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Abstract
We present an experimental comparison of the performance
of representative saliency detectors from three guiding prin-
ciples for the detection of salient image locations: locations
of maximum stability with respect to image transformations,
locations of greatest image complexity, and most discrimi-
nant locations. It is shown that discriminant saliency per-
forms better in terms of 1) capturing relevant information
for classification, 2) being more robust to image clutter, and
3) exhibiting greater stability to image transformations as-
sociated with variations of 3D object pose. We then investi-
gate the dependence of discriminant saliency on the under-
lying set of candidate discriminant features, by comparing
the performance achieved with three popular feature sets:
the discrete cosine transform, a Gabor, and a Haar wavelet
decomposition. It is show that, even though different feature
sets produce equivalent results, there may be advantages in
considering features explicitly learned from examples of the
image classes of interest.

1. Introduction
Saliency mechanisms play an important role in the ability
of biological vision systems to perform visual recognition
from cluttered scenes. In the computer vision literature, the
extraction of salient points from images has been a subject
of research for, at least, a few decades. Broadly speaking,
existing saliency detectors can be divided into four major
classes.

The first, and most popular, treats the problem as one of
thedetection of specific visual attributes. These are usually
edges or corners (also called “interest points”). For exam-
ple, Harris [1] and F̈ostner [2] measure an auto-correlation
matrix at each image location and then compute its eigen-
values to determine whether that location belongs to a flat
image region, an edge, or a corner. While these detectors are
optimal in the sense of finding salient locations of maximal
stability with respect to certain image transformations, there
have also been proposals for the detection of other low-level
visual attributes, e.g. contours [3]. These basic detectors

can then be embedded in scale-space [12], to achieve de-
tection invariance with respect to transformations such as
scale [13], or affine mappings [14].

A second major class of saliency detectors is based on
more generic,data-driven, definitions of saliency. In par-
ticular, an idea that has recently gained some popularity is
to definesaliency as image complexity. Various complex-
ity measures have been proposed: Lowe [4] measures com-
plexity by computing the intensity variation in an image us-
ing the difference of Gaussian function; Sebe [5] measures
the absolute value of the coefficients of a wavelet decompo-
sition of the image; and Kadir [6] relies on the entropy of
the distribution of local image intensities. The main advan-
tage of the definitions in this class is a significantly greater
flexibility, that makes them able to detect any of the low-
level attributes discussed above (corners, contours, smooth
edges, etc.) depending on the image under consideration.

A third formulation is to start frommodels of biologi-
cal vision, and derive saliency detection algorithms from
these models [7, 22]. This formulation has the appeal of
its roots on what are the only known full-functioning vision
systems, and has been shown to lead to interesting saliency
behavior [7,22]. Interestingly, however, human experiments
conducted by the proponents of some of these models have
shown that, even in relatively straightforward saliency ex-
periments, where subjects are 1) shown images that they
have already seen and 2) simply asked to point out salient
regions, people do not seem to agree on more than about
50% of the salient locations [22]. This seems to rule out all
saliency principles that, like those discussed so far, are ex-
clusively based on universal laws which do not depend on
some form of 1) context (e.g. a higher level goal that drives
saliency) or 2) interpretation of image content.

A final formulation that addresses this problem is di-
rectly grounded on the recognition problem, equating
saliency to discriminant power: it defines salient locations
as those that most differentiate the visual class of interest
from all others [10,11,15]. Under this formulation, saliency
requires a preliminary stage of feature selection, based on
some suitable measure of how discriminant each feature is
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with respect to the visual classes that compose the recogni-
tion problem. In [15], it was shown that this can be done
with reduced complexity and, once a set of discriminant fea-
tures is available, discriminant saliency can be implemented
with very simple, biologically inspired, mechanisms. It was
also shown that discriminant saliency leads to higher classi-
fication accuracy than that obtained with saliency detectors
based on “universal” definitions of salient points.

Various important aspects of discriminant saliency were,
however, not fully investigated in [15]. For example, the re-
peatability of the salient points resulting from the proposed
discriminant saliency detector was never compared to that
of the salient points produced by the definitions of saliency
which specifically seek optimality with respect to stability
to image transformations. Also, given the close connec-
tion between saliency and the discriminant power of the se-
lected set of features, it appears likely that the choice of
the pool of candidate features from which this set is drawn
can have a significant impact on the quality of the saliency
judgments. The design of this initial feature set was not dis-
cussed in [15], where the discrete cosine transform (DCT)
was adopted without much consideration for possible alter-
native feature spaces. In this work, we address these ques-
tions by presenting the results of a detailed experimental
evaluation of the performance of various saliency detectors.
This experimental evaluation was driven by two main goals:
1) to compare the performance of representative detectors
from three of the saliency principles discussed above (sta-
bility, complexity, and discrimination), and 2) to investigate
how the performance of the discriminant saliency detector
proposed in [15] is affected by both the choice of features
and the stability of the resulting salient points.

The paper is organized as follows. Section 2 briefly re-
views the saliency detectors used in our comparison: the
discriminant saliency detector of [15], a multiscale exten-
sion of the popular Harris interest point detector [1], and
the scale saliency detector of [6]. Section 3 presents a com-
parison of the robustness of the salient locations produced
by the three saliency detectors. It is shown that, somewhat
surprisingly, discriminant saliency detection produces more
stable salient points not only in the presence of clutter, but
also for uncluttered images of objects subject to varying 3D
pose. Section 4 then evaluates the impact of the feature set
on the performance of the discriminant saliency detector,
by considering the feature spaces resulting from the DCT, a
Gabor, and a Haar wavelet decomposition. It is shown that,
while the three feature sets perform similarly, there may be
advantages in explicitly learning optimal features (in a dis-
criminant sense) for the image classes of interest. Finally,
some conclusions are presented in Section 5.

2. Saliency detection
We start with a brief review of the steps required to imple-
ment each of the saliency detectors considered in this work:
the Harris saliency detector [1], the scale saliency detector
of [6] and the discriminant saliency detector of [15].

2.1. Harris saliency
The Harris detector has its roots in the structure from mo-
tion literature. It is based on the observation that corners
are stable under some classes of image transformations, and
measures the degree of cornerness of the local image struc-
ture [1]. For this, it relies on the auto-correlation matrix,

M(x, y) =
∑

(u,v)

wu,v∇I(x + u, x + v)∇T I(x + u, x + v)

(1)
where

∇I(x) = (Ix(x), Iy(x))T (2)

is the spatial gradient of the image at locationx = (x, y),
and wu,v is a low-pass filter, typically a Gaussian, that
smoothes the image derivatives. The vanilla implementa-
tion of the Harris detector consists of the following steps.

1. the auto-correlation matrix is computed for each loca-
tion x.

2. the saliency of the location is then determined by

SH(x) = det[M(x)] − αtrace2[M(x)] (3)

whereα is set to 0.04 [1].

In our experiments, we rely on the following multiscale ex-
tension.

1. image is decomposed into a Gaussian pyramid [16].

2. a saliency mapSi(x) is computed at each pyramid
level, using the Harris detector of size7 × 7.

3. the saliency maps of different scales are combined into
a multi-scale saliency map according to

SH(x) =

k
∑

i=1

S2
i (x). (4)

A scale is also selected, at each image location, by
searching for the pyramid level whose saliency map
has strongest response.

4. Salient locations are determined by non-maximum
suppression. The location of largest saliency and its
spatial scale are first found, and all the neighbors of
the location within a circle of this scale are then sup-
pressed (set to zero). The process is iterated until all
locations are either selected or suppressed.

2



The Harris detector has been shown to achieve better perfor-
mance than various other similar saliency detectors, when
images are subject to 2D rotation, scaling, lighting varia-
tion, viewpoint change and camera noise [8].

2.2. Scale saliency
This method defines saliency as spatial unpredictability, and
relies on measures of the information content of the distrib-
ution of image intensities over spatial scale to detect salient
locations [6]. It consists of three steps.

1. the entropy,H(s,x), of the histogram of local inten-
sities over the image neighborhood of circular scales,
centered atx, is computed.

2. the local maximum of the entropy over scales,H(x),
is determined and the associated scale considered as a
candidate scale,sp, for locationx.

3. a saliency map is computed as a weighted entropy,

SS(x) = H(x)W (sp,x) (5)

where

W (s,x) = s

∫
∣

∣

∣

∣

∂

∂s
p(I, s,x)

∣

∣

∣

∣

dI

andp(I, s,x) is the histogram of image intensities.

Finally, a clustering stage is applied to the saliency map in
order to locate the salient regions.

2.3. Discriminant saliency
In [15], saliency is defined as the search for the visual at-
tributes that best distinguish a visual concept from all other
concepts that may be of interest. This leads to the formula-
tion of saliency as a feature selection problem, where salient
features are those that best discriminate between the target
image class and all others. The saliency detector is imple-
mented with the following steps.

1. images are projected into aK-dimensional feature
space, and the marginal distribution of each feature re-
sponse under each classPXk|Y (x|i), i ∈ {0, 1}, k ∈
{0, . . . ,K − 1}, is estimated by a histogram (24 bins
were used in the experiments described in this paper).
The features are then sorted by descending marginal
diversity,

md(Xk) =< KL[PXk|Y (x|i)||PXk
(x)] >Y (6)

where < f(i) >Y =
∑M

i=1 PY (i)f(i), and

KL[p||q] =
∫

p(s) log p(x)
q(x)dx the Kullback-Leibler

divergence between p and q.
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Figure 1:Schematic of the saliency detection model.

2. features which are discriminant because they are infor-
mative about the background class (Y = 0) but not the
class of interest (Y = 1), i.e.

H(Xk|Y = 1) < H(Xk|Y = 0) (7)

or that have too small energy to allow reliable infer-
ences

V ar(Xk) < Tv (8)

are eliminated.

3. features of largest marginal diversity are selected as
salient for the class of interest. The number of features
that are salient for each class is determined through a
cross-validation procedure [15].

4. a saliency map is generated by a biologically inspired
saliency architecture (shown in Figure 1) which con-
sists of the projection of the image into the subspace
spanned by the salient features, and the combination
of the resulting projectionsRi(x) into a saliency map
according to

SD(x) =

n
∑

i=1

ωiR
2
i (x), (9)

5. salient locations are determined by a non-maximum
suppression stage which sets the scale of each salient
location to the spatial support of the feature of largest
response at that location.

The method is made scale adaptive by including features of
different size in the candidate feature set.

3. Stability of salient locations
There are various ways to evaluate the goodness of salient
locations (see [8] for a detailed review). One property thatis
usually desirable is stability of these locations under image
transformations. In this work we consider two such mea-
sures: 1) the repeatability of salient locations under pose
changes, i.e. the stability over a collection of images taken
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under varying viewing conditions, and 2) the robustness of
salient locations in the presence of background clutter and
intra-class variation, e.g. variable appearance of different
objects in the same class. Note that although repeatability
under pose change is important for applications such as ob-
ject tracking and 3-D reconstruction, the second criterionis
more relevant for the recognition from cluttered scenes.

3.1. Stability with respect to clutter and intra-
class variation

For these experiments we relied on the Caltech database,
which has been proposed as a testbed for unsupervised ob-
ject detection in the presence of clutter [18]. We adopted the
experimental set up of [18]: four image classes, faces(435
images), motorbikes(800 images), airplanes (800 images),
and rear view of cars (800 images), were used as the classes
of interest (Y = 1)1. The Caltech class of “background”
images was used, in all cases, as the “other” class (Y = 0).

Although there is a fair amount of intra-class variation in
the Caltech database (e.g., the faces of different people ap-
pear with different expressions and under variable lighting
conditions), there is enough commonality of pose (e.g., all
faces are shown in frontal view) to allow the affine mapping
of the images into a common coordinate frame, which can
be estimated by manually clicking on corresponding points
in each image. In this common coordinate frame it is possi-
ble to measure the stability of salient locations using a pro-
tocol proposed in [9] and which is adopted here. In partic-
ular, a salient location is considered a match to a reference
image if there exists another salient location in the reference
image such that 1) the distance between the two locations
is less than half the smallest of the scales associated with
them, and 2) the scales of the two locations are within20%
of each other. The average correspondence scoreQ is then
defined as

Q =
Total number of matches

Total number of locations
. (10)

SupposeN locations are detected for each of theM images
in the database. The scoreQi of reference imagei is the
ratio between the total number of matches between that im-
age and all otherM−1 images in the database, and the total
number of salient locations detected in the latter, i.e.,

Qi =
N i

M

N(M − 1)
. (11)

The overall scoreQ is the average ofQi over the entire data-
base. This score is evaluated as a function of the number of
detected regions per image.

1the Caltech image database is available at
http://www.vision.caltech.edu/html-files/archive.html
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Figure 2: Stability in the presence of clutter and intra-class variability
for (a) faces, (b) motorbikes, and (c) cars.

The performance of the three saliency detectors, dis-
criminant saliency (SD), Harris saliency (SH ), and scale
saliency (SS), was compared on the three Caltech object
classes (face, motorbike, and rear views of cars) for which
alignment ground truth is available [9]. As illustrated by
Figure 2, discriminant saliency achieved significantly better
performance than the other two methods for all classes. A
more careful analysis reveals two interesting trends. First,
SD achieved a high stability score with only a few salient
locations, indicating that the top salient locations tend to be
located more on the objects of interest than on the back-
ground. This is especially true for faces, where the match-
ing score with only the first salient location is37%. Second,
while increasing the number of salient locations improves
the matching score of the top salient locations, the discrimi-
nant power of additional locations starts to decrease at some
point, and the matching score tends to decrease after that
(see Figure 2 (b) and (c)). This, once again, indicates that
discriminant saliency provides more information about the
objects of interest than the other methods. Figure 5 presents
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some examples of salient locations detected by discriminant
saliency on Caltech, illustrating how the salient locations
are detected robustly, despite substantial changes in appear-
ance and significant clutter in the background.

3.2. Stability under 3-D object rotation
The Columbia Object Image Library (COIL-100) [21] is an
appropriate database to evaluate the stability of salient lo-
cations under 3-D rotation. It contains images from a set
of 100 objects,720 images from each object, obtained by
rotating the object in 3D by5 degrees between consecutive
views. To avoid the loss of consistence of distinctive fea-
tures due to large view-angle change (e.g. the eyes of a sub-
ject are not visible from the rear), six consecutive images
were used for training and the next three adjacent images
(after subsampling so that there are 10 degrees of rotation
between views) were used for testing. Sixty objects in the
library were used and, for each image, the top ten salient
locations were kept. A salient location was considered sta-
ble if it appeared in all three test images. The stability was
measured by (10).

Table 1 lists the performance of the three saliency de-
tectors. Once again, discriminant saliency performed best.
This is somewhat surprising, since stability was not directly
enforced in the computation of discriminant saliency, and it
outperforms Harris, which is designed to be optimal from
a stability standpoint. A perfectly reasonable explanation
is, however, supported by a closer investigation of the de-
tected salient locations. As can be seen from the examples
shown in Figure 3, the locations produced by discriminant
saliency tend to be locations that maintain a consistent ap-
pearance as the object changes pose. This makes intuitive
sense since, rather than searching for “salient” points from
individual views, discriminant saliency selects featuresthat
are “consistently salient” for the whole set of object views
in the image class. Or, in other words, under the discrim-
inant saliency principle good features are features that ex-
hibit small variability of response within the class of interest
(while also discriminating between this class and all others).
This leads to robust saliency detection if the training set is
rich enough to cover the important modes of appearance
variability.

4. Influence of features on discrimi-
nant saliency

The good performance of discriminant saliency in the pre-
vious set of experiments, motivated us to seek possible im-

SD SH SS

Stability(%) 74.7 71.6 52.2

Table 1:Stability results on the Columbia objects image database.

Figure 3:Examples of salient locations detected bySD for COIL.

provements to this model. For example, in [15], the au-
thors adopted the discrete cosine transform (DCT) feature
set without extensive discussion as to why this feature set
should be the one of choice. We studied the dependence of
discriminant saliency on the underlying features, by com-
paring the performance of the DCT to that of two other fea-
ture sets.

4.1. Feature sets
A DCT of sizen is the orthogonal transform whose (n× n)
basis functions are defined by:

A(i, j) = α(i)α(j) cos
(2x + 1)iπ

2n
cos

(2y + 1)jπ

2n
, (12)

where0 ≤ i, j, x, y < n, α =
√

1/n for i = 0, and
α =

√

2/n otherwise. According to [15] there are two
main reasons to adopt these features. First, they have been
shown to perform well on various recognition tasks [17].
Second, as can be seen from Figure 4 (a), many of the DCT
basis functions can be interpreted as detectors for various
perceptually relevant low-level image attributes, including
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(a) (c)

(b)

Figure 4:Basis functions for (a) DCT, (b) Gabor, and (c) Haar features.

edges, corners, t-junctions, and spots. In our experiments,
we started by decomposing each image into a four-level
Gaussian pyramid. We then computed a multiscale set of
DCT features by projecting each pyramid level onto the
8 × 8 DCT basis functions.

The second feature set is based on a Gabor filter bank,
which is a set of orientation-specific, band-pass filters. A
two dimensional Gabor function can be generally written as

g(x, y) = K exp(−π(a2(x − x0)
2
r + b2(y − y0)

2
r))

exp(j(2πF0(x cos ω0 + y sinω0) + P )) (13)

where

(x − x0)r = (x − x0) cos θ + (y − y0) sin θ

(y − y0)r = −(x − x0) sin θ + (y − y0) cos θ.

Studies of biological vision have shown that Gabor filters
are a good approximation to the sensitivity profiles of neu-
rons found in visual cortex of higher vertebrates [19]. For
this reason, Gabor filters have been widely used in image
analysis for over a decade. The Gabor filter dictionary
adopted in these experiments consists of 4 scales and 8
directions (evenly spread from 0 toπ), as shown in Fig-
ure 4(b). The features are also made scale-adaptable by ap-
plying to a four-level Gaussian pyramid.

The third feature set is one that has recently become
very popular in the computer vision literature, due to its
computational efficiency: the Haar decomposition proposed
in [20] for real-time object detection. The computational ef-
ficiency of this feature set makes it equally attractive for the

saliency problem. As shown in Figure 4(c), five kinds of
Haar features were considered in the experiments reported
in this work. By varying the size and ratio of the width and
height of each rectangle, we generated a set with a total of
330 features.

4.2. Classification of saliency maps

To obtain an objective comparison of the different saliency
detectors, we adopted the simple classifier-based metric
suggested in [15]. This metric consists of feeding an his-
togram of saliency map intensities to a classifier and mea-
suring the probability of classification error. It quanti-
fies how relevant the extracted saliency information is for
recognition purposes. Following [15], we relied on a sup-
port vector machine (SVM) to classify the saliency his-
tograms. The classification experiments were performed
on the Caltech database, and performance measured by
the receiver-operating characteristic (ROC) equal-error-rate
(i.e. p(Falsepositive) = 1 − p(Truepositive)).

The classification results obtained with the different fea-
ture sets are presented in Table 2. Although the DCT fea-
tures achieved the overall best performance, the other two
feature sets were also able to obtain a high classification ac-
curacy. For example, discriminant saliency based on any of
the three feature sets has performance significantly superior
to that achieved by the Harris and scale saliency detectors.
While this implies that discriminant saliency is not overly
dependent on a unique set of features, these results also sup-
port the argument that a feature set with enough variability
to represent the distinctive characteristics of the class of in-
terest can improve performance. Note, for example, that
the Haar features achieve the best performance in the “Air-
planes” class. This is not surprising, since a distinctive fea-
ture for this class is the elongated airplane body which, in
most images, is lighter than the background. While the DCT
set lacks a specific detector for this pattern, the bottom left
feature of Figure 4 (c) is one such detector, explaining the
best performance of the Haar set in this case. An interesting
question for future research is, therefore, how to augment
the discriminant saliency principle with feature extraction,
i.e. the ability to learn the set of features which are most dis-
criminant for the class of interest (rather than just selecting
a subset from a previously defined feature collection).

Dataset SDDCT SDGabor SDHaar SH SS

Faces 97.24 95.39 93.09 61.87 77.3
Bikes 96.25 96.00 93.50 74.83 81.3
Planes 93.00 93.50 94.75 80.17 78.7
Cars 100.00 98.13 99.88 92.65 90.91

Table 2: SVM classification accuracy based on histograms of saliency
maps produced by different detectors.
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5. Conclusion
In this work, we have presented an experimental compar-
ison of the performance of various saliency detectors. In
particular, we have considered detectors representative of
three different principles for the detection of salient loca-
tions: locations of maximum stability with respect to im-
age transformations, locations of greatest image complex-
ity, and most discriminant locations. Our results show that
discriminant saliency performs better not only from the
points of view of 1) capturing more relevant information for
classification, and 2) being more robust to image clutter, but
also 3) by exhibiting greater stability to image transforma-
tions associated with variations of 3D object pose. We have
also investigated the dependence of discriminant saliency
with respect to the underlying set of candidate discriminant
features and found that, even though different feature sets
(DCT, Gabor, Haar) worked similarly well, there may be ad-
vantages in considering feature sets explicitly learned from
examples of the image classes of interest. The design of al-
gorithms to optimally learn such features in a discriminant
sense remains a topic for future work.

References
[1] C. Harris and M. Stephens. A combined corner and edge de-

tector. Alvey Vision Conference, 1988.

[2] Förstner. A framework for low level feature ex-traction.
Proceedings of European Conference on Computer Vision,
p383-394, 1994.

[3] A. Sha’ashua and S. Ullman. Structural saliency: the detec-
tion of globally salient structures using a locally connected
network. Proc. Internat. Conf. on Computer Vision, 1988.

[4] D. G. Lowe. Object recognition from local scale-invariant
features. In Proceedings of International Conference on
Computer Vision, pp. 1150-1157, 1999.

[5] N. Sebe, M. S. Lew. Comparing salient point detectors. Pat-
tern Recognition Letters, vol.24, no.1-3, Jan. 2003, pp.89-96.

[6] T. Kadir and M.l Brady. Scale, Saliency and Image Descrip-
tion. International Journal of Computer Vision, Vol.45, No.2,
p83-105, November 2001

[7] L. Itti, C. Koch and E. Niebur. A model of saliency-based
visual attention for rapid scene analysis. IEEE Trans. Pattern
Analysis and Machine Intelligence, 20(11), Nov. 1998.

[8] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of Inter-
est Point Detectors. Int’l J. Computer Vison, 37(2):151-172,
2000

[9] T. Kadir, A. Zisserman, and M. Brady. An affine invari-
ant saliency region detector. in Proceedings of ECCV 2004,
pp228-241, 2004

[10] B. Schiele and J. Crowley. Where to look next and what to
look for. In Intelligent Robots and Systems (IROS’96), pp.
1249-1255, 1996.

[11] K. Walker, T.F. Cootes, and C.J. Taylor. Locating Salient Ob-
ject Features. In Proc. of British Machine Vision Conference,
pp. 557-566, 1998.

[12] T. Lindeberg. Scale-space theory: A basic tool for analysing
structures at different scales. Journal of Applied Statistics,21,
2 (1994), pp. 224C270.

[13] K. Mikolajczyk and C. Schmid. Indexing based on scale in-
variant interest points. Proceedings of International Confer-
ence on Computer Vision (ICCV01), p525-531, 2001.

[14] K. Mikolajczyk and C. Schmid. An affine invariant inter-
est point detector. Proceedings of European Conference on
Computer Vision (ECCV02), vol. 1, 128–142, 2002.

[15] D. Gao and N. Vasconcelos. Discriminant Saliency for Vi-
sual Recognition from Cluttered Scenes. Proc. Neural Infor-
mation Processing System, 2004

[16] P. Burt and E. H. Adelson. The Laplacian Pyramid as a Com-
pact Image Code. IEEE Transactions on Communication,
COM-31:532-540 (1983).

[17] N. Vasconcelos and G. Carneiro. What is the Role of Inde-
pendence for Visual Regognition? In Proc. European Con-
ference on Computer Vision, Copenhagen, Denmark, 2002.

[18] R. Fergus, P. Perona and A. Zisserman. Object Class Recog-
nition by Unsupervised Scale-Invariant Learning. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
2003.

[19] J.G. Daugman. Uncertainty relation for resolution in space,
spatial frequency, and orientation optimized by two-
dimensional visual cortical filters. Journal of the Optical So-
ciety of America A, 2(7): 1362-1373, 1985

[20] P. Viola and M. Jones. Robust real-time object detection.2
nd

Int. Workshop on Statistical and Computational Theories of
Vision Modeling, Learning, Computing and Sampling, July
2001.

[21] S.A. Nene, S.K. Nayar, and H. Murase. Columbia object
image library: COIL-100. Technical REport CUCS-006-96,
Dept. of Computer Science, Columbia Univ., 1996

[22] C. Privitera, L. Stark. Algorithms for defining visual regions-
of-interest: comparison with eye fixations. IEEE Transac-
tions on Pattern Analysis & Machine Intelligence, vol.22,
no.9, Sept. 2000, pp.970-82.

7



Figure 5:Examples of discriminant saliency detection results on Caltech image classes.
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