
Asymmetric Boosting

Hamed Masnadi-Shirazi HMASNADI @UCSD.EDU

Nuno Vasconcelos NUNO@UCSD.EDU

Statistical Visual Computing Laboratory,University of California San Diego, La Jolla, CA 92039 USA

Abstract
A cost-sensitive extension of boosting, denoted
as asymmetric boosting, is presented. Unlike
previous proposals, the new algorithm is derived
from sound decision-theoretic principles, which
exploit the statistical interpretation of boosting to
determine a principled extension of the boosting
loss. Similarly to AdaBoost, the cost-sensitive
extension minimizes this loss by gradient descent
on the functional space of convex combinations
of weak learners, and produces large margin de-
tectors. It is shown that asymmetric boosting is
fully compatible with AdaBoost, in the sense that
it becomes the latter when errors are weighted
equally. Experimental evidence is provided to
demonstrate the claims of cost-sensitivity and
large margin. The algorithm is also applied to
the computer vision problem of face detection,
where it is shown to outperform a number of pre-
vious heuristic proposals for cost-sensitive boost-
ing (AdaCost, CSB0, CSB1, CSB2, asymmetric-
AdaBoost, AdaC1, AdaC2 and AdaC3).

1. Introduction

Many classification problems, in areas of great practical
relevance for machine learning, are naturally cost sensitive.
One predominant example is that of detection problems,
such as object detection in computer vision (Viola & Jones,
2002), fraud detection (Viaene et al., 2004), or medical di-
agnosis (Park et al., 2003), where the targets to be detected
are rare. For all these problems, where the cost of missing
a target is much higher than that of a false-positive, clas-
sification algorithms which are optimal under symmetric
costs (such as the popular zero-one loss) tend be unsatis-
factory. The design of classifiers that are optimal for losses
that weigh certain types of errors more heavily than others
is denoted as cost-sensitive learning. Current research in

Appearing inProceedings of the24 th International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

this area falls into two main categories. The first attempts
to produce generic procedures for making any arbitrary al-
gorithm cost sensitive, by resorting to Bayes risk theory
or some other cost minimizing strategy (Zadrozny et al.,
2003) (Domingos, 1999), (Chawla et al., 2003) (Guo &
Viktor, 2004). The second attempts to extend particular
algorithms, so as to produce cost-sensitive generalizations.

One example is the popular AdaBoost algorithm, which
is not cost-sensitive but has achieved tremendous prac-
tical success in areas such as computer vision (Viola &
Jones, 2001). AdaBoost (Freund & Schapire, 1997) pro-
duces a strong classifier by combining a voted ensemble of
weak classification functions (weak learners). Each weak
learner consists of a prediction and a confidence value and
each point in the training set has an associated weight. At
each round, AdaBoost chooses the weak learner with the
smallest error, increases the weights of wrongly classified
training points and decreases the weights of correctly clas-
sified points. There are multiple interpretations for Ad-
aBoost, including those of a large margin method (Schapire
et al., 1998), a gradient descent procedure in the func-
tional space of convex combinations of weak learners (Ma-
son et al., 2000), and a method for step-wise logistic re-
gression (Friedman et al., 2000), among others (Freund &
Schapire, 2004). In this work, we build on a combination
of these interpretations to derive a sound cost-sensitive ex-
tension, which we denote byasymmetric boosting.

Various cost-sensitive extensions of boosting have been
previously proposed in the literature, including AdaCost
(Fan et al., 1999), CSB0, CSB1, CSB2 (Ting, 2000)
asymmetric-AdaBoost (Viola & Jones, 2002) and AdaC1,
AdaC2, AdaC3 (Sun et al., 2005). All of these algo-
rithms are heuristic in nature, attempting to achieve cost-
sensitivity by direct manipulation of the weights and con-
fidence parameters of AdaBoost. In most cases, it is not
clear if, or how, these manipulations modify the loss min-
imized by boosting, or even how they relate to any of the
different interpretations of boosting discussed above. We
rely on the statistical interpretation of boosting to derive
a natural cost-sensitive extension to the boosting loss and
show that, similarly to the latter, this loss can be minimized

Asymmetric Boosting

by gradient descent in functional space.

We then derive the asymmetric extension of AdaBoost, and
show that, like the original, it is a margin maximization
method, which increases the margin of the detector even
after the training error is exhausted. The only difference
is that the margins are now unbalanced, reflecting the cost
structure assigned to the different error types by the asym-
metric loss function. We present a thorough experimen-
tal evaluation on the face detection problem, demonstrat-
ing that the new asymmetric boosting algorithm does in-
deed possess cost sensitive characteristics, and can meet
a target detection rate without any form of (sub-optimal)
weight tweaking. Finally, asymmetric boosting is shown to
outperform the previously proposed cost-sensitive boosting
methods, consistently achieving the smallest cost in various
experiments.

2. AdaBoost and Cost Sensitive Extensions

We start by briefly reviewing the AdaBoost algorithm and
previously proposed cost sensitive extensions.

2.1. AdaBoost

AdaBoost can be derived under a loss minimization frame-
work (Hastie et al., 2001), with the goal of producing a
decision rule of the form

fT (x) =

T
∑

m=1

αmGm(x), (1)

where {αm}T
m=1 and {Gm(x)}T

m=1 is a sequence of
weak learners usually implemented with a decision stump
(threshold of the projection ofx along the direction of a
featureφm). This is accomplished through gradient de-
scent, on the functional spaceS of convex combinations of
weak learners, with respect to the exponential loss function

L =

n
∑

i=1

exp(−yifT (xi)) (2)

where{xi}n
i=1 is a set of training examples and{yi}n

i=1 the
associated sequence of class labels (yi ∈ {1,−1}). Given
α the gradient direction at themth iteration is

Gm(x) = arg min
G

N
∑

i=1

w
(m)
i exp (−yiαG(x)) (3)

where
w

(m+1)
i = w

(m)
i e−yiαmGm(xi). (4)

The gradientGm(x) can be computed, independently ofα,
with

Gm(x) = arg min
G

N
∑

i=1

w
(m)
i I(yi 6= G(x)) (5)

and the optimal step is found through a line search along
directionGm(x), which can be computed in closed-form
by

α =
1

2
log

(

1 − err(m)

err(m)

)

, (6)

whereerr(m) is the total error for themth feature. An
examplex is classified as a positive (y = 1) if fT (x) > 0
and negative otherwise.

2.2. AdaCost

AdaCost (Fan et al., 1999) is a cost sensitive extension of
AdaBoost that incorporates a cost adjustment functionβδ

in the weight update rule and in the computation ofα. The
weight update rule is modified into

w
(m+1)
i = w

(m)
i e−yiαmGm(xi)βδ . (7)

andα is computed with

err(m) =

N
∑

i=1

w
(m)
i δ (8)

α =
1

2
log

(

1 + err(m)

1 − err(m)

)

(9)

whereδ = −1 if yi = Gm(xi) and δ = 1 otherwise.
Finally β+ = −0.5Ci + 0.5, andβ− = 0.5Ci + 0.5 where
Ci is the cost assigned to the misclassification of theith

example.

2.3. CSB0, CSB1 and CSB2

CSB0, CSB1, CSB2 (Ting, 2000) are cost sensitive exten-
sions of AdaBoost that only alter the weight update rule,
relying on (6) for the computation ofα. Three different
cost structures, based on various simplifications of (4), are
considered. In CSB0 the modified weight update rule is

w
(m+1)
i = Cδ(i)w

(m)
i , (10)

whereC−(i) is the misclassification cost of theith example
andC+(i) = 1. In CSB1 the weight update rule becomes

w
(m+1)
i = Cδ(i)w

(m)
i e−yiGm(xi). (11)

Finally, CSB2 relies on

w
(m+1)
i = Cδ(i)w

(m)
i e−yiαmGm(xi), (12)

reducing to AdaBoost ifC−(i) = C+(i) = 1.

2.4. Asymmetric-AdaBoost

Asymmetric-AdaBoost (Viola & Jones, 2002) is another
cost sensitive extension of AdaBoost that only alters the

Asymmetric Boosting

weight update rule, again relying on (6) to computeα. The
main idea is to increase the weights of positive examples
and decrease the weights of negative examples after each
iteration. The modified weight update rule is

w
(m+1)
i = Cw

(m)
i e−yiαmGm(xi), (13)

whereC = (
√

K)(
1
N

) for positive examples andC =

(
√

K)(
−1
N

) for negative ones.K is the cost ratio andN
the number of weak learners. We have not considered this
method in our experiments due to its similarity with CSB2.

2.5. AdaC1, AdaC2 and AdaC3

AdaC1, AdaC2 and AdaC3 (Sun et al., 2005) are cost sen-
sitive extensions that alter both AdaBoost’s weight update
rule and formula forα. DefiningCi

.
= ci as the misclassi-

fication cost of theith example, the new weight update rule
for AdaC1 is

w
(m+1)
i =

w
(m)
i e−yiαmGm(xi)ci

Zt

. (14)

with

Zt =
N

∑

i=1

w
(m)
i e−yiαmGm(xi)ci

and

α =
1

2
log

1 +
∑

yi=Gm(xi)
ciw

(m)
i − ∑

yi 6=Gm(xi)
ciw

(m)
i

1 − ∑

yi=Gm(xi)
ciw

(m)
i +

∑

yi 6=Gm(xi)
ciw

(m)
i

.

In AdaC2 weights are updated according to

w
(m+1)
i =

ciw
(m)
i e−yiαmGm(xi)

Zt

, (15)

with

Zt =
N

∑

i=1

ciw
(m)
i e−yiαmGm(xi)

and

α =
1

2
log

∑

yi=Gm(xi)
ciw

(m)
i

∑

yi 6=Gm(xi)
ciw

(m)
i

.

Finally, AdaC3 relies on

w
(m+1)
i =

ciw
(m)
i e−yiαmGm(xi)ci

Zt

(16)

with

Zt =

N
∑

i=1

ciw
(m)
i e−yiαmGm(xi)ci

andα = 1
2 log A

B
, where

A=

N
∑

i=1

ciw
(m)
i +

∑

yi=Gm(xi)

c2
i w

(m)
i −

∑

yi 6=Gm(xi)

c2
i w

(m)
i

B=

N
∑

i=1

ciw
(m)
i −

∑

yi=Gm(xi)

c2
i w

(m)
i +

∑

yi 6=Gm(xi)

c2
i w

(m)
i .

While various justifications are given to motivate the dif-
ferent proposals for direct manipulation of the AdaBoost
equations, none of these are based on the derivation of an
optimal solution for the minimization of a cost sensitive
loss. To the best of our knowledge, no such derivation has
been previously presented in the literature.

3. Asymmetric Boosting

To derive the asymmetric boosting algorithm, we start by
recalling a statistical interpretation of boosting, first pro-
posed in (Friedman et al., 2000). This interpretation is
based on the facts that 1) the boosting lossL is an em-
pirical estimate of the costE[exp(−yf(x))], and 2) this
cost is minimized by the symmetric logistic transform of
P (y = 1|x),

f(x) =
1

2
log

P (y = 1|x)

P (y = −1|x)
. (17)

It follows that, from a statistical viewpoint, boosting can
be interpreted as a stage-wise procedure for fitting additive
logistic regression models.

The dependence of logistic regression on the log-odds ratio
of (17) follows from the fact that the Bayes decision rule
for the detection problem of interest is a threshold on the
latter. This, however, only holds for the “0-1” loss, i.e. the
loss that assigns equal costs to false-positives and misses.
For an asymmetric loss, with a cost ofC2 for false-positives
andC1 for misses, the parallel with the Bayes decision rule
requires an asymmetric logistic transform

fa(x) =
1

C1 + C2
log

P (y = 1|x)C1

P (y = −1|x)C2
.

This can be shown to minimize

E
[

I(y = 1)e−y.C1fa(x) + I(y = −1)e−y.C2fa(x)
]

,

(18)
suggesting an alternative, asymmetric, boosting loss

La =

n
∑

i=1

[I(yi = 1) exp(−C1yifT (xi)) (19)

+I(y1 = −1) exp(−C2yifT (xi))] .

Under the statistical interpretation, minimizing this loss is
equivalent to fitting the cost-sensitive logistic regression

Asymmetric Boosting

model associated with the loss function that assigns zero-
cost to correct decisions, costC1 to misses, and costC2 to
false positives. Minimizing (19) for a specific pair(C1, C2)
is, in general, different from heuristically tuning the thresh-
old on the rulefT (x) produced by symmetric boosting.
However, the general AdaBoost principle of minimizing a
loss by gradient descent on the space of convex combina-
tions of weak learners can be extended to the asymmetric
loss of (19).

In fact, by combining (19) with (1), and defining two sets

I+ = {i|yi = 1} I− = {i|yi = −1}, (20)

it follows that the gradient direction and step size which
minimize the asymmetric boosting loss at iterationm are

(αm, Gm(x)) = (21)

arg min
α,G

∑

i∈I+

w
(m)
i e−C1αG(xi) +

∑

i∈I
−

w
(m)
i eC2αG(xi)

with

w
(m+1)
i =

{

w
(m)
i e−C1αmGm(xi), i ∈ I+

w
(m)
i eC2αmGm(xi), i ∈ I−.

(22)

It can then be shown that, for a given step sizeα, the gra-
dient direction is

Gm(x) = arg min
G(x)

[

(eC1α − e−C1α) · b + e−C1αT+

+(eC2α − e−C2α) · d + e−C2αT−

]

(23)

and the optimal step size is the solution of

2C1 · b · cosh(C1α) + 2C2 · d · cosh(C2α) = (24)

C1 · T+ · e−C1α + C2 · T− · e−C2α

with

T+ =
∑

i∈I+

w
(m)
i (25)

T− =
∑

i∈I
−

w
(m)
i (26)

b =
∑

i∈I+

w
(m)
i I(yi 6= G(xi)) (27)

d =
∑

i∈I
−

w
(m)
i I(yi 6= G(xi)) (28)

The gradient descent iteration cycles through the weak
learners, for each, solving (24). This can be done efficiently
with standard scalar search procedures. In the experiments
reported in this paper, the optimalα was found in an av-
erage of6 iterations of bisection search. Givenα, the loss
associated with the weak learner can be computed, and the
optimal learner selected according to (23).

The complete asymmetric boosting algorithm is as follows:

• Given training set(x1, y1)....(xn, yn) where y ∈
{+1,−1} is the class label of examplex.

• Initialize weights to uniformwi = 1
2|I+| ,∀i ∈

I+, wi = 1
2|I

−
|∀i ∈ I−.

• Choose positive realC1, C2 values.

• Fort = 1,, T (WhereT is the total number of weak
learners.)

1. for eachj, train a weak learner/step-size pair
(Gj(x);αj) using current weightswi. The loss
at any classifier threshold is given by (23) with
α found by solving (24)

2. select the weak learner/step-size(Gm(x), αm) of
smallest loss.

3. update the weights according to (22).

• The final strong classifier implements the decision
ruleh(x) = sign[

∑T
m=1 αmGm(x)]

It is worth mentioning that the algorithm is fully compati-
ble with AdaBoost, in the sense that it reduces to the latter
whenC1 = C2 = 1.

4. Properties of Asymmetric Boosting

In this section we present two experiments that demonstrate
two important properties of asymmetric boosting: that it
1) is, indeed, cost sensitive, and 2) produces large-margin
classifiers.

4.1. Cost Sensitive Properties

To verify that asymmetric boosting produces cost sensitive
classifiers, and obtain some intuition about its advantages
over the existing techniques, we analyzed a simple syn-
thetic experiment. This consisted of a binary scalar classi-
fication problem, involving Gaussian classes of equal vari-
anceσ2 = 1 and meansµ− = −1 (y = −1) andµ+ = 1
(y = 1). We then sampled10K examples per class, sim-
ulating the scenario where the class probabilities are uni-
form. For this problem, the optimal (Bayes) decision rule
is to choose class1 if x is larger than the threshold

TBDR = −1

2
lnR (29)

whereR = L(0,1)
L(1,0) =

Loss of misclassifying class 1
Loss of misclassifying class 0. We

consider two cases,R = 20 andR = 5, for whichTBDR =
−1.4979 andTBDR = −0.8047, respectively.

Figure 1 presents the evolution of the threshold (decision
boundary) produced by the different cost sensitive boosting
algorithms, as a function of the boosting iteration. For all

Asymmetric Boosting

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Boosting Iteration

T
hr

es
ho

ld

AdaBoost
AdaC1,C=0.7
AdaC2,C=0.2
AdaC3,C=0.8
AdaCost,C=2
Asymmetric,C=4.5
CSB0,C=2
CSB1,C=2
CSB2,C=9.9
Bayes Rule

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Boosting Iteration

T
hr

es
ho

ld

AdaBoost
AdaC1,C=0.9
AdaC2,C=0.8
AdaC3,C=0.9
AdaCost,C=20
Asymmetric,C=4.7
CSB0,C=5
CSB1,C=3.5
CSB2,C=10
Bayes Rule

Figure 1.Decision boundaries produced by the different boosting algorithms forvarious cost factors. Left:R = 5, right: R = 20.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

#features

er
ro

r%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

margin

cu
m

ul
at

iv
e

di
st

ra
bu

tio
n

Train−Set
Test−Set

#Features=12
#Features=70

Figure 2.Error curves (top) and margin distribution graphs (bot-
tom) for Asymmetric Boosting(C1 = 2) on a face detection
problem.

algorithms, we have performed a (rather extensive) search
over the range of cost sensitivity parameters (e.g. the ra-
tio betweenC1 andC2 for asymmetric boosting), so as to
achieve the best possible performance after50 iterations.
Interestingly, this search did not produce good solutions for
most of the algorithms. We detected four classes of behav-
iors. Algorithms in the first class (AdaC1, AdaCost) stub-
bornly refused to produce any solution other than the cost-
insensitive threshold at0. This was also the solution pro-
duced by AdaBoost, a non-surprising fact given the lack of
cost sensitivity of the latter and the symmetry of the prob-
lem.

The second class consisted of algorithms (CSB0, AdaC2,
AdaC3) that never converged to any meaningful threshold.
For this problem, these algorithms did not work at all, in

either the cost-sensitive or cost-insensitive sense. The third
class consisted of algorithms (CSB1, CSB2) that showed
some tendency to converge to the right solution, but were
really not able to. While in some cases this was due to a
slow convergence rate, in others the algorithms seemed to
have converged only to start oscillating, or even diverging.
The final class consisted of asymmetric boosting alone.
This was the only method that consistently converged to
the correct solution in the allotted number of iterations. In
particular, asymmetric boosting produced an almost perfect
decision boundary ofTAsymmetric = −1.4993 for R = 20,
andTAsymmetric = −0.7352 for R = 5. This was accom-
plished in only two iterations whenR = 20 and four when
R = 5.

The most plausible explanation for the poor performance
of all other algorithms appears to be the inappropriate
choice of theα parameter: while the weight update rules
seemed to produce asymmetric weak learners, the incor-
rect choice ofα frequently gave disproportionate weight to
weak learners with poor thresholds. For example, in the
case of AdaC1, the first two weak learners have threshold
of 0.0152 and−0.9186 but the corresponding values ofα

are0.9056 and0.2404. Although the second threshold is
close to optimal (TBDR = −0.8047), the poor choice of
α = 0.2404 gives it little weight, much smaller than that
of the the first (α = 0.9056). This makes the overall deci-
sion boundary close to zero. Of all algorithms tested, only
CSB1 and CSB2 achieved performance comparable to that
of asymmetric boosting, even though the slowness of their
convergence in this simple problem appears problematic.

4.2. Large Margin Classifier Properties

One of the most important properties of boosting, viewed
by many as the reason for the robustness of the resulting

Asymmetric Boosting

classifiers, is that it tends to continue reducing the test error
even after perfect classification is reached on the training
set. Schapire et. al used this observation to show that Ad-
aBoost produces large margin classifiers (Schapire et al.,
1998), and therefore has good generalization properties.
We have applied the same procedure to investigate whether
asymmetric boosting maintains this large-margin property.
Using a training set of100 face images and100 nonface
images and a test set of1000 face images and1000 non-
face images, we trained asymmetric boosting (C1 = 2) for
200 iterations. Figure 4.1 (top plot) shows that, while the
training error is zero after only12 iterations, the test error
continues to decrease: from11.25% after 11 iterations to
9.55% after66. Figure 4.1 (lower plot) depicts the cumu-
lative distribution of the margins after both12 and70 itera-
tions. While after12 iterations the minimum margin of any
point is0.0088, its value increases to0.1517 after70 itera-
tions. This considerable increase in the margin is similar to
that observed for AdaBoost by Schapire et all, demonstrat-
ing that asymmetric boosting maintains the large margin
properties of the latter.

4.3. Choosing the Cost Parameters

For many cost-sensitive problems, the costsC1 andC2 are
naturally specified from domain knowledge. For example,
in a fraud detection application, prior experience dictates
that there is an average cost ofx dollars per false positive,
while a false negative (miss) will costy > x dollars, on
average. In this case, the costs are simply the valuesx and
y.

For problems where it is more natural to specify desired de-
tection or false-positive rates, the cost parametersC1 and
C2 can be determined with resort to the Neyman-Pearson
Lemma (Duda et al., 2001). For example, given a speci-
fication for a detection rateξ, the optimal cost structure is
the one such that

∫

D

P (x|y = 1)dx = ξ (30)

with

D =

{

x| P (y = 1|x)

P (y = −1|x)
>

C2

C1

}

.

Since the optimal decision rule is still the Bayes decision
rule, i.e. to decide for class1 if x ∈ D (and−1 otherwise),
this does not affect the discussion of Section 3. The only
difference is that, rather than specifying the costs, one has
to search for the costs that achieve the detection rate of (30).
This can be done by cross-validation (note that, because
one can always setC2 to the value of one, the search is
one-dimensional).

5. Evaluation

An important area of application of cost-sensitive learn-
ing is the problem of object detection in computer vision,
where boosting has recently emerged as the main tool for
the design of classifier cascades (Viola & Jones, 2001).
These are extremely efficient classifiers, that enable real-
time implementation of object detectors, with performance
that matches the best results previously available (for non-
real time implementation). Since a substantial amount of
effort has also been devoted to the design of evaluation pro-
tocols in areas like face detection, this is a good domain in
which to test cost-sensitive classifiers. We have adopted
the protocol of (Viola & Jones, 2001) to compare asym-
metric boosting to all previously discussed cost sensitive
boosting algorithms. All experiments used a face database
of 9832 positive and9832 negative examples, and weak
learners based on a combination of decision stumps and
Haar wavelet features.6K examples were used, per class,
for training, the remaining3832 being left for testing. All
boosting algorithms were allowed to run for100 iterations.

The evaluation of cost-sensitive classification requires a
classification metric that weighs some errors more than oth-
ers. A commonly used metric, which we adopt here, is

ǫ = p + f × m (31)

wherep is the number of false-positives of the detector,m

the number of misses1, andf > 1 a cost factor that weighs
misses more heavily than false positives. Four cost factors
(f = 10, 20, 50, 100) were considered, and the misclassi-
fication costǫ computed for each combination of 1) cost
sensitive boosting method, 2) training cost structure, and
3) cost factorf of the classification metricǫ.

By training cost structure we refer to the ratio between the
costs assigned to the different types of errors during train-
ing, e.g. the constantsC1 andC2 of asymmetric boosting,
C− andC+ of CSB, etc. For each method, we found the
range of values of this ratio that spans the operating range
achievable by the classifier. This is illustrated, in Figure3
a) for asymmetric boosting. The figure presents plots of the
cost metricǫ as a function of the cost factorf for various
training cost structures, obtained by settingC2 = 1 and let-
ting C1 take a number of values in the interval[1.2, 1000].
Note that detectors trained with larger values ofC1 perform
better under cost functions with largerf , while small ra-
tios lead to best performance whenǫ weighs the two errors
more equally. This confirms the cost-sensitive nature of
asymmetric boosting. Note, also, that the slope of the lines
ǫ(f) decreases monotonically withC1, saturating at some
point. The operating range of the classifier is the range of
slopes that it can achieve.

1A miss happens when a positive example is not detected.

Asymmetric Boosting

2 4 6 8 10 12 14 16 18 20

500

1000

1500

2000

2500

3000

f

ε

C1=1.2
C1=5
C1=10
C1=80
C1=400

10 20 30 40 50 60 70 80 90 100

1000

1500

2000

2500

3000

3500

4000

f

ε

Asymmetric
AdaBoost
CSB0
CSB1
CSB2
AdaC2
AdaC3
AdaCost

(a) (b)

Figure 3.(a) Misclassification cost for asymmetric boosting under different training cost structures. (b) Minimum misclassification cost
of various cost-sensitive boosting methods on a face detection problem.

Figure 3 b) presents a comparison of the best performance
achieved with each of the cost-sensitive boosting methods.
The plots were produced by 1) running each method with
four cost ratios, within the operating range of the resulting
classifiers, and 2) searching for the threshold that achieved
the minimum cost at each cost factorf . Because AdaBoost
does not have a cost parameter (it is equivalent to asymmet-
ric boosting withC1 = 1), it was only subject to a thresh-
old search. It is clear that asymmetric boosting consistently
outperforms all other techniques, for all values off .

These results also illustrate the importance of choosing the
confidenceα optimally, at each iteration. On one hand,
methods that do not useα in the weight update rule (CSB0
and CSB1) have very poor performance. On the other,
methods that try to be creative with respect to the selec-
tion of α, but are not provably optimal (AdaC2, AdaC3,
and AdaCost), perform worse than simply using the proce-
dure originally proposed in AdaBoost (also used in CSB2).
Nevertheless, because AdaBoost is not optimal in the cost-
sensitive sense, this is clearly inferior to asymmetric boost-
ing.

Table 1 presents results for the case where a threshold
search in not performed for asymmetric boosting (or Ad-
aBoost), but still allowed for the other methods. Despite
the extra degree of freedom, none of the latter achieve per-
formance comparable to that of asymmetric boosting. Note
that AdaBoost performs well for small cost factors, but fails
when these are high. This was expected, since it is the
special case of asymmetric boosting with cost-ratio of1,
but may be the reason for previous reports of superior per-
formance by the other methods (when compared with Ad-
aBoost). In terms of these methods, AdaC3 performs better
than AdaC2 at high cost factors, confirming the results of
(Sun et al., 2005), and CSB2 outperforms CSB0 and CSB1.

Table 1.Smallest misclassification costs and corresponding cost
ratioC for different methods, cost factors.

Method f = 2 f = 5 f = 10 f = 20
Asym 442 814 1259 1959

C = 1.2 C = 20 C = 20 C = 400
AdaBoost 445 877 1597 3037

C = 1 C = 1 C = 1 C = 1
CSB0 1136 1657 2271 2841

C = 3 C = 3 C = 3 C = 3
CSB1 1697 2304 2778 3181

C = 3 C = 3 C = 3 C = 3
CSB2 566 899 1363 1989

C = 2 C = 2 C = 2 C = 2
AdaC2 810 1220 1739 2264

C = 0.7 C = 0.7 C = 0.7 C = 0.7
AdaC3 877 1338 1713 2243

C = 0.7 C = 0.7 C = 0.7 C = 0.7
AdaCost 1428 1987 2324 2997

C = 0.05 C = 0.05 C = 0.05 C = 0.05

AdaCost performs poorly, confirming the results reported
in (Ting, 2000). As mentioned in (Ting, 2000), because
β+ is non-increasing, the reward for correct classification
is small when cost is high and vice versa. This is counter
intuitive, and could be the source of AdaCost’s poor per-
formance. Finally, it should be mentioned that determining
α in AdaC1 and AdaCost was especially problematic. In
various situations these algorithms are unstable, repeatedly
producing meaningless negative, or even imaginary,α val-
ues. AdaC1 results are not reported due to this problem.

6. Conclusion

In this work, we have presented a novel cost-sensitive
boosting algorithm. This algorithm is based on the statisti-

Asymmetric Boosting

cal interpretation of boosting, and derived with recourse to
an asymmetric extension of the logistic transform, which is
well motivated from a decision theoretic point of view. The
statistical interpretation enables the derivation of a princi-
pled asymmetric boosting loss which, similarly to the orig-
inal AdaBoost algorithm, is then minimized by gradient
descent in the functional space of convex combinations of
weak learners. The resulting asymmetric boosting algo-
rithm provides a proper combination of 1) cost-sensitive
weight update rule, and 2) cost-sensitive method for find-
ing α.

Experimental evidence, derived from both a synthetic prob-
lem and the (timely) problem of face detection, was pre-
sented in support of the cost-sensitive and large margin
properties of asymmetric boosting. The performance of the
latter was also compared to those of various previous cost-
sensitive boosting proposals (CSB0, CSB1, CSB2, AdaC1,
AdaC2, AdaC3 and AdaCost), in the face detection prob-
lem. Asymmetric boosting was shown to consistently out-
perform all other methods, achieving the smallest misclas-
sification cost at all cost factors considered.

Previous attempts at producing a cost sensitive boosting
algorithm have mostly relied on heuristic alterations of
the AdaBoost algorithm, resulting in inconsistencies that
where shown to significantly degrade performance. Asym-
metric boosting is derived from sound machine learning
principles, eliminating these problems. Due to this, we
believe that asymmetric boosting is a large margin cost-
sensitive boosting algorithm that will find use in many ar-
eas of application of machine learning. We are currently
pursuing its application to the design of optimal object de-
tection cascades, in computer vision.

References

Chawla, N. V., Lazarevie, A., Hall, L. O., & Bowyer, K.
(2003). Smoteboost: Improving prediction of the mi-
nority class in boosting.In Proceedings of Principles of
Knowledge Discovery in Databases.

Domingos, P. (1999). Metacost: a general method for mak-
ing classifiers cost-sensitive.Proceedings of the fifth
ACM SIGKDD. ACM Press.

Duda, R., Hart, P. E., & Stork, D. (2001).Pattern classifi-
cation. New York: Wiley and Sons.

Fan, W., Stolfo, S., Zhang, J., & Chan, P. (1999). Adacost:
Misclassification cost-sensitive boosting.ICML.

Freund, Y., & Schapire, R. (1997). A decision-theoretic
generalization of on-line learning and an application to
boosting.Journal of Computer and System Sciences, 55,
119–139.

Freund, Y., & Schapire, R. (2004). A discussion of
“Process consistency for AdaBoost” by Wenxin Jiang,
“On the Bayes-risk consistency of regularized boosting
methods” by Gabor Lugosi and Nicolas Vayatis, “Statis-
tical behavior and consistency of classification methods
based on convex risk minimization” by Tong Zhang.An-
nals of Statistics.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive
logistic regression: A statistical view of boosting.Jour-
nal of Annals of Statistics.

Guo, H., & Viktor, H. L. (2004). Learning from imbal-
anced data sets with boosting and data generation: the
databoost-im approach.SIGKDD Explor. Newsl.

Hastie, Tibshirani, & Friedman (2001).The elements of
statistical learning. New York: Springer-Verlag Inc.

Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000).
Boosting Algorithms as Gradient Descent.NIPS.

Park, S.-B., Hwang, S., & Zhang, B.-T. (2003). Mining the
risk types of human papillomavirus (hpv) by adacost.In-
ternational Conference on Database and expert Systems
Applications.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S.
(1998). Boosting the margin: A new explanation for the
effectiveness of voting methods.The Annals of Statistics.

Sun, Y., Wong, A. K. C., & Wang, Y. (2005). Parameter
inference of cost-sensitive boosting algorithms.Machine
Learning and Data Mining in Pattern Recognition,4th
International Conference.

Ting, K. M. (2000). A comparative study of cost-sensitive
boosting algorithms.ICML.

Viaene, S., Derrig, R. A., & Dedene, G. (2004). Cost-
sensitive learning and decision making for massachusetts
pip claim fraud data.International Journal of Intelligent
Systems.

Viola, P., & Jones, M. (2001). Robust real-time object de-
tection.Proc. 2nd Intl Workshop on Statistical and Com-
putational Theories of Vision Modeling, Learning, Com-
puting and Sampling. Vancouver, Canada.

Viola, P., & Jones, M. (2002). Fast and robust classifica-
tion using asymmetric adaboost and a detector cascade.
NIPS.

Zadrozny, B., Langford, J., & Abe, N. (2003). A sim-
ple method for cost-sensitive learning.Technical Report
RC22666, IBM.

