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Abstract

A bottom-up visual saliency detector is proposed, follow-
ing a decision-theoretic formulation of saliency, previously
developed for top-down processing (object recognition) [5].
The saliency of a given location of the visual field is defined
as the power of a Gabor-like feature set to discriminate be-
tween the visual appearance of 1) a neighborhood centered
at that location (the center) and 2) a neighborhood that sur-
rounds it (the surround). Discrimination is defined in an
information-theoretic sense and the optimal saliency detec-
tor derived for a class of stimuli that complies with known
statistical properties of natural images, so as to achieve a
computationally efficient solution. The resulting saliency
detector is shown to replicate the fundamental properties of
the psychophysics of pre-attentive vision, including stimu-
lus pop-out, inability to detect feature conjunctions, asym-
metries with respect to feature presence vs. absence, and
compliance with Weber’s law. It is also shown that the de-
tector produces better predictions of human eye fixations
than two previously proposed bottom-up saliency detectors.

1. Introduction

It has long been known that mechanisms of selective
visual attention play an important role in biological vi-
sion [28]. By identifying certain regions of the visual field
as more important, orsalient, than others they enable a
non-uniform allocation of perceptual resources that eases
the computational burden posed, to an observer, by pattern
recognition or other visual tasks. The deployment of visual
attention has long been believed to be driven by the interac-
tion of two complementary components: abottom-up, fast,
stimulus-driven mechanism, and atop-down, slower,goal-
driven mechanism.While various bottom-up [11, 2, 13]
and top-down [27, 5, 17] saliency algorithms have been pro-
posed in the computer and biological vision literatures, lit-
tle has been achieved in what concerns the development of a
unified framework for the two saliency components. In fact,

very little has been proposed in terms of generic principles
that could drive the design of both bottom-up and top-down
saliency detectors.

One exception is the principle ofdiscriminant saliency,
initially proposed in [5] for visual recognition problems.It
defines as salient the features whose response best distin-
guishes a visual concept (e.g. object) to recognize from all
others that may be of possible interest (e.g. the set of all
other object classes that compose the recognition problem).
Discriminant saliency has, so far, been applied to the de-
sign of object recognition systems, a task where the result-
ing saliency detector has been shown to perform well [5, 7].
While this poses the principle as a purely top-down ap-
proach to saliency, the idea of equating saliency with dis-
crimination applies equally well to the problem of bottom-
up saliency. This is due to the ubiquity of “center-surround”
mechanisms in the early stages of biological visual sys-
tems [9]. Such mechanisms could be naturally interpreted
as detectors of features that are distinct from the surround-
ing background.

It should be noted that, although top-down saliency may
have greater immediate value for computer vision (given the
connections to object recognition), it is important to study
saliency in the bottom-up context. The reason is that the
bottom-up visual pathway of biological vision is much bet-
ter understood than its top-down counterpart. Comparing
the predictions of bottom-up discriminant saliency with the
vast repository of results available in the psychophysics lit-
erature is a natural strategy to test the underlying assertion
that saliency is, in general, a discriminant process. This
has motivated us to study the effectiveness of discriminant
saliency as a driving principle for bottom-up saliency.

The contributions of this study, which we present here,
are four-fold. First, we derive the bottom-up detector it-
self. Like its top-down counterpart [5], it is optimal in a
decision-theoretic sense, but with respect to center-surround
discrimination, not object recognition. Second, in the spirit
of Barlow and others [1], we show that by exploiting the
regularities of the visual world, it is possible to implement
the optimal detector with computational efficiency. In par-
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ticular, we show that by exploiting 1) previously observed
properties of feature dependencies, and 2) a widely used
model of the statistics of natural image features, a general-
ized Gaussian distribution, the optimal detector can be im-
plemented with great computational simplicity. Third, we
show that the proposed model is compatible with the psy-
chophysics of human pre-attentive vision. In particular, it
is shown that discriminant saliency replicates various fun-
damental properties of human pre-attentive vision, includ-
ing stimulus pop-out, disregard of feature conjunctions, and
saliency asymmetries. Finally, in a more engineering ori-
ented vein, the performance of the discriminant detector is
compared with those of two other bottom-up saliency detec-
tors previously proposed in the literature. This experimental
comparison addresses both the ability to replicate classical
psychophysics results, and the ability to predict human eye
fixations on natural scenes. It is shown that, in both cases,
discriminant saliency achieves superior performance.

2. Previous work

Computational modeling of bottom-up visual saliency
has been a subject of interest, for a few decades, in both
computer and biological vision.

2.1. Previous work

Saliency has a long history in computer vision. A sub-
stantial amount of work aims to model mechanisms of per-
ceptual organization, such as contour saliency [19], illusory
contours [26], or more general Gestalt phenomena. This
goes beyond the problem addressed here, the detection of
salient locations in the visual field, which is closer to what
is often called “interest point” detection in computer vi-
sion. While interest point detectors have been successful
in various applications, e.g. object tracking [6] or recogni-
tion [12, 16], they are hardly related to biological attention.
They are also designed with respect to cost functions (e.g.,
scale and affine invariance [16]), which are less central to
perception than discrimination, the essential component of
optimal decision making. While, in the near future, we in-
tend to evaluate the performance of discriminant saliency
with respect to properties such as stability, this goes beyond
what is addressed here.

A large corpus of existing saliency detectors has been in-
spired by, or aims to replicate, known properties of the psy-
chophysics and physiology of pre-attentive vision [11, 13].
Many of these detectors do not propose a clear unifying
computational principle for their various steps. Others have
justified all computations as optimal under generic saliency
principles, such as the maximization of self-information [2]
or “surprise” [10]. Our comparisons focus on this body
of biologically plausible detectors, namely [11], which is
arguably the most popular detector in current use [25],

and [2], one of the most recent attempts at deriving detec-
tors that are optimal under generic principles.

Finally, to the best of our knowledge, there has been no
previous effort, in the literature, to develop a unified for-
mulation for both bottom-up and top-down saliency. In this
context, the discriminant saliency principle, first proposed
for top-down processing in [5], is of particular interest.

2.2. Discriminant saliency

Discriminant saliency is rooted on a decision-theoretic
interpretation of perception. Saliency is defined with re-
spect to a stimulus of interest and anull hypothesis, com-
posed of stimuli that are not salient. Once this null hypoth-
esis is available, the locations of the visual field that can be
classified, withlowest probability of error, as not belonging
to it are classified as salient. Mathematically, this is accom-
plished by 1) defining a binary classification problem that
opposes the stimulus of interest to the null hypothesis, 2)
finding the visual features that are most discriminating for
this problem, and 3) equating the saliency of each location
in the visual field to the strength of response of these fea-
tures, at the location.

This definition has, at least, two interesting properties.
First, different specifications of the stimulus of interest
and the null hypothesis enable its specialization to top-
down or bottom-up saliency. Second, the search for dis-
criminant features is a well-defined, and computationally
tractable, problem that has been widely studied in the liter-
ature. In [5], a top-down saliency detector has been derived
by equating the stimulus of interest to an object class and the
null hypothesis to the set of objects in all other classes. In
this work, we consider the problem of bottom-up saliency.

3. Bottom-up discriminant saliency

A common formulation for bottom-up saliency is that the
saliency of each location is a function of how distinct it is
from the surrounding background [11]. This formulation is
supported by the ubiquity of “center-surround” mechanisms
in the early stages of biological vision [9]. We next intro-
duce a discriminant solution for center-surround saliency.

3.1. Mathematical formulation

Center-surround saliency can be formulated in decision-
theoretic terms by 1) defining the stimulus of interest, at
locationl, as the visual appearance within a neighborhood
W1

l of l (thecenter), 2) the null hypothesis as the visual ap-
pearance within a surrounding windowW0

l (thesurround),
and 3) searching for the locationl∗ where the responses of
a pre-defined feature set are most discriminant for the deci-
sion betweencenterandsurround.

The feature responses within the two windows are in-
terpreted as observations from a random processX(l) =



(X1(l), . . . ,Xd(l)), of dimensiond, conditioned on the
state of a hidden random variableY (l). Observations in
W1

l are drawn whenY (l) = 1 while surround observations
(W0

l ) are drawn whenY (l) = 0. The feature vectors ob-
served in each region are, therefore, drawn according to the
conditional densitiesPX(l)|Y (l)(x|c), c ∈ {0, 1}. Observa-
tions drawn withY (l) = c are referred to as belonging to
classc. The observed vector at any locationj is denoted by
x(j) = (x1(j), . . . , xd(j)), and the saliency of the feature
set at locationl, X(l), is defined by how discriminant the
feature responses are for the classification of the observa-
tionsx(j),∀j ∈ Wl = W0

l ∪W1
l , into center and surround.

In particular, the saliency of locationl, S(l), is quantified
by the discriminant power of the entire feature set atl, as
measured by the mutual information between features,X,
and class label,Y ,

Il(X;Y ) =
∑

c

∫

pX(l),Y (l)(x, c) log
pX(l),Y (l)(x, c)

pX(l)(x)pY (l)(c)
dx.

(1)
The l subscript emphasizes the fact that the mutual infor-
mation is defined locally, withinWl, and saliency detection
consists of identifying the locations where (1) is maximal.

3.2. Computational parsimony

The exact maximization of (1) is usually impractical,
since it requires density estimates on a potentially high-
dimensional feature space. Computational efficiency can
be achieved by exploiting a known property of the statistics
of band-pass natural image features, e.g. Gabor or wavelet
coefficients: that features in this class exhibit stronglycon-
sistentpatterns of dependencies across a wide range of im-
agery [3, 8]. These regularities are illustrated by Figure 1,
which presents three images, the histograms of one coef-
ficient of their wavelet decomposition, and the histograms
of that coefficient conditioned on its parent. Although the
drastically different visual appearance of the images af-
fects the scale (variance) of the marginal distributions,their
shape, or that of the conditional distributions between co-
efficients,is quite stable. The observation that these distri-
butions follow a canonical (bow-tie) pattern, is remarkably
consistent over the set of natural images. This consistency
indicates that, even though the fine details of feature de-
pendence may vary from scene to scene, its coarse struc-
ture follows a universal statistical law that appears to hold
for all natural scenes. This, in turn, suggests that feature
dependencies are not greatly informative about the image
class [24, 3] or, in the particular case of saliency, about
whether observations originate in the center or surround.
The following theorem (see [23] for a proof) shows that,
when this is the case, (1) can be drastically simplified.

Theorem 1. LetX = {X1, . . . ,Xd} be a collection of fea-
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Figure 1. Constancy of natural image statistics. Left: three images.
Center: each plot presents the histogram of the same coefficient
from a wavelet decomposition of the image on the left. Right:
conditional histogram of the same coefficient, conditioned on the
value of its parent.

tures, andY the class label. If
∑d

i=1 [I(Xi;X1,i−1) − I(Xi;X1,i−1|Y )]
∑d

i=1 I(Xi;Y )
= 0, (2)

whereX1,i = {X1, . . . ,Xi}, then

I(X;Y ) =

d
∑

i=1

I(Xi;Y ). (3)

The left hand side of (2) is a measure of the ratio be-
tween the information for discrimination contained in fea-
ture dependencies and that contained in the individual fea-
tures. While this ratio is usually non-zero, it is generally
small for band-pass natural image features [24]. Hence, the
approximation of saliency, (1), by

S(l) =
d

∑

i=1

Il(Xi;Y ), (4)

is a sensible compromise between decision theoretic opti-
mality and computational parsimony. Note that this approx-
imationdoes notassume that the features are independently
distributed, but simply that their dependencies are not infor-
mative about the class. The functionS(l) is referred to as
thesaliency map.

3.3. Leveraging well known statistical properties

Extensive research on the statistics of natural images
has shown that, for band-pass features, these densities are
well approximated by a generalized Gaussian distribution
(GGD) [14],

PX(x;α, β) =
β

2αΓ(1/β)
exp

{

−

(

|x|

α

)β
}

, (5)



whereΓ(z) =
∫ ∞

0
e−ttz−1dt, t > 0, is the Gamma func-

tion, α a scaleparameter, andβ a shapeparameter. The
parameterβ controls the decay rate from the peak value,
and defines a sub-family of the GGD (e.g., the Laplacian
family whenβ = 1 or the Gaussian family whenβ = 2).

Whenever the class conditional densities,PX|Y (x|c),
and the marginal density,PX(x), follow a GGD, the mu-
tual information of (4) can be computed in a closed form.
This follows from the equalities

I(X;Y ) =
∑

c

PY (c)KL
[

PX|Y (x|c)||PX(x)
]

, (6)

and

KL[PX(x;α1, β1)||PX(x;α2, β2)] = (7)

log

(

β1α2Γ(1/β2)

β2α1Γ(1/β1)

)

+

(

α1

α2

)β2 Γ((β2 + 1)/β1)

Γ(1/β1)
−

1

β1
,

where KL[p||q] =
∫

p(x) log p(x)
q(x)dx is the Kullback-

Leibler (K-L) divergence betweenp(x) and q(x). In this
case, the computation of discriminant saliency at an image
location only requires the estimation of theα andβ param-
eters, for the center and surround widows, at that location.
These parameters can be estimated by the method of mo-
ments, through the following equalities,

σ2 =
α2Γ( 3

β
)

Γ( 1
β
)

and κ =
Γ( 1

β
)Γ( 5

β
)

Γ2( 3
β
)

(8)

whereσ2 andκ are variance and kurtosis, defined as,

σ2 = EX [(X−EX [X])2] and κ =
EX [(X − EX [X])4]

σ4
.

The estimation only requires computing sample moments
from the center and surround windows, and is very efficient.
It has also been shown to produce good fits to natural im-
ages [8].

3.4. Implementation details

The combination of all observations discussed in the
previous sections leads to a discriminant saliency detector
whose implementation is illustrated in Figure 2. The first
stage, feature decomposition, follows the proposal of [11],
which closely mimics the earliest stages of biological visual
processing. The image to process is first subject to a feature
decomposition into an intensity map and four broadly-tuned
color channels, i.e.I = (r+g+b)/3, R = br̃−(g̃+b̃)/2c+,
G = bg̃ − (r̃ + b̃)/2c+, B = bb̃ − (̃r + g̃)/2c+, andY =
b(r̃+g̃)/2−|r̃−g̃|/2c+, wherer̃ = r/I, g̃ = g/I, b̃ = b/I,
and bxc+ = max(x, 0). The four color channels are, in
turn, combined into two color opponent channels,R − G
for red/green andB − Y for blue/yellow opponency. These
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Figure 2. Bottom-up discriminant saliency detector.

and the intensity map are convolved with three Mexican
hat wavelet filters, centered at spatial frequencies0.02, 0.04
and0.08 cycle/pixel, to generate nine feature channels. The
feature spaceX consists of these channels, plus a Gabor de-
composition of the intensity map, implemented with a dic-
tionary of zero-mean Gabor filters at 3 spatial scales (cen-
tered at frequencies of0.08, 0.16, and0.32 cycle/pixel) and
4 directions (evenly spread from0 to π) [15].

For the computation of the feature saliency maps in the
second stage, all window sizes are guided by studies from
psychophysics and neurophysiology [18, 4]. For the psy-
chophysics experiments of Section 4, we followed the com-
mon practice [21, 9] of setting the size of the center window
to a valuecomparableto that of the display items. For natu-
ral images we used a window of25×25 pixels. In all cases,
the side of the surround window is6 times larger than that
of the center, at all image locations. Informal experimenta-
tion with these parameters has shown that the saliency re-
sults are not substantively affected by variations around the
values adopted.

At each location, the parameters of the class conditional,
and marginal densities are estimated with (8), and the mu-
tual information between each featureXi and class labelY
is computed with (7) and (6). These mutual informations
are finally added, according to (4), to generate the overall
saliency map. To improve their intelligibility, the saliency
maps shown in this paper were subject to smoothing, con-
trast enhancement (by squaring), and a normalization that
maps the saliency value to the interval[0, 1].

4. Experimental evaluation

The performance of discriminant saliency was evalu-
ated by measuring its ability to 1) replicate classic psy-
chophysics results in visual search, and 2) predict human
eye fixations on natural images.



(a) (b) (c)
Figure 3. Saliency output for single basic features (orientation (a)
and color (b)), and conjunctive features (c). Brightest regions are
most salient.

4.1. Consistency with psychophysics

We start with an evaluation on a series classical displays
used in the studies of visual attention [21, 22]. Discriminant
saliency is compared with both human data and the model
of [11], which is arguably the most popular biologically in-
spired model in the literature. All comparisons are based on
the code available in [25].

4.1.1 Pop-out and conjunctive feature search

One classical observation from visual attention is that for
basic features, such as color and orientation, the search for
a target which differs from a set of distractors by a single
feature is efficient. While, in this case, the target “pops-
out”, the same does not occur when the difference is defined
by a conjunction of two basic features. Without top-down
guidance, searching for conjunctions can be very difficult.

Some examples of this behaviour are shown in the top
row of Figure 3, where a target differs from a field of
distractors in terms of (a) orientation, (b) color, and (c)
a conjunction of orientation and color (green right-tilted
bar among green left-tilted and red right-tilted bars). The
saliency maps produced by discriminant saliency are shown
below each display. Note that, like human subjects, the de-
tector produces a very unambiguous judgement of saliency
for single feature search ((a) and (b)), but is unable to assign
a high saliency to the conjunctive target in (c) (bar in the4th

line and4th column).
The difference between single and conjunctive search

has long been known, and probably best explained by Treis-
man’s feature-integration theory (FIT) [21]. This theory
predicts that the visual stimulus is projected into basic fea-
ture maps, which are then combined into asaliencymap that
drives attention. The saliency map is scalar and only regis-
ters the degree of relevance of each location to the search,
but not which features are responsible for it. Hence, a tar-
get defined by a basic feature “pops-out”, but a conjunctive
target does not.

While the difficulty of searches for conjunctive targets
is widely acknowledged in the literature, we are aware
of no previouscomputationalexplanation of why the pre-
attentive vision would choose to disregard conjunctions.
Discriminant saliency justifies this behaviour, by explain-
ing it as optimal, in a decision-theoretic sense, under sen-
sible approximations that exploit the regularities of natural
stimuli to achieve computational parsimony. To the degree
that (2) holds for natural scenes, i.e. that feature dependen-
cies are not informative for discrimination of image classes,
restricting search to the analysis of individual feature maps
has no loss of optimality.

4.1.2 Visual search asymmetries

Another classical result in psychophysics is the existenceof
saliency asymmetries [22]. While, in general, the presence
in the target of some feature absent from the distractors pro-
duces pop-out, the reverse (pop-out due to the absence, in
the target, of a distractor feature) does not hold. We applied
the discriminant saliency detector to a set of classic displays
and observed the same asymmetric responses. An example
is shown in Fig. 4. On the left display, the target (a “Q”) dif-
fers from the distractors (“O”) by the addition of a vertical
line, and is highly salient. However, as shown on the right,
when the target (“O”) differs from the distractors (“Q”) by
the absence of the same line, it is not salient.

In a quantitative study, Treisman [22] showed that 1)
asymmetries also exist for weaker and stronger responses
(i.e. when target differs from distractors onlyquantitatively,
along one feature dimension), and 2) they follow Weber’s
law. For this, she designed a set of experiments involving
displays where the target (a vertical bar) differs from dis-
tractors (a set of identical vertical bars) only in terms of
length [22]. One example of such displays is shown in Fig-
ure 5 (a), while (b) presents a scatter plot of measurements
of discriminant saliency across the set of displays.

Each point in (b) corresponds to the target saliency in
one display, and the dashed line shows that, like human per-
ception, discriminant saliency follows Weber’s law: target
saliency is approximately linear in the ratio between the dif-
ference of target/distractor length (∆x) and distractor length
(x). For comparison, Figure 5 (c) presents the correspond-
ing scatter plot for the model of [11], which is shown not to
replicate human perception.

4.2. Predicting human eye movement data

In addition to classical psychophysics, saliency was eval-
uated by measuring how well saliency detectors can predict
human eye fixations. In this case, the performance of dis-
criminant saliency was compared to those of the methods
of [11] and [2]. The experimental set-up followed [2], using
the evaluation metric of [20], namely the area under ROC



Figure 4. A pop-out asymmetry.

(a)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

∆ x/x

S
al

ie
n

cy

0 0.2 0.4 0.6 0.8
1.65

1.7

1.75

1.8

1.85

1.9

1.95

∆ x/x

S
al

ie
n

cy

(b) (c)
Figure 5. An example display (a) and performance of saliency de-
tectors (discriminant saliency (b) and [11] (c)) on Treisman’s We-
ber law experiment.

Saliency model Discriminant [11] [2]
ROC area 0.7694 0.7287 0.7547

Table 1. ROC areas for different saliency models with respect to
all human fixations.

curve for a binary prediction of eye fixations.
Table 1 presents average ROC areas for all detectors,

across the entire image set. It shows that discriminant
saliency achieves the best performance among the three
saliency detectors.
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