appears in proceedings of the IEEE Conference in Compuggorvand Pattern Recognition, New York, 2006.
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Abstract of-the-art bottom-up algorithm (N-cuts [11]). Note how the

human segmentation consists of regions that are homoge-

There has recently been significant interest in top-down neous with respect to different features, e.gwater re-
image segmentation methods, which incorporate the recog-gion of uniformcolor, askyregion of uniformsmoothness
nition of visual concepts as an intermediate step of segmen-{note that sky color varies across the image), a region of
tation. This work addresses the problem of top-down seg-tree leaves of uniforntexturg and so forth. On the other
mentation with weak supervision. Under this framework, hand, the automatic segmentation algorithm applies a uni-
learning does not require a set of manually segmented ex-versal definition of uniformity (subjacent to the cost under
amples for each concept of interest, but simply a weakly which it is optimal) throughout the image, and cannot cope
labeled training set. This is a training set where images are with the diversity of visual concepts that compose it.
annotated with a set of keywords describing their contents,  To overcome this limitation, there has recently been in-
but visual concepts are not explicitly segmented and no cor-terest in the direction dbp-downsegmentation. For exam-
respondence is specified between keywords and image reple, because humans seem to be biased in favor of segmen
gions. We demonstrate, both analytically and empirically, tations with some characteristics, e.g. a certain range-of r
that weakly supervised segmentation is feasible when cergion sizes or a certain distribution of contrast along segme
tain conditions hold. We also propose a simple weakly su-boundaries, it seems natural to model these biases. One
pervised segmentation algorithm that extends state®f-th possibility is to assemble a database of human-segmented
art bottom-up segmentation methods in the direction of per-images and use the examples in this database to learn a dis
ceptually meaningful segmentatfon tribution on the space of image segmentations, namely the
distribution of perceptually plausible segmentationghis
type of effort is currently popular, and a number of tech-
nigues have been proposed to learn such distributions from
hand-segmented imagery (e.g., see [10]). While it is likely
that the resulting distributions will find wide applicatias

Image segmentation has been a subject of research ipriors for bottom-up image segmentation, they tend to be
computer vision for many decades. Traditionally, it has universal statistical lawshat provide little help in terms of
been formulated as a problem bbttom-upprocessing, identifying the statistical homogeneities that are mol&-re
i.e. whose solution does not require (or assume) high-levelvant for the segmentation ofparticular scene
knowledge about the scene under analysis. Instead, clas- | general, this identificatiomannot be successful in
sical segmentation algorithms identiiyiage segmentsr  yq apsence of truly top-down processing. processing
regionssolely on the basis of low-level visual attributes. 4t receives guidance and feedback from the higher levels
Examples include the definition of segments as regions en-ys perception. For example, the mountain region of Fig-
closed by closed contours, or where the statistics of cer-re 1 consists of 1) a brownish, approximately textureless,
tain features (color, texture, efc.) are homogeneous, Ofyocky formation on the left side of the image, 2) a vertically
both. While the low-level emphasis of these algorithms has gyrined combination of rocks and vegetation in the center,
some advantages, e.g. computational efficiency, the result 54 3) 5 greenish randomly textured area of vegetation on
ing segmentations usually have little resemblance to thoseg,o right. In the absence of explicit knowledge of 1) a (high-
produced by humans. - level) mountain conceptand 2) the fact that mountains ex-

One of the main sources of difficulty seems to be that hu- pjpt 3| these different types of statistical homogenattis
mans rely on different definitions of homogeneity in differ- yirajly impossible to avoid oversegmenting the mountain
entimage areas, depending on the scene content and highekq the sub-areas where each type of homogeneity domi-

Ie_vels goals that drive segmentation. This is exemp_lified bY nates. This is exactly what N-cuts does, and also happens
Figure 1, where we compare a human segmentation of aNYor thetreeandskyconcepts.

outdoor scene with the segmentation produced by a state-

1 Introduction

Top-down segmentation overcomes these difficulties by

LThis work was performed while Gustavo Carneiro was with tme-U  tying the segmentatiorand recognitionproblems, i.e. by
versity of British Columbia. making (high-level) recognition an intermediate step of se




Figure 1. Left: an image, center: segmentation by the N-cuts algorithm, right: segmentation by a
human.

mentation It has roots on the observation that, given a large ple instance learning [9], semantic image labeling and re-
vocabulary of visual concepts, and a library of statistaqal trieval [13], and recognition from cluttered scenes [5]alin
pearance models for these concepts, segmentation reducekese areas it has been observedtivaempirical distribu-
to the simple assignment of each image pixel to the modeltion of a collection of feature vectors extracted from image
that best explains it. The main difficulty is that, as is com- containing a common visual concept tends to approximate
mon in segmentation problems, this introduces a “chicken- the distribution of this concepThis appears to happen even
and-egg” type of roadblock: in the absence of a set of seg-when the images are frostenes that include various other
mented images it is not feasible to learn concept models,conceptsas long as no other concept is common to the en-
and in the absence of concept models it is not possible totire image set. Although the convergence to the concept
perform the segmentation. One possibility to overcome this distribution has only been demonstrated experimentaky, t
problem is to rely on a set of manually segmented imagesexperimental evidence is substantial. For example, [9] has
to bootstrap the process [1, 6, 7]. This approach, which weshown that the peak of the empirical distribution tends to oc
refer to asstrongly supervisedegmentation, is quite non- cur in the region of support of the concept, [13] has shown
scalable in the size of the target concept vocabulary, andthat the empirical distribution performs well when used as
therefore unlikely to be a suitable replacement for exgstin  the concept’s class conditional distribution for imagessla
general-purpose bottom-up algorithms. fication, and [5] has shown that clustering the collection of
In this work we study the alternative problem of top- feature vectors produces a codebook of concept parts (e.g.
down segmentation wittveak supervisionThe basic goal  eyes, mouth, or nose, for face concept).

is to relax the supervision requirements fromage segmen- Under the assumption that the convergence indeed holds,
tationto image annotationThat is, to require a training set  the design of a weakly supervised segmentation algorithmis
where each image is complemented witbagtionthat de- relatively straightforward. It consists of two stag&gining

scribes the visual concepts depicted in it, rather than:tra andsegmentationTraining can be implemented as follows:
ing set ofmanually segmenteeixamples for each concept
in the vocabulary. The motivation is thahnotating im-

ages is significantly easier than segmenting tifagshown 2. for each concept assemble a collection of images
?hyetp(frrﬁg'f:ence on the web of a number of databases of ™ pe _rye I} of scenes that contain the concept

ype {licker, ESP, corbis etc. - and virtually (and possibly other concepts as well)

none of the lattéd) and weakly supervised segmentation is '
therefore significantly more scalable than its strongly su- 3. for eache, extract a set of feature vectok¢ =

1. define a concept vocabulafy= {ci,...,cc}.

pervised counterpart. The main contribution of this work is {x$,...,x5%} from D¢ and obtain an estimate of the
the dkelmonstrat]ongoth analytical and expg&gentally, that concept distributior”. (x) by applying a standard den-
weakly supervised segmentation Is possiblaen certain sity estimation procedure (e.g. a kernel density estima-
conditions hold. We also propose a simpleakly super- tor [12], a mixture model [2], etc.) t&*.

vised segmentation algoriththat extends state-of-the-art
bottom-up segmentation methods in the direction of percep-Note that the images are not segmented and a subset of
tual segmentations. the features inY¢ can be unrelated to concept Given

the learned sequence of concept distributidhéx), ¢ €

2 Weakly Supervised Top-down Segmenta- {1,.-.,C}, andanewimagé segmentation consists of:

tion 1. determine the set of conceitsC £ presentin the im-
age. This can be user-specified, or done automatically
The inspiration for weakly supervised segmentation as discussed below.

comes from three areas of vision and learning: multi-

2. extract a feature vector at each locatior{i, j) of I
2|gnoring, of course, those produced by the vision community and assign it to one of the concepts using a standard
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Figure 2. Convergence to the density of concept ¢, shown in red in the top left images and in green
on the top right.

minimum probability of error (MPE) decision rule In each image, a concept is presented against a background
. of pixels randomly drawn from a mixture of three Gaussians
(i, ) = arg max Fe(x)me 1)

wherem;, is a set of prior concept probabilities, which 5

in the absence of reasons to favor some concepts over

others can be set to a a uniform distributign=1,/C. Pp(z) = Z %G, pis 3) (4)
i=1

The automatic determination of the concepts present in the

image can be achieved with a procedure similar to (1) but

applied to all feature vectors; extracted from the image. i ,
Assuming that the vectors are sampled independently, con\Whose meang; and variances; are sampled indepen-
cepts can be ordered by posterior probability, by computing dently from uniform distributions of range [0,255] and

[0.1,25], respectively.
Ac = H Pe(xi)me ) Figure 2 illustrates the convergence of the empirical es-
) ' ) ) timate P.(x) to the density of the concept. The top row
forall c € £ and ordering the\. by decreasing magnitude.  shows the mixture distributions associated with two images
in the concept’s training set (in each case the concept den-
3  Motivation sity is shown in red). The images themselves are shown
immediately below, in the second row of the figure. The top

In this section we motivate weakly supervised segmen- right plot shows the empirical distributioR.(x) estimated
tation by analyzing a simple synthetic example. In this from the entire training set, and a scaled replica of the true
example, concepts are squares textured with independeroncept distributiod”.(z). Note that the empirical estimate
Gaussian noise?.(x) = G(z, pte, o), wherey, = 127 and converges to a mixture of the true concept density and an al-
o, = 10, andG(.) is used throughout the text to represent Most uniform component. The bottom right plot shows the

the Gaussian probability density function Kullback-Leibler (KL) divergence between the true concept
distribution and the estimate, as a function of the number of
G(x, 1, %) = ;efé(xwﬁzfl(xw)_ 3) training images used to learn the concept. Note that the
o (27)? det(X) convergence to the asymptotic distance is quite fast.



4 Theoretical Analysis The assumption of a Gaussian distribution fois not cru-
cial for the discussion that follows. In particular, all ués

In this section we study the convergence of the empirical could be generalized to the case of a Gaussian mixture and,
estimate to the concept distribution. therefore, anyP,(u) of practical interest. The Gaussian
assumption is adopted because it makes the notation much
simpler. We refer t& as thediversity parameteof D.

(7) is a technical condition, required by the proofs of the
subsequent sections. We note, however, that for most prac-
tical purposesi it is a very mild restriction df: (X). If, for
example, the Gaussian components of (6) are produced by

able X defined onX. Visual concepts define probability & kernel density estimator, it is common practice for all co-
distributions onX’. For example, if the features are the ay- Variances to be identical, i.&5 = S. In this casels ()
erage values of the three color channels over a localizeds & delta function centered 8t and (7) holds withe = 0.
neighborhood then the “face” concept will assign a large In general, the condition will hold & + Xy ~ S + 3o
probability to the region of skin tones, and small probapili  for all ¥ such thatPs(X) > 0, i.e. if the spread oPs (X)
mass to other regions. Concepts are drawn from a randonfround the mean valuis small compared t8 + %,. This

variableY that assigns a probability distribution to a con- IS true wheneveE is large, which (as we will see below)
cept vocabulant = {c1,...,cc}. The goalis to learnthe  is @ necessary condition for the concept distribution to be

4.1 Definitions

Consider a feature spack C RY. Images are rep-
resented as collections of feature vectors, i.dg;
{xi,...,x!} for thei*" image, drawn from a random vari-

probability distribution associated with a certain cortegp

Px |y (x|c), which we will refer to asP. (x) for simplicity.
Learning is weakly supervised becauseldaner is not

provided with cleanly cropped image regions of the concept

Although a collection of training images containing region

that depicte is availableregions are not identifiedHence,

in a training image seb = {I;,..., Iy}, each imagd; is

a sample of a feature distribution

Px(x) = 7Pu(x) + (1 — 7) Pp(x) 5)

wherer is the percent of the image area which is covered
by ¢ and P (x) a background distribution that accounts for
everything else. Since any probability distribution can be
approximated arbitrarily well by a (potentially infinite)ixa

ture of Gaussians, we assume that the background density i
of this form. We further assume that it is a mixturefof- 1
equal probability {/ K') componentsand thatr = 1/K.

Definition 1 Imagel; in the training seD is a sample from
a random variable of probability density function

K—1
Pt = % [P0+ Y 6t 3 | (6)
j=1

The training setD is denoted agliverseif the back-

ground distributions are themselves a diverse set. This can

be formalized by making the Gaussian parame,té:s@}
samples from some random variable. '

Definition 2 D is a diverse training set ifi;, and 3 are
independent samples from two independent random vari-
ables with probability density functions

Pu(p) = G(p, po, Zo)
and Ps(X), such thatEs[X] = S, and (fore > 0)

|Ex[G(x, po, T+ Xo)] — G(x, 10, S + Zp)]| <. (7)

3This is mostly to simplify notation, all results that follosould be
extended to the case where each component has an indivieigthtw

learnable. Note that, as long as the supporPgiX) is
bounded, it is possible, by makirl, arbitrarily large, to
make (7) hold with arbitrarily smad.

4.2 Concept Learnability

The following theorem shows that the distribution of a
diverse set of images of conceptonverges to a mixture
of the concept distribution and a background component of
spread determined by the diversity paramé&lgr

Theorem 1 If D is a diverse training set, according to De-
finitions 1 and 2, then

N
s Pr(x) = 1 3 P ) ®)
=1
satisfies
Jim [Py (x) = f(x)| < (©)
with
) = e Polo) + (1= 3 ) xS+ Z0) (10
and

§=(1-1/K)e. (11)

Proof: Available from the authors.

Note that, as long as the diversity &f is large (large
3o), the background component will have small amplitude
and the limit distribution o’y (x) is dominated by the con-
cept distribution.

5 Connections to bottom-up segmentation

Itis well known that, in the absence of a prior that favors
spatially smooth segmentations, these tend to be quitg.nois
While the theoretical analysis above is valid for any coicep



probability model, the complexity of learning, in a weakly This method extracts the top 5 labels for each test image,
supervised manner, both the observation mdggh- (x|c) from which we manually selected 2-4 according to five con-
and the priorPy (c), appears non-trivial when the latter is  straints: 1) uniqueness among the 5 concepts (e.g., if an im-
smoothness enforcing, e.g. a Markov random field or equiv-age is labeled with both 'tiger’ and 'cat’, we rejected one
alent. One possibility, that we explore in this work, is to of the two); 2) ability to localize the concept in the image
rely on weakly supervised learning to estimate the observa-(€.g., we rejected abstract concepts like ‘city’ or 'outdjo
tion componenix |y (x|c) and a standard bottom-up seg- 3) variability of the concept training set (e.g., we rejecte
mentation algorithm to learn the prior. This enables an in- the concept 'horses’ because, on Corel, horses always ap-
terpretation of weakly supervised segmentation as a directpear with 'grass’ and it is impossible to distinguish the two
extension of various existing bottom-up segmentation-algo concepts); 4) training set size (we rejected concepts with
rithms which support a supervised mode, where the obserunreasonably small training sets); and 5) actual preseince o
vation component is known [8, 14]. The extension consists the concept in the test image (to avoid labeling errors).
of learning the observation component in a weakly super- These results show that weakly-supervised top-down
vised manner, and then learning the prior in the standardsegmentation can produce quite stable segmentationsesult
bottom-up manner. We have implemented our weakly su-Once again, we note that the number examples available
pervised learning algorithm using this strategy, and teste for each concept is small (in the figure, 59 for the concept
two state-of-the-art bottom-up methods, that of wavelet- with fewest examples (petals) and 267 for that with the most
based priors [8], and the min-cut algorithm [14]. (snow)). Also, on Corel, most images of various classes are
presented against similar backgrounds (e.g., the horse dis
. cussion above). Interestingly, while this is a propertyt tha
6 Experimental Results simplifies problems such as image retrieval or semantic la-
beling, it significantly increases the difficulty of weakly-s

In this section, we report on weakly-supervised top- Pervised segmentation, by reducing the covariance of back-
down segmentation experiments on the Corel data set of [4].9round distributions. In this sense, the Corel set is close
This is a dataset ¢f, 000 images fron0 Corel Stock Photo ~ t0 @ worst-case scenario. Overall, while the segmentations
CDs, divided into a training set df 500 images, and atest  are clearly not perfect, we believe that these results atelic
set of500 images. Each image has been manually labeledgreat promise for weakly supervised top-down segmenta-
with a caption ofl — 5 keywords, and there are a total of tion, when combined with more sophisticated probabilis-
371 keywords (concepts) in the data set. All images con- tic representations than the simple mixture of Gaussians
sist of three color channels (YBR color space) which were adopted here.

decomposed into a set of overlappifik 8 x 3 windows. ; ;
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