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ABSTRACT

A new architecture for region of interest (ROI) image cod-
ing is proposed. ROIs are defined as image regions contain-
ing objects of interest, and an efficient algorithm proposed
for the detection of such regions. This algorithm is based on
the principle of discriminant saliency, under which salient re-
gions are the image regions of strongest response for a set of
features that discriminate the object class of interest from all
others. The resulting ROI masks are fully compatible with
the JPEG2000 standard. Experimental results are presented
for images of complex scenes, which contain both objects
and background clutter, demonstrating significant gains for
object-based ROI coding, in terms of both subjective image
quality and SNR. The proposed ROI-based coder is also shown
to be trainable with small, informally collected, image collec-
tions (e.g. by simple web search). This suggests the possibil-
ity of user-trained image coders.

Index Terms— ROI coding, Object detection, discrimi-
nant saliency

1. INTRODUCTION

The problem of using regions of interest (ROI) to increase
the efficiency of image/video transmission over constrained-
bandwidth channels has received considerable attention in the
image processing literature. This is due to the fact that various
applications can strongly benefit from the uneven distribution
of resources (bits, error protection, resolution, etc) through
different image regions. For example, images can be robustly
packetized by assigning higher priority to packets that cover
a region deemed to require higher resiliency to transmission
errors due to a noisy network [1, 2]. Also, in very low bit rate
coding (e.g. video conferencing over cell phones) it is impor-
tant to encode some image areas (e.g. faces) with higher fi-
delity than others (e.g. tree leaves moving in the background).
Object-based ROIs can also be useful in applications such as
web browsing, or image retrieval.

While the detection of ROIs has been studied by various
researchers, existing solutions have significant practical lim-
itations. These include ROI definitions based on low-level
image attributes (e.g. edges [3, 5] or spatial homogeneity [8])
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of small semantic significance, or the requirement for manual
specification of ROI shape (or other geometrical properties)
by eventual users [4]. More recently there have been efforts to
formalize ROIs as perceptually salient regions [9, 7] but these
methods are still based on bottom-up definitions of saliency,
that cannot account for high-level image interpretation.

In this work, we propose an alternative formulation of
ROI detection, based on top-down, object-based, saliency. Un-
der this formulation, saliency is associated with object recog-
nition, and defined in a discriminant sense; the salient at-
tributes of an object are those that most distinguish it from all
other objects that may be of interest. We build on the results
of [10], namely the fact that it is possible to design discrimi-
nant saliency detectors of great computational efficiency, and
introduce a number of extensions that enable the design of
image coders with support for object-based ROIs. The pro-
posed ROI detection architecture places no limitations on the
size, or other geometrical properties, of the detected ROIs,
and is fully compatible with existing ROI-based compression
standards, such as JPEG2000. Experimental results show that
object-based ROI-compression can 1) lead to significant cod-
ing gains, under both objective and subjective evaluations of
coding fidelity, and 2) be trained with small collections of ex-
ample images, informally collected through web search.

2. DISCRIMINANT SALIENCY

The proposed architecture for object-based ROI detection is
based on the principles of discriminant saliency detection [10].

2.1. Feature selection

Computationally, discriminant saliency is implemented by iden-
tifying image features which are discriminant for the 1-vs-all
classification problem that opposes an object class of interest
to all remaining classes. Defining a binary random variable
Y such that Y = 0 for the all class and Y = 1 for class of
interest and assuming that the feature vectors are drawn from
a random process X = (X1, . . . , Xn), the saliency of each
feature is measured by the mutual information between the
feature and the class label

I(Xk;Y ) =< KL[PXk|Y (x|i)||PXk
(x)] >Y (1)
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where KL[p||q] =
∫

p(x) log p(x)
q(x)dx is the Kullback-Leibler

divergence between the distributions p(x) and q(x) and <
f(i) >Y =

∑
i PY (i)f(i). The salient features for the class

of interest are those that maximize this mutual information.
The procedure is repeated for all classes for which saliency
detectors must be designed, by making each class the class
of interest. The whole process can be performed quite effi-
ciently, since the bulk of the computation can be re-used from
one class to the next. See [10] for details.

2.2. Features

In our experience, the precise choice of feature dictionary
does not have a major impact on saliency judgments. We have
tested various frequency decompositions including Gabor and
Haar wavelets, and the discrete cosine transform (DCT), with
similar results1. More important is to collect features at var-
ious image scales, since this enables the automatic determi-
nation of both the location and scale of salient image points.
This is implemented by preliminary decomposition of the im-
age into a Gaussian pyramid, and application of the feature
transformation to each of the resulting pyramid layers. Color
information is captured by measuring the hue, which is rela-
tively unaffected by shadows and image variability due to il-
lumination changes [6], at each image location. We currently
do not use spatially-supported color features, but intend to in-
vestigate their use in the future. The feature vector x(l) at
image location l includes the hue and the multiresolution co-
efficients measured at l for all pyramid scales.

2.3. Salient point detection

The detection of image points that are salient for a given class
is implemented with the minimum probability of error rule for
the 1-vs-all problem associated with that class. This consists
of a likelihood ratio test based on the class distribution and
that of the all class, where the different features are weighted
according to their saliency, and produces a measure of the
discriminant saliency of each image location

S(l) =
∑

k

I(Xk;Y ) log
PXk|Y (xk(l)|1)
PXk|Y (xk(l)|0)

. (2)

We refer to S(l) as the saliency map with respect to the class
of interest.

Salient points are local maxima of the saliency map. They
are identified by feeding the latter to a peak detection mod-
ule, based on non-maximum suppression implemented with a
winner-take-all (WTA) network [11]: the location of largest
saliency is identified, the saliency map suppressed (set to zero)
in a neighborhood of diameter equal to the saliency scale at
that location, the next most salient location is found, its neigh-
borhood suppressed, and so on. The saliency scale of a given

1All results reported in this work were obtained with the DCT
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Fig. 1. Salient point detection.

location is the scale (radius of the region of support) of the
most salient luminance feature at that location. The process
is iterated until the entire saliency map is suppressed. The
result is a table of salient points characterized by location lk,
scale sk, and amplitude S(lk). Note that salient locations are
ordered by decreasing saliency.

According to the likelihood ratio test based on (2), only
those lk for which S(lk) is larger than a threshold T (which
depends on the prior probabilities PY (i)) are truly salient. In-
stead of specifying this threshold directly, we rely on the con-
servative assumption that there cannot be more salient points
than those required to cover the entire image. This gives an
upper bound on the number of salient points N of the form

N∑
i=1

πs2
i ≤ A,

where A is the image area. Finally, the amplitude of the
salient points is normalized

πk =
S(lk)∑N

j=1 S(lj)

and the detector outputs the list of points zk = (πk, lk, sk)T , k =
1, . . . , N . The various modules are summarized in Figure 1.

3. GENERATION OF ROI MASKS

Due to the conservative nature of our salient point selection,
it is likely that some of the salient points detected may not be-
long to the object class of interest. Further elimination should
not consider points in isolation, since they tend to cluster in
object regions. Typically, the region of support of the object
of interest is covered by a cluster of points that do not neces-
sarily have the largest saliency amplitudes among the entire
collection. The saliency of the whole cluster tends, neverthe-
less, to be highly correlated with the saliency of the region.

3.1. Saliency density

To address this problem, we interpret the saliency map as a
probability density of salient points, i.e. a probability density
from which salient points are drawn. This density is com-
pactly characterized as a mixture of Gaussians with parame-
ters determined by the amplitude, location, and scale of the
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salient points zk, namely

p(l) =
N∑

k=1

πkg(l, lk, s2
kI) (3)

where g(x, µ,Σ) is the density at point x of a two-dimensional
Gaussian of mean µ and covariance Σ. This probability den-
sity can also be expressed as a sum of two components

p(l) = ps(l) + po(l)

where ps is the distribution of truly salient points and po that
of outliers. The goal is to identify which components of (3)
are associated with ps and which correspond to po.

3.2. ROI mask for single object

For this, we consider the spatial adjacency of the salient points.
We assume that large connected components are associated
with truly salient regions, while isolated saliency points are
likely to be outliers, independently of their amplitude. To de-
tect connected regions we use the following simple procedure

1. threshold p(l), i.e. let

P (l) =
{

p(l) p(l) ≥ πN

0 p(l) < πN

2. successively identify Ck, the largest connected compo-
nent of P (l), and remove it from P (l), until area(Ck) ≤
α area(Ck−1).

3. set the ROI mask to R = 1∪kCk
, where 1C is the indi-

cator function of C.

The first step eliminates probability tails due to the infinite
support of the Gaussian, and the last sets the ROI to the union
of the connected components. α is a user-defined parameter
that enables control over the relative sizes of the connected
components in the ROI. In all experiments we used α = 0.35.

3.3. ROI mask for multiple objects

For scenes with multiple objects, the procedure is repeated for
each of the object classes, typically producing some overlap
between individual ROIs. This is addressed as is usual for
the implementation of multiclass problems as a sequence of
1-vs-all rules: conflicting decisions are disambiguated by the
strength of the likelihood ratio of (2). In particular, if pc(l)
is the saliency density of the cth class and Rc the associated
ROI, location l is classified as salient for class c∗(l) such that

c∗(l) = arg max
c | l∈Rc

pc(l).
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Fig. 2. Coding PSNR (dB) for normal vs. ROI-based JPEG compression.

4. ROBUSTNESS

Since image understanding is always error prone, it is impor-
tant to include in the coder mechanisms that can recover from
saliency detection mistakes. Our experience with the saliency
detectors described above is that there is a significant differ-
ence between the appearance of the saliency map of images
where saliency is correctly detected and those where this is
not the case. While correct detection tends to originate a small
number of clusters of strong saliency, the detection failures
exhibit a much more uniform distribution of salient locations,
with smaller clusters of lower amplitude.

We build on this observation to design a classifier of saliency
detection success. This classifier takes as input the saliency
map, and computes several features (such as π1, π1 − π2, the
average saliency difference between the ROI and remaining
image area, etc.) which are then fed to a support vector ma-
chine trained from a collection of saliency detection successes
and failures. This classifier is applied after ROI detection, to
determine whether ROI coding should be used. If the image
is classified as a saliency detection failure, the encoder reverts
to non-ROI based compression, minimizing the likelihood of
severe degradation of the ROIs due to saliency misjudgments.

5. EXPERIMENTAL RESULTS

We conducted a number of experiments to evaluate the per-
formance of image compression using object-based ROIs, on
two different image collections. The first was designed to pro-
vide an objective evaluation of the gains of ROI-based coding.
The second was designed to test the viability of this type of
coding under informal training conditions.

5.1. Objective evaluation

The first set of experiments was performed on the Caltech
database of object classes [12], a database commonly used
for the evaluation of object recognition algorithms. We only
considered the “faces” class, which contains images of human
faces presented against cluttered backgrounds2. The main
reasons for considering this class were 1) its obvious interest

2Images have 896 × 592 pixels and faces about one quarter of this size.
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(a) (b)

(c) (d)

(e) (f)
Fig. 3. Original image (a) and ROI mask for class “faces” (b), “cars” (c),
“Capitol” (d), “trees” (e), and “lamp” (f).

for very video-conference, and 2) the availability of ground-
truth segmentation (a bounding box for each face). We note
that segmentation information was not used to facilitate train-
ing of the saliency detector, which was learned from the clut-
tered images, but we relied on the segmentation ground truth
to evaluate coding performance (by restricting the compari-
son to the face region). The 435 face images were divided
into a training and test set, each containing half of the exam-
ples. The training set was used to design the saliency detector,
and coding fidelity (PSNR after JPEG2000 encoding and de-
coding) was measured on test images.

The PSNRs measured on the face region, as a function
to the average bit-rate spent to transmit the whole image, are
presented in Figure 2. Results are presented for three JPEG
coders: regular, ROI-based, and robust ROI-based. Regular
indicates coding without ROIs, ROI-based refers to a coder
that always employs ROI-based coding, and robust to a coder
that relies on the classifier of Section 4 to detect saliency fail-
ures (in which case images are encoded in the normal mode).
Note the consistent gain of close to 4dB of the robust coder
over regular JPEG. Perceptually the gains are also significant,
as illustrated in the following section.

5.2. Informal training

One potential problem for object-based ROI compression is
the requirement for a training set of images from each class of
interest. To investigate the feasibility of user-trained coders,
we designed an experiment where the detectors were trained
in quite informal conditions: training was based on a small

training set (40 examples per class) of images collected from
the web. The idea was to simulate the scenario where a user
wants to encode the image of Figure 3 a), but has not detectors
for the desired class (possible classes for this image include
“faces”, “cars”, “trees”, “Capitol”, or “Lamp post”). The user
simply goes on the web and collects a small set of examples
from that class.

Figures 3 b) to f) present the ROI masks for the different
object classes in the scene. Figure 4 shows a comparison of
the images compressed with and without ROIs for the “faces”
and “Capitol” classes. Note the significant improvement in
image fidelity, that makes fine details significantly more legi-
ble.

(a) (b)

(c) (d)
Fig. 4. Regions compressed without (a,c), and with (b,d) ROI-based coding
(in both cases, the average bit rate of the whole image is the same). (b) is
compressed with ROI for the “face” class and (d) is compressed with ROI for
the “Capitol” class
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