

mixture. Since, at annotation time, this probability habécevalu-
ated for each semantic class, straightforward model aireragn
lead to an extremely slow annotation process. One efficiestta
native is to adopt the hierarchical density estimation wetpro-
posed in [26] for image indexing. This method is based on a mix
ture hierarchy where children densities consist of diffiembi-
nations of subsets of their parents components. A formatitiefn
is given in [26], we omit the details for brevity. The impartgoint
is that, under this model, it is possible to estimate the mpatars
of the class mixture directly from those of the mixture résgi
from model averaging. Assuming that this Hag components of
parameters

{z},uf, 25 i=1,...,D,k=1,... K. @)

the estimation can be done with an extension of the expentati
maximization (EM) algorithm which clusters the Gaussiampo-
nents into a’-component mixture, wherg is the number of com-
ponents at the class level. Denotingfyf, ut, 2t} t =1,...,T

!Because hierarchical mixture density estimation is noetid:goal of this
work, the characterization of complexity is rather infotmfaprecise char-
acterization is available in [26]. We would, however, likeemphasize that
the gains are substantial. For example, the experimentsides in Sec-
tion 6 would simply not have been feasible without hierazahestimates.

densities. On the other hand, the complexity of evaluatiiejit
hoods is exactly the same as that achievable with direchastn,
and significantly smaller than that of model averaging.

One final interesting property of the EM steps above is that th
enforce a data-driven form of regularization which improgener-
alization. This regularization is visible in (11) where tl@iances
on the left hand-size can never be smaller than those onghe ri
hand side. We have observed that, due to this property,rbiécal
class density estimates are much more reliable than thdaaed
by direct learning.

3.2 Modeling classes without segmentation

Many of the concepts of interest for semantic annotatioreer r
trieval only occupy a fraction of the images that containnthe
While objects, e.g. “bear” or “flag”, are prominent examptds
these concepts this property also holds for more generieusgm
classes, e.g. “sky” or “grass”. Hence, most images are a t@nb
tion of various concepts and, ideally, the assembly of aitngiset
for each semantic class should be preceded by 1) carefuindiema
segmentation, and 2) identification of the image regiongainn
ing the associated visual feature vectors. In practicejrthaual
segmentation of all database images with respect to allegiac
of interest is infeasible. A pressing question is then waethis



possible to estimate the densities of a semantic class wtifhraor
semantic segmentation, i.e. from a training set contaiaisgnif-
icant percentage of feature vectors from other semantssea

This question has been studied in the machine learningfites,
where the itis usually referred to amiltiple instancdearning [14].
While the problem is still not completely understood, thergtrong
empirical evidence that, if enough images containing tmeept of
interest are available, the best fit to the density of itsitrgj set is
a good approximation to the concept density. The basic &itreat,
while all images will have probability mass on the region loé t
feature space associated with the concept, the remainaiipil-
ity mass (due to the appearance of other concepts in the shage
uniformly spread out throughout the space (because thexeqpee
of the remaining concepts is random). Since it has to integma
one, this uniform component tends to have small amplitudpdr-
ticular when the feature space is high dimensional). Hewbde
the density of the concept may not be dominant in any indafidu
image, the consistent appearance makes it dominant oventhe
tire training set. This is illustrated in Figure 1 which prats a
simulation of this effect, when all classes are Gaussian e&fimm
u € [—100, 100] and variancer € [0.1, 10] and the ensemble con-
tains of 1, 000 training images with three semantic concepts (the
concept of interest, witlh = 20 ando = 3, and two others se-
lected at random).

An example on a real image database is provided by Figure 2

which illustrates the quality of the semantic density eatis in-
directly, by presenting their performance in a semantiareag
tation task. In this example, each training image was broktm

8 x 8 pixel neighborhoods, and a feature vector extracted frath ea
neighborhood. All densities were modeled as Gaussian neigtu
and the semantic densities were learned over a set of tgaimn
ages derived from the Corel data set (see Section 6 for defbtai
discussion of this dataset and the features used). The szane f
ture extraction procedure was then applied to a set of temyés
and each feature vector classified into one of the semartsses
present in the image (the semantic classes were obtainexdtfr®
caption provided with the image). Figure 2 depicts the dladsxes
that produced the largest posterior probability at eaclyeriaca-
tion, illustrating how each pixel is assigned to each of tlsses
(class indexes are represented in the color bar on the rigige).
The class at each image locatienwas determined by

- arg max; P i|x),
Z(x):{og wx (4]x)

wherer = 0.5, Py |x (i|x) was computed as in (1) with
Px (x) = Px w (x|i) Pw (i) + Pxyw (x|-i) Pw (—),

and the training set for “no clag$consisted of all training images
that did not contain the clagsn their set of semantic labels. In or-
der to facilitate the visualization, the posterior mapsvahon the
right were obtained by adding a constant, the index of thesca-
sociated with the largest posterior, to that posterior.i®egwhere

all posteriors were below threshold are declared “undeidgi-
nally, the segmentation map was blurred with a Gaussianm. filte
Note that, overall, this procedure results in very reaskenabg-
mentations, indicating that the density estimates are keagon-
able approximations to the true concept densities.

, otherwise 12)

4. MODEL TUNING

One of the important properties of the database centricgarob
bilistic retrieval formulation is that, due to the simpticiof the
retrieval model, it enables the implementation of sopbédéd pa-
rameter optimization procedures. For example, given ttexpne-
tation of semantic annotation and retrieval as classificairob-
lems, it is well known that the selection of good image feadur

MOUNTAIN

Figure 2: Original images (left column) and their maximum posteri-
ors (right column) at each image neighborhood (Undec. mearthat no
class has a posterior bigger that in (12)).

is an important requirement for accurate performance. rGae
feature spaceZ, the goal of feature selection is to find the best
subsetY C Z of features, so as to enable accurate classification
with reduced model complexity. Optimal feature select®nisu-
ally a problem of significant complexity, which depends orthbo
the size of the training set (image database) and the coityptex
the adopted probabilistic models. Since, for large datdhanost
models are too complex to enable any sophisticated featlee-s
tion, there is usually a dilemma of choosing between 1) a more
sophisticated model with poor features, or 2) a simpler matth
optimal features. The later option often provides betteregaliza-
tion guarantees and ends up achieving the best performahte [
To illustrate how optimal feature selection can be easiboat
plished under the database centric probabilistic retrienamlel, we
augment the basic architecture discussed so far with tharéea
selection algorithm proposed in [28]. Given a set of comipyex
constraints, this algorithm explores known statisticalgerties of
images to find a set of features that is optimal in a discrimina
sense, the maximization of mutual information betweenufest
and class label, closely related to the minimization of Bageror
rate. While, like most feature selection procedures, it igeedy
algorithm, it is unique in the sense that it sequentiallyades fea-
tures so as to optimally balance three conflicting goalsha) the
features must be discriminative, 2) that the features mostba
redundant, and 3) that redundancy is acceptable if it is dhece
of information about the class label. The two latter can tense
as complexity penalties, and enable the computation oftienal
solution without compromise of scalability, making the @ithm
viable in the semantic learning context. For brevity, we totiné
implementation details, they are available in [28].

5. KEYWORD DISTRIBUTIONS

While the solution of the semantic annotation and retripvab-
lems with recourse to database centric probabilisticeedtiis a
novel contribution of this work, there have been previotisrapts
to solve these problems through probabilistic modeling. (€2, 1,
3,4, 7,8, 11]). One aspect in which the solution now propased
fundamentally different from these efforts is the impodamiven
to word distributions: while the previous approaches airoreate



Table 1: Performance comparison of automatic annotation on the Coredataset.

Models Co-occurrence Translation| CRM | CRM-rect | MBRM | Mix-Hier
#words with recalt> 0 19 49 107 119 122 137
Results on all 260 words
Mean Per-word Recall 0.02 0.04 0.19 0.23 0.25 0.29
Mean Per-word Precision 0.03 0.06 0.16 0.22 0.24 0.23
joint models for words and visual features (some even ainrde p 5000} Vv
vide atranslation between the two modalities [7]), database centric
probabilistic retrieval aims for the much simpler goal diresting S
the visual feature distributions associated with each wortis 2 3000
implies that there is no need to introduce very sophistitaterd 8 2000 <
probability models: word probabilities only influence tHassifi-
cation through the class pridy (7). R S S
Although this may appear as an over-simplification, we cuthte %o 2000 3000 4000 5000

that it is more effective than estimating joint models, tareie fun-
damental reasons. First, joint modeling can be quite camplace
the relationship between language and vision are highlyce
and dependent on context. Second, the two modalities hadafu
mentally different representations (words are samples ftiscrete
sources of finite alphabet, visual features are samples dmntin-
uous sources with open-ended vocabulary) and statiséaahing
and inference tend to be difficult when that is the case. BKinal
the amount of training data is highly unbalanced: while each
age may contribute thousands of feature vectors to the a&stim
of the visual component of the model, it contributes a veralém
number of observations to the text component. In resultldhe,
joint models for language and vision tend to be unrealistigs-
fications of the underlying stochastic process, and thenpeter
estimates of the text component can be highly unreliablégfafs
icant number of semantic concepts only appear a few timdsein t
entire database [7]).

To illustrate these problems, we consider the semantictatioo
and retrieval model that, to the best of our knowledge, hheaed
the best existing results in experimental trials [8, 11]isThodel
introduces a latent variable that indexes the image in the data-
base, and assumes conditional independence between iemge f
turesX and captiondT, i.e.

Px rt(x,t) = Z Px 1, (x|1) Pri (1) Pr.(1)

=1

(13)

where D is the database size. This enables individual estimation
of Px|r(x|l) and Pr.(t|l), and the overall density estimates are
obtained by model averaging. The likelihood of the text comp
nent can be seen as weighting the contribution of each intetleet
overall estimate of the distribution of visual features.eTtaining

of the Py (T|l), I € {1,...,D} is a maximum likelihood es-
timation based on the annotations associated withi‘théraining
image, and usually reduces to counting [8, 11]. At annatetiioe,

the possible captions for the quefyare ranked by either the joint
probability of (13) or the posterior probability

Px Tt (X7 t)
PX (X) '

While the latter can be interpreted as the Bayesian decisiten
for a classification problem with the statesBfas classes, such
class structure is not consistent with the generative moflél3)
which enforces a causal relationship frdimto T. This leads to
a very weak dependency between the observaXoand classT
variables, e.g., that they are independent gi¥enHence, there
is a mismatch between the class structure used for desighing
probabilistic models (where the states of the latent végiake the

Prix(tx) = (14)

# TRAINING IMAGES

Figure 3: Comparison of the time complexity for the annotation of a
test image on the Corel data set.

classes) and that used for labeling and retrieval (whichrasghe
states ofT to be the classes). This can lead to decisions that are
suboptimal in a minimum probability of error sense.

It is important to note that database centric probabiligideval
does not preclude the use of a joint distribution for viseatéires
and text. For example, in (2) and (Fx|w (x|i) can be replaced

by
1 &

D Z PX,T\L,W(Xv t|l, Z)
1

]D)("]:*‘VV(X7 t|Z)

~
Il

5

1

PX\L,W(X”: Z)PT\L,W(t|l7 Z)
1

7

(15)

wherelL is a latent variable that indexes the images containing con-
ceptw;, and we have assumed conditional independence between
text and visual features given the semantic class. This frisde
equivalent to (13) but with the latent variahlerestricted to the
images of thei*" semantic class, enabling consistency with the
minimum probability of error goal for annotation and retee Al-
though the probability mass of the text component is higlg-c
centrated on the word associated with semantic cla@er the
same arguments as in section 3.2) this component will alpe ca
ture the co-occurrences with other words. It resemblesrémesia-

tion model [7], with the clusters in the feature space of gfjlaced

by the hierarchical estimates of the class densifiggy (x|i) dis-
cussed in section 3.1. The text compon&htyy, (t|i) is modeled

by a multinomial distribution, as in [11]. The comparisontbé
performance achieved with this model and the text-free inaae
viously discussed provides insight on the benefits of texdeting.
These are discussed in the following section.

6. EXPERIMENTAL RESULTS

To evaluate the performance of semantic annotation arnidvatr
we relied on the Corel data set used in [7, 11, 8]. The translat
model of [7] was the first milestone in the area of semantimann
tation, in the sense of demonstrating results of practic@réest.
After years of research, and various other contributions, dest
existing results are, to the best of our knowledge, thos#].ofjVe
therefore adopt an evaluation strategy identical to thetl us this
work. In particular, all experiments discussed below argedaon



the database introduced in [7] which consists of, 000 images
from 50 Corel Stock Photo CDs, divided into three parts: a train-
ing set of4, 000 images, a validation set of 500 images, and a test
set 0f500 images. After model parameters are optimized using the
validation set, this is merged with the training set to baildew
training set of4, 500 images. Each image has a caption of 1-5 key-
words, and there are 371 keywords in the data set. With respec
to the visual component, the YBR color space was adopted eac
image decomposed into a set of overlappihg 8 windows, the
discrete cosine transform (DCT) applied to each window, tied
image represented as a bag of feature vectors containirfigstizl

DCT coefficients of each color channel. Note that this feaset

is different from the one used in [7, 11, 8] (which consistsaibr,
texture, and shape features).

6.1 Automatic Image Annotation

Table 2: Retrieval results on Corel.

Mean Average Precision for Corel Dataset

Models | All 260 words | Words with recall> 0
Mix-Hier 0.31 0.49
MBRM 0.30 0.35

Table 3: Performance comparison between Mix-Hier and Mix-Hier-
SDK for the task of automatic annotation.

Models Mix-Hier | Mix-Hier-SKD
#words with recall> 0 137 86
Results on all 260 words
Mean Per-word Recall 0.29 0.17
Mean Per-word Precision 0.23 0.20

We start by assessing the performance of our model on the task

of automatic image annotation. Given an un-annotated inthge
goal is to automatically generate a caption which is thenpamed

to the annotation produced by a human. Similarly to [11, 8Pee
fine the automatic annotation as the five semantic classesgafdt
posterior probability. We then compute the recall and ieni of
every word in the test set. For a semantic descriptpassuming
that there argw| human annotated images in the test set, and
the system annotateésauo|, Of which |w¢| are correct, recall and

precision are given byecall = L2<! lwe]

T |wauto]

Twr ]’ precision
suggested by [11, 8], the values of recall and precision aee a
aged over the set &f60 words that appear in the test set. Table 1
presents these results for both the approach now propogedh(w
is denoted by 'Mix-Hier’) and various other previously poged
methods (results borrowed from [11, 8]). Specifically, we-co
sidered: the co-occurrence model [15], the translationehfd,
the continuous-space relevance model (CRM-rect)[11,r8),the
multiple-Bernoulli relevance model (MBRM) [8]. Note thdiet
Mix-Hier results assume a uniform distributid® (i) of semantic
keywords in (2).

Overall, the method now proposed achieves the best perfargna
When compared to the previous best results (MBRM) it exhibit
gain of 16% in recall for an equivalent level of precision. Simi-
larly, the number of words with positive recall increases1bft.
Fig. 4 presents some examples of the annotations producste. N
that when the system annotates an image with a descriptaonet
tained in the human-made caption, this annotation is fretyie
plausible. Another important issue is the complexity of e
notation process. The complexity of CRM-rectangles and WBR
is O(T'R), whereT is the number of training images aril the
number of visual feature vectors per image. Mix-Hier hagjaifi
icantly smaller time complexity o®(C R), where C is the number

of classes (or image annotations). Assuming a fixed number of

feature vectorsR, Figure 3 shows how the annotation time of a test
image grows for Mix-Hier and MBRM, as a function of the number
of training images, on the Corel dataset.

6.2 Image Retrieval with Single Word Queries

To evaluate the performance of semantic retrieval, preciand
recall were computed as follows: when th&op matches to a query
are retrieved, recall is the percentage of all relevant esdbat are
contained in that set and precision the percentage of thisich are
relevant (where relevant means that the ground-truth atinatof
the image contains the query descriptor). Once again, wetedo
the experimental setup of [8], evaluating the retrievafqenance

Table 4: Performance comparison between Mix-Hier and Mix-Hier-
SDK for the task of image retrieval.

Mean Average Precision for Corel Dataset
Models All 260 words | Words with recalb> 0
Mix-Hier 0.31 0.49
Mix-Hier-SKD 0.20 0.27

those of MBRM. In particular, it achieves a gain4tf% mean av-
erage precision on the set of words that have positive rde@llire

5 illustrates the performance of the system on one word gsieri
for challenging visual concepts. Note the diversity of aisap-
pearance of the returned images, indicating that the metioad
proposed has good generalization ability.

6.3 Semantic Keyword Distribution

In this section we evaluate the benefits of including sernanti
keyword distributions in the probabilistic model, i.e. ngi(15).
Tables 3 and 4 show a comparison between this model (denoted
by Mix-Hier-SKD) and the text-free Mix-Hier model in the ta&s
of image annotation and retrieval, respectively (the tesafl Mix-

Hier are repeated to facilitate the comparison). Note thatiMer

produces significantly better results in both tasks. Weehkelihat
this is due to the factors discussed in Section 5: the difficot

combining continuous and discrete variables and the wimiéty

of the estimates of keyword probabilities

6.4 Feature Selection

In this section we briefly discuss the performance improveme
of Mix-Hier resulting from the addition of the feature seiea
method of Section 4. Figure 6 shows annotation results (enmwib
words with recalt> 0, mean precision, and mean recall), while the
retrieval results (mean precision-recall for all words &rdwords
of recall > 0) are presented in Figure 7. In all plots the perfor-
mance is shown as a function as the number of features s#lecte
(number of subspaces of the feature space where the classifie
defined). Note that, for both annotation and retrieval, #mults
achieved with the bes¥2 features are equivalent to those attained
on the full64-dimensional space, but have half complexity. While
these results support the argument that feature selectibaniefi-
cial, the good performance of the complete feature set ieadmat

by the mean average precision. As can be seen from Table 2, forSurprising: our previous experience with non-semantidewe! is

ranked retrieval on Corel, Mix-Hier produces results sigueto

2We would like to thank Kobus Barnard to make this datasetalai for
our experiments.

that performance starts to degrade aftérto 32 features. We be-

3The results reported are the best achieved over a set aftsalg different
strategies for regularizing the keyword probabilities.



e
Human sky jet snow fox sky buildings water bridge water pool
Annotation plane smoke arctic street cars train railroad athlete swimmers
Mix-Hier plane jet smoke arctic snow street buildings | sky bridge locomotive| swimmers people
Annotation flight prop polar fox ice bridge sky arch water train water pool athlete
A . F
Human grass forest bear polar coral fish buildings clothes mountain sky
Annotation cat tiger snow tundra ocean reefs shops street clouds tree
Mix-Hier cat tiger plants polar tundra reefs coral buildings street mountain valley
Annotation leaf grass bear snow ice ocean fan fish shops people skyline|  sky clouds tree

Figure 4: . Comparisons of annotations made by our system and annotatis made by a Human subject.

Figure 5: Semantic retrieval results on Corel. Each row shows the top¥ie matches to a semantic query. From top to bottom: five top mahes for

'blooms’, 'mountain’, ‘pool’, 'smoke; and 'woman’.

lieve that the increased robustness of semantic retrisvdlié to
the intrinsic data-driven regularization of hierarchidahsity esti-
mation, as discussed in Section 3.1.

6.5 Generalization

We finish with an evaluation of the generalization abilitytloé
semantic retrieval model. Figure 8 presents the curves eoge
precision-recall, and associated error bars, obtainedtbeesntire
test set, but grouped by the number of available trainingrgtes
from the class of the query. Once again the results are soatewh
surprising, since the performance seems to improve fosetawith

less training examples. This is likely to be due to the makesiu
the Corel dataset, where classes with few examples tendrto co
tain images with similar scenes. Nevertheless, thesetsesiggest
that performance starts to stabilize at abb@ examples: adding
more examples decreases the precision-recall variantéobs not
seem to affect its mean. This is an encouraging result, sirce
dicates that semantic retrieval is feasible with smalinireg sets.
On the other hand, it also indicates that the average curpeesf
cision recall over all queries should be taken with a graisaif.
More realistic values would likely be obtained by discagdine se-
mantic classes with very few training examples. We have aned
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Figure 6: Automatic image annotation results using feature selectio
(Mix-Hier-FS). The straight dashed-line shows the Mix-Hie result.
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Figure 7: Image retrieval results using feature selection (Mix-Hier
FS). The straight dashed-line shows the Mix-Hier result.

16

#rain<10

14 --- 10 < #train<100
100 < #train<500
12 - #train 2 500

"i”}j[ll[lll
[
-JH{{

0 0.2 0.4 0.6 0.8 1
Recall

Precision
o
@

Figure 8: Average curves of precision-recall, and error bars, for se-
mantic retrieval with classes of variable training set size

S0 to maintain consistency with the experimental set-upipusly
adopted in the literature.
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