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Abstract

A cost-sensitive extension of boosting, denoted
as asymmetric boosting, is presented. Unlike
previous proposals, the new algorithm is derived
from sound decision-theoretic principles, which

exploit the statistical interpretation of boosting to

determine a principled extension of the boosting
loss. Similarly to AdaBoost, the cost-sensitive

extension minimizes this loss by gradient descent
on the functional space of convex combinations
of weak learners, and produces large margin de-
tectors. It is shown that asymmetric boosting is

fully compatible with AdaBoost, in the sense that

it becomes the latter when errors are weighted
equally. Experimental evidence is provided to

demonstrate the claims of cost-sensitivity and
large margin. The algorithm is also applied to

the computer vision problem of face detection,

where it is shown to outperform a number of pre-

vious heuristic proposals for cost-sensitive boost-
ing (AdaCost, CSB0, CSB1, CSB2, asymmetric-

AdaBoost, AdaC1, AdaC2 and AdaC3).

this area falls into two main categories. The first attempts
to produce generic procedures for making any arbitrary al-
gorithm cost sensitive, by resorting to Bayes risk theory
or some other cost minimizing strategy (Zadrozny et al.,
2003) (Domingos, 1999), (Chawla et al., 2003) (Guo &
Viktor, 2004). The second attempts to extend particular
algorithms, so as to produce cost-sensitive generalizatio

One example is the popular AdaBoost algorithm, which

is not cost-sensitive but has achieved tremendous prac-
tical success in areas such as computer vision (Viola &
Jones, 2001). AdaBoost (Freund & Schapire, 1997) pro-
duces a strong classifier by combining a voted ensemble of
weak classification functions (weak learners). Each weak
learner consists of a prediction and a confidence value and
each point in the training set has an associated weight. At
each round, AdaBoost chooses the weak learner with the
smallest error, increases the weights of wrongly classified
training points and decreases the weights of correctly clas

sified points. There are multiple interpretations for Ad-

aBoost, including those of a large margin method (Schapire
et al., 1998), a gradient descent procedure in the func-
tional space of convex combinations of weak learners (Ma-
son et al., 2000), and a method for step-wise logistic re-
gression (Friedman et al., 2000), among others (Freund &

1. Introduction Schapire, 2004). In this work, we build on a combination

R . . of these interpretations to derive a sound cost-sensitive e
Many classification problems, in areas of great practlcaf

; . ... tension, which we denote lasymmetric boosting
relevance for machine learning, are naturally cost semesiti
One predominant example is that of detection problemsYarious cost-sensitive extensions of boosting have been
such as object detection in computer vision (Viola & Jonespreviously proposed in the literature, including AdaCost
2002), fraud detection (Viaene et al., 2004), or medical di{Fan et al.,, 1999), CSB0, CSB1, CSB2 (Ting, 2000)
agnosis (Park et al., 2003), where the targets to be detectedymmetric-AdaBoost (Viola & Jones, 2002) and AdaCl,
are rare. For all these problems, where the cost of missingdaC2, AdaC3 (Sun et al., 2005). All of these algo-
a target is much higher than that of a false-positive, clasfithms are heuristic in nature, attempting to achieve cost-
sification algorithms which are optimal under symmetric sensitivity by direct manipulation of the weights and con-
costs (such as the popular zero-one loss) tend be unsatisdence parameters of AdaBoost. In most cases, it is not
factory. The design of classifiers that are optimal for Igsse clear if, or how, these manipulations modify the loss min-
that weigh certain types of errors more heavily than othersmized by boosting, or even how they relate to any of the
is denoted as cost-sensitive learning. Current research idifferent interpretations of boosting discussed above. We
rely on the statistical interpretation of boosting to deriv
a natural cost-sensitive extension to the boosting loss and
show that, similarly to the latter, this loss can be minirdize
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by gradient descent in functional space. and the optimal step is found through a line search along

We then derive the asymmetric extension of AdaBoost, an(glrectlon Gim (@), which can be computed in closed-form

show that, like the original, it is a margin maximization y 1 <1 _ errm))

(6)

method, which increases the margin of the detector even a = —log

2 ETT (1m)

after the training error is exhausted. The only difference
is that the margins are now unbalanced, reflecting the costhereerr,, is the total error for then' feature. An
structure assigned to the different error types by the asymexamplex is classified as a positivey (= 1) if fr(x) > 0
metric loss function. We present a thorough experimenand negative otherwise.

tal evaluation on the face detection problem, demonstrat-

ing that the new asymmetric boosting algorithm does in-2 2. AdaCost

deed possess cost sensitive characteristics, and can meet

a target detection rate without any form of (sub—optimal)AdaCOSt (Fan et al., 1999) is a cost sensitive extension of
weight tweaking. Finally, asymmetric boosting is shown toAdaBoost that incorporates a cost adjustment functipn
outperform the previously proposed cost-sensitive bogsti N the weight update rule and in the computatiomoflhe
methods, consistently achieving the smallest cost in uario Weight update rule is modified into

experiments.
P wl(m-*-l) _ wz(m)efyiame(xi)ﬁo" (7)

2. AdaBoost and Cost Sensitive Extensions anda is computed with

We start by briefly reviewing the AdaBoost algorithm and

previously proposed cost sensitive extensions. err(m) = Z wl(m)d (8)
=1
2.1. AdaBoost 1 | 1+ errm) °
AdaBoost can be derived under a loss minimization frame- R T eTT(m) ®)
ork (Hastie et al., 2001), with the goal of producing a . .
work (Hasti ), wi g producing whered = —1if y; = G, (x;) andé = 1 otherwise.

decision rule of the form .
Finally 5, = —0.5C; + 0.5, andS_ = 0.5C; 4+ 0.5 where

T C; is the cost assigned to the misclassification of #tie
fT(x) = Z O‘me('x)a (1) examp|e_
m=1

where {a,,}F _, and {G,.(z)}] _, is a sequence of 2.3.CSB0, CSB1 and CSB2

weak learners usually implemented with a decision stump ) .
(threshold of the projection of along the direction of a CSBO, CSB1, CSB2 (Ting, 2000) are cost sensitive exten-

feature,,). This is accomplished through gradient Ole_sions of AdaBoost that only alter the weight update rule,

scent, on the functional spaeof convex combinations of relying on (6) for the computation af. Three different

weak learners, with respect to the exponential loss functio cost §tructures, based on various 5|m_p||f|cat|ons of (@.’ ar
considered. In CSBO the modified weight update rule is

L=3 exp(-yifr(z:) @ W™ = Cyyul™, (10)
i=1
where{z;}™_, is a set of training examples afigi }7_, the ~ WhereC_;) is the misclassification cost of thié example
associated sequence of class labglsq( {1, ~1}). Given ~ andCy () = 1. In CSB1 the weight update rule becomes
« the gradient direction at the!” iteration is

N w,Eerl) = C&(i)w§M/)€7in"’L(wi). (11)
Gm(z) = argménzwz(m) exp (—y;aG(z)) (3)  Finally, CSB2 relies on
=1
where w™ ) = C&(i)wim)e_yiamc’"'(m7 (12)

wl(m—i—l) _ wgm)e—yiame(mi). (4)

reducing to AdaBoost i_ ;) = C ;) = 1.
The gradientz,,, (x) can be computed, independentlycaf

with 2.4. Asymmetric-AdaBoost

N . .
Gon(z) = arg minngm)I(yi £ G(z)) (5) Asymmetn_c—AdaBoog (Viola & Jones, 2002) is another
G = cost sensitive extension of AdaBoost that only alters the
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weight update rule, again relying on (6) to computelhe

_1 A
anda = 3 log &, where

main idea is to increase the weights of positive examples

and decrease the weights of negative examples after each N ™ 4 Z .
- i

iteration. The modified weight update rule is

wgm—&-l)

_ ng"n)e_yianLG'm(li)’ (13)

whereC = (vK)(~) for positive examples and’ =
(VR

2 (m) Z 2 (m)
wi — Ci 'UJi
=1 Yi=Gm (i) Yi#Gm ()
N
B= Zciwgm) - > (™ 4 > ™.
i=1 Yi=Gm (z;) YiZGm (x5)

for negative ones.K is the cost ratio andvV. While various justifications are given to motivate the dif-

the number of weak learners. We have not considered thiferent proposals for direct manipulation of the AdaBoost
method in our experiments due to its similarity with CSB2. equations, none of these are based on the derivation of an

2.5. AdaC1, AdaC2 and AdaC3

optimal solution for the minimization of a cost sensitive
loss. To the best of our knowledge, no such derivation has
been previously presented in the literature.

AdaC1, AdaC2 and AdaC3 (Sun et al., 2005) are cost sen-
sitive extensions that alter both AdaBoost’s weight update

rule and formula for. DefiningC; = ¢; as the misclassi-

3. Asymmetric Boosting

th
fication cost of the"" example, the new weight update rule To derive the asymmetric boosting algorithm, we start by

for AdaCl is

(M) i m G (24) ¢
D) _ Wi e viamGmtzies

7 - Zt

(14)

with

efyqzame(ri)cl'

N
i=1

(m) (m)
o = 1log ! + Z% z i) C’Lw B Zyﬁécwz(zi) Ciwi
)

2 - Zyi:Gm(zi) cw(™ + DA Gon () CiWi

In AdaC2 weights are updated according to

w(m) e—yiam Gm (11)

(m+1) _ GW; 15
w, 7 L)
with
N
7, = Zciwl(m) Vi @m G ()
i=1
and
1 = 2.) GW
azilog ZJz Gm( 1) l(m)
Zyﬁécm(mi) Ciw;
Finally, AdaC3 relies on
( ) —y,amG (xi)eq
(m+1) w; 16
w; 7 (16)

with

e*yiame(Ii)Ci

N
Ly = Z ciwgm)
i=1

recalling a statistical interpretation of boosting, firsop
posed in (Friedman et al., 2000). This interpretation is
based on the facts that 1) the boosting ldsss an em-
pirical estimate of the cosE[exp(—yf(x))], and 2) this
cost is minimized by the symmetric logistic transform of
P(y=1lz),

1 Ply=1)

f(z) =7 log i)

2 Py = (17

It follows that, from a statistical viewpoint, boosting can
be interpreted as a stage-wise procedure for fitting aeditiv
logistic regression models.

The dependence of logistic regression on the log-odds ratio
of (17) follows from the fact that the Bayes decision rule
for the detection problem of interest is a threshold on the
latter. This, however, only holds for the “0-1" loss, i.eeth
loss that assigns equal costs to false-positives and misses
For an asymmetric loss, with a cost@f for false-positives
and(C for misses, the parallel with the Bayes decision rule
requires an asymmetric logistic transform

1 o Py =1]z)Cy
C1 + Oy gP(y:—HJ})CQ'

fa(z) =

This can be shown to minimize
_1)6_3/'02]0&(1:) ,

(18)
suggesting an alternative, asymmetric, boosting loss

E {I(y _ 1)e—y-01fa(l') + 1y =

n

Lo = [y = 1) exp(~Cryi fr(z;))

1 —1) exp(—Cay; fr(z:))] .

+1(y1 =
Under the statistical interpretation, minimizing thisdas
equivalent to fitting the cost-sensitive logistic regressi

(19)
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model associated with the loss function that assigns zero- e Given training set(xi,y1)....(zn, yn) Wherey €

cost to correct decisions, caSt to misses, and cosl, to {+1, —1} is the class label of exampile

false positives. Minimizing (19) for a specific pa®,, C2) o ) _ L )

is, in general, different from heuristically tuning theekh- o Initialize weights to uniformw; = g77,Vi €
old on the rulefr(z) produced by symmetric boosting. Ti,w; = M{lw ez .

However, the general AdaBoost principle of minimizing a B
loss by gradient descent on the space of convex combina- ® Choose positive redl’;, C; values.
tions of weak learners can be extended to the asymmetric

e Fort =1,....,T (WhereT is the total number of weak
loss of (19).

learners.)

In fact, by combining (19) with (1), and defining two sets 1. for eachj, train a weak leamer/step-size pair

I, ={ilyi =1} I_ ={ily; = -1}, (20) (Gj(x); ;) using current weightsy;. The loss
at any classifier threshold is given by (23) with
« found by solving (24)
2. selectthe weak learner/step-sigg,, (z), vy, ) Of
(W, G () = (21) smallest loss.
; (m) ,—C1aG(x; (m) ,CaaG(x; 3. update the weights according to (22).
argrgél’ch:lZwi e ()JrZwi e (i) p g g to (22)

1€T L 1€T_

it follows that the gradient direction and step size which
minimize the asymmetric boosting loss at iteratiorare

e The final strong classifier implements the decision
with rule h(z) = sigr{pr1 G ()]
(M) ,—C1 ot Gon (24 ;
w™ ) = { wfm)ecza, e (m(,.) gt 'e i (22)  1tis worth mentioning that the algorithm is fully compati-
w, e, ie I ble with AdaBoost, in the sense that it reduces to the latter
It can then be shown that, for a given step sizahe gra- whenC; = Cy = 1.
dient direction is

G m(z) = arg min [(ecla _emC1ey 4 oCra, 4. Properties of Asymmetric Boosting
G(x)
In this section we present two experiments that demonstrate

Caa —Caa —Coa . . . . .
(e —em ™) d+ e T | (23)  two important properties of asymmetric boosting: that it

and the optimal step size is the solution of 1) is, indeed, cost sensitive, and 2) produces large-margin

classifiers.
2C4 - b-cosh(Cya) +2C5 - d - cosh(Caor) = (24)
Cy-Ty-e C1@4Cy T - e 2 4.1. Cost Sensitive Properties
with To verify that asymmetric boosting produces cost sensitive
(m) classifiers, and obtain some intuition about its advantages
Ty = Z w; (25)  over the existing techniques, we analyzed a simple syn-
€Ly thetic experiment. This consisted of a binary scalar classi
T = Z wl(m) (26) fication problem, involving Gaussian classes of equal vari-
et ances? = land meang_ = —1 (y = —1) andpu, = 1
B m) 7. ‘ (y = 1). We then sampled0K examples per class, sim-
b = Z wp I(yi # G(2)) @7 ulating the scenario where the class probabilities are uni-
€1+ form. For this problem, the optimal (Bayes) decision rule
d = w™ I(y; # G(x;)) (28) s to choose claskif z is larger than the threshold
1€L_

1
. . . Tepr=—-InR (29)
The gradient descent iteration cycles through the weak 2
Iegrners, for each, solving (24). This can be done effiojentl R LOD _ Loss of misclassifying class 1
with standard scalar search procedures. In the experimentéh€reR = 7555 = Tossof misclassifying class0' "¢
reported in this paper, the optimalwas found in an av- consider two case® = 20 andR = 5, forwhichTgpr =
erage of6 iterations of bisection search. Giventhe loss —1.4979 andTzpr = —0.8047, respectively.
associated with the weak learner can be computed, and t
optimal learner selected according to (23).

ri‘—elgure 1 presents the evolution of the threshold (decision
boundary) produced by the different cost sensitive bogstin
The complete asymmetric boosting algorithm is as follows:algorithms, as a function of the boosting iteration. For all
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AdaBoost AdaBoost

3r AdaC1,C=0.7 3r AdaC1,C=0.9
AdaC2,C=0.2 AdaC2,C=0.8
AdaC3,C=0.8 AdaC3,C=0.9
2 AdaCost,C=2 2 AdaCost,C=20
[ Asymmetric,C=4.5 [ Asymmetric,C=4.7
- CSB0,C=2 - CSBO0,C=5
= = =(CSB1,C=2 = = =CSB1,C=35
1L == 1CSB2,C=9.9 1L == 1CSB2,C=10
= = Bayes Rule = = Bayes Rule

Threshold
Threshold
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Figure 1.Decision boundaries produced by the different boosting algorithmefawus cost factors. LeftR = 5, right: R = 20.

either the cost-sensitive or cost-insensitive sense. Hile: t

class consisted of algorithms (CSB_l, CSBZ). that showed

R some tendency to converge to the right solution, but were
,b‘o%eemeeeweememeeo%oeeomw really not able to. While in some cases this was due to a
slow convergence rate, in others the algorithms seemed to
have converged only to start oscillating, or even diverging
e e e e el sty s T The final class consisted of asymmetric boosting alone.
#features This was the only method that consistently converged to
‘ N the correct solution in the allotted number of iterations. |
-0 i particular, asymmetric boosting produced an almost perfec
.= i decision boundary 6f 4 symmetric = —1.4993 for R = 20,
andT asymmetric = —0.7352 for R = 5. This was accom-
. i plished in only two iterations wheR = 20 and four when
o-- R=5.

T i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

margin The most plausible explanation for the poor performance
of all other algorithms appears to be the inappropriate
Figure 2.Error curves (top) and margin distribution graphs (bot- choice of thea parameter: while the weight update rules
tom) for Asymmetric BoostingC, = 2) on a face detection Seemed to produce asymmetric weak learners, the incor-
problem. rect choice ot frequently gave disproportionate weight to
weak learners with poor thresholds. For example, in the
algorithms, we have performed a (rather extensive) searcbase of AdaC1, the first two weak learners have threshold
over the range of cost sensitivity parameters (e.g. the raef 0.0152 and—0.9186 but the corresponding values af
tio betweenC; andCs for asymmetric boosting), so as to are0.9056 and0.2404. Although the second threshold is
achieve the best possible performance afteiterations.  close to optimal {pr = —0.8047), the poor choice of
Interestingly, this search did not produce good solutions f « = 0.2404 gives it little weight, much smaller than that
most of the algorithms. We detected four classes of behawsf the the first & = 0.9056). This makes the overall deci-
iors. Algorithms in the first class (AdaC1, AdaCost) stub-sion boundary close to zero. Of all algorithms tested, only
bornly refused to produce any solution other than the cost€SB1 and CSB2 achieved performance comparable to that
insensitive threshold dt. This was also the solution pro- of asymmetric boosting, even though the slowness of their
duced by AdaBoost, a non-surprising fact given the lack ofconvergence in this simple problem appears problematic.
cost sensitivity of the latter and the symmetry of the prob-
lem. 4.2. Large Margin Classifier Properties

The second class consisted of algorithms (CSBO, AdaC2pne of the most important properties of boosting, viewed

AdaC3) that never converged to any meaningful thresholdpy many as the reason for the robustness of the resulting
For this problem, these algorithms did not work at all, in

N
o
B>,

1

i
o

error%
.
o

= = = #Features=12
#Features=70

0.8
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cumulative distrabution




Asymmetric Boosting

classifiers, is that it tends to continue reducing the tester 5. Evaluation

even after perfect classification is reached on the trainin i L .
An important area of application of cost-sensitive learn-

set. Schapire et. al used this observation to show that A . - o A
(ng is the problem of object detection in computer vision,

aBoost produces large margin classifiers (Schapire et al.,

1998), and therefore has good generalization propertiegyhere boosting has recently emerged as the main tool for

We have applied the same procedure to investigate Wheth(gPe design of classifier cascades (Viola & Jones, 2001).

asymmetric boosting maintains this large-margin propertyThese are extremely efficient classifiers, that enable real-

Using a training set o100 face images and00 nonface time implementation of object detectors, with performance
images and a test set 600 face images and000 non- that matches the best results previously available (for non
face images, we trained asymmetric boostiflg & 2) for real time implementation). Since a substantial amount of
200 iterations. Figure 4.1 (top plot) shows that, while the effort h_as also b_een devoted to_the de_si_gn of evaluation_pr_o-
training error is zero after only2 iterations, the test error [0C0IS in areas like face detection, this is a good domain in
continues to decrease: from.25% after 11 iterations to which to test cost-sensitive classifiers. We have adopted
9.55% after66. Figure 4.1 (lower plot) depicts the cumu- the protocol ,Of (Viola & Jo_nes, 20_01) to compare asym-
lative distribution of the margins after botl and70 itera- metric boostln_g to all prewou;ly discussed cost sensitive
tions. While after1 2 iterations the minimum margin of any boosting algorithms. All experiments used a face database
point is0.0088, its value increases @1517 after70 itera- of 9832 positive and9332 negative examples, and weak

tions. This considerable increase in the margin is similar t '€2Mers based on a combination of decision stumps and

that observed for AdaBoost by Schapire et all, demonstrat-i2ar Wavelet featuresii’ examples were used, per class,

ing that asymmetric boosting maintains the large margiH;JOr tra_mmgl, th(_ar:ema|n|ng8li|’>2 bedmg left ;or tgstlng. Al
properties of the latter. oosting algorithms were allowed to run f4i0 iterations.

The evaluation of cost-sensitive classification requires a
4.3. Choosing the Cost Parameters classification metric that weighs some errors more than oth-

" ers. A commonly used metric, which we adopt here, is
For many cost-sensitive problems, the c@stsandC, are y P

naturally specified from domain knowledge. For example,
in a fraud detection application, prior experience dictate
that there is an average costwofiollars per false positive,
while a false negative (miss) will cogt > z dollars, on

e=p+fxm (31)

wherep is the number of false-positives of the detectar,

average. In this case, the costs are simply the vatusd e number of misse's andf > 1 a cost factor that weighs

’. misses more heavily than false positives. Four cost factors
(f = 10,20, 50,100) were considered, and the misclassi-

For problems where it is more natural to specify desired defication coste computed for each combination of 1) cost

tection or false-positive rates, the cost parameférand  sensitive boosting method, 2) training cost structure, and

C> can be determined with resort to the Neyman-PearsoR) cost factorf of the classification metrie.

Lemma (Duda et al., 2001). For example, given a speci- . )
fication for a detection ratg, the optimal cost structure is By training cost structure we refer to the ratio between the
the one such that costs assigned to the different types of errors during-rain

ing, e.g. the constants; andC, of asymmetric boosting,
C_ and(C, of CSB, etc. For each method, we found the
/ Pzly=1)dz = ¢ (30) range of values of this ratio that spans the operating range
D achievable by the classifier. This is illustrated, in Fig8re
a) for asymmetric boosting. The figure presents plots of the

with cost metrice as a function of the cost factgt for various
Py = 1|z) O, training cost structures, obtained by sett@rig= 1 and let-
D= {xP(y:—Hx) > CH} . ting C; take a number of values in the interyal2, 1000].

Note that detectors trained with larger valuesgfperform

. . - _ ..__better under cost functions with largér while small ra-
Since the optimal decision rule is still the Bayes deC|S|ontios lead to best performance wheweighs the two errors

rule, i.e. to decide for classif x € D (and—1 otherwise), more equally. This confirms the cost-sensitive nature of

this does not affect the discussion of Section 3. The onlyasymmetric boosting. Note, also, that the slope of the lines

difference is that, rather than specifying the costs, orse hae(f) decreases monotonically it , saturating at some

tTohsearch E)rtge cosbts that aCh'EI}.\ée :_he detetCt'(t)Q rtatg pf (30point. The operating range of the classifier is the range of
is can be done by cross-validation (note that, ecausgIOIDes that it can achieve.

one can always sdf, to the value of one, the search is
one-dimensional). 1A miss happens when a positive example is not detected.
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Figure 3.(a) Misclassification cost for asymmetric boosting under differentitrginost structures. (b) Minimum misclassification cost
of various cost-sensitive boosting methods on a face detection problem.

Figure 3 b) presents a comparison of the best performanc$

achieved with each of the cost-sensitive boosting methods able 1.Smallest misclassification costs and corresponding cost
. 9 .. ratio C for different methods, cost factors.
The plots were produced by 1) running each method with

four cost ratios, within the operating range of the resgltin

classifiers, and 2) searching for the threshold that actiieve__Method | f =2 f=5 f=10 | f=20
the minimum cost at each cost faciorBecause AdaBoost | ASYM C4—4§ ) 052420 013530 01_954%0
does not have a cost parameter (it is equivalent to asymmet-xgagoost | 415 Sras 507 3037
ric boosting withC; = 1), it was only subject to a thresh- C=1 C=1 C=1 C=1
old search. Itis clear that asymmetric boosting consistent |  CSBO 1136 1657 2271 2841
outperforms all other techniques, for all valuesfof c=3 c=3 c=3 c=3
CSB1 1697 2304 2778 3181
These results also illustrate the importance of choosiag th c=3 c=3 c=3 c=3
confidencea optimally, at each iteration. On one hand,| CSB2 566 899 1363 1989
methods that do not usein the weight update rule (CSBO c=2 c=2 c=2 C=2
and CSB1) have very poor performance. On the other, AdaC2 ng% . 01328 7 01133 . 023637
methods that try to be creative with respect to the selec—zaq4zc3 8_77' 1538' 1;13' 2543'
tion of «, but are not provably optimal (AdaC2, AdaC3, C=07 1| C=07 1| Cc=07 | Cc=07
and AdaCost), perform worse than simply using the procef AdaCost 1428 1987 2324 2997
dure originally proposed in AdaBoost (also used in CSB2) C=005]C=005] C=005] C=0.06

Nevertheless, because AdaBoost is not optimal in the cost-

sensitive sense, this is clearly inferior to asymmetricdboo

ing. AdaCost performs poorly, confirming the results reported
(Ting, 2000). As mentioned in (Ting, 2000), because

+ is non-increasing, the reward for correct classification

Boost). but still all d for the oth thods.  Despit is small when cost is high and vice versa. This is counter
aBoost), but still allowed for the other methods. Despi eintuitive, and could be the source of AdaCost's poor per-

the extra degree of freedom, none of the Igtter achleve Pt rmance. Finally, it should be mentioned that determining
formance comparable to that of asymmetric boosting. Note

that AdaBoost perf I Il cost fact butfail © in AdaC1 and AdaCost was especially problematic. In
atAdaboost periorms welltor small costiactors, bulall 545 sjtuations these algorithms are unstable, reglgate
when these are high. This was expected, since it is th

special case of asymmetric boosting with cost-ratid ,of u?;fég%?f:;:ﬂg'g: : g??etgl:r’tg(; (ej\lljeentg?sgg?gge m.
but may be the reason for previous reports of superior per-
formance by the other methods (when compared with Ad- .

aBoost). In terms of these methods, AdaC3 performs bette®. Conclusion
than AdaC2 at high cost factors, confirming the results of

In this work, we have presented a novel cost-sensitive
(Sun etal., 2005), and CSB2 outperforms CSB0 and CSB:I‘lt)oosting algorithm. This algorithm is based on the statisti

Table 1 presents results for the case where a threshoi
search in not performed for asymmetric boosting (or Ad-
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cal interpretation of boosting, and derived with recoutse t Freund, Y., & Schapire, R. (2004). A discussion of
an asymmetric extension of the logistic transform, which is “Process consistency for AdaBoost” by Wenxin Jiang,
well motivated from a decision theoretic point of view. The “On the Bayes-risk consistency of regularized boosting
statistical interpretation enables the derivation of agfi methods” by Gabor Lugosi and Nicolas Vayatis, “Statis-
pled asymmetric boosting loss which, similarly to the orig- tical behavior and consistency of classification methods
inal AdaBoost algorithm, is then minimized by gradient based on convex risk minimization” by Tong Zhawg-
descent in the functional space of convex combinations of nals of Statistics

weak learners. The resulting asymmetric boosting algo-_ . ) S -
rithm provides a proper combination of 1) Cost_sensitiveFrledman, J., Hastie, T., & Tibshirani, R. (2000). Additive

weight update rule, and 2) cost-sensitive method for find- |09IStic regression: A statistical view of boostingpur-
ing . nal of Annals of Statistics

Experimental evidence, derived from both a synthetic probGuo, H., & Viktor, H. L. (2004). Learning from imbal-

lem and the (timely) problem of face detection, was pre- anced data sets with boosting and data generation: the

sented in support of the cost-sensitive and large margin databoost-im approactsIGKDD Explor. News|.

lpropertles of asymmetric boosting. The performaqce of th?—iastie, Tibshirani, & Friedman (2001)The elements of

atter was also compared to those of various previous cost- statistical learning New York: Springer-Verlag Inc

sensitive boosting proposals (CSB0, CSB1, CSB2, AdaCl1, ’ '

AdaC2, AdaC3 and AdaCost), in the face detection probiiason, L., Baxter, J., Bartlett, P., & Frean, M. (2000).

lem. Asymmetric boosting was shown to consistently out- Boosting Algorithms as Gradient DesceNPS

perform all other methods, achieving the smallest misclas-

sification cost at all cost factors considered. Park, S.-B., Hwang, S., & Zhang, B.-T. (2003). Mining the
risk types of human papillomavirus (hpv) by adacdst.

Previous attempts at producing a cost sensitive boosting tarnational Conference on Database and expert Systems
algorithm have mostly relied on heuristic alterations of Applications

the AdaBoost algorithm, resulting in inconsistencies that

where shown to significantly degrade performance. AsymSchapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S.
metric boosting is derived from sound machine learning (1998). Boosting the margin: A new explanation for the
principles, eliminating these problems. Due to this, we effectiveness of voting methodBhe Annals of Statistics

believe that asymmetric boosting is a large margin cost-
sensitive boosting algorithm that will find use in many ar- Sun: Y., Wong, A. K. C., & Wang, Y. (2005). Parameter

eas of application of machine learning. We are currently nférence of cost-sensitive boosting algorithiachine
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