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Abstract

A new algorithm is proposed for background subtrac-
tion in highly dynamic scenes. Background subtraction is
equated to the dual problem of saliency detection: back-
ground points are those considered not salient by suit-
able comparison of object and background appearance
and dynamics. Drawing inspiration from biological vision,
saliency is defined locally, using center-surround computa-
tions that measure local feature contrast. A discriminant
formulation is adopted, where the saliency of a location is
the discriminant power of a set of features with respect to
the binary classification problem which opposes center to
surround. To account for both motion and appearance, and
achieve robustness to highly dynamic backgrounds, these
features are spatiotemporal patches, which are modeled as
dynamic textures. The resulting background subtraction al-
gorithm is fully unsupervised, requires no training stage to
learn background parameters, and depends only on the rel-
ative disparity of motion between the center and surround
regions. This makes it insensitive to camera motion. The
algorithm is tested on challenging video sequences, and
shown to outperform various state-of-the-art techniques for
background subtraction.

1. Introduction
Natural scenes are usually composed of several dynamic

entities. Objects of interest often move amidst complicated
backgrounds that are themselves moving, e.g. swaying
trees, moving water, waves and rain. Successful discrimi-
nation between the moving objects and the background mo-
tion presents a survival advantage, for example in terms
of being able to identify potential predators or prey. Not
surprisingly, biological visual systems have evolved to be
extremely efficient in this task. In computer vision, back-
ground subtraction is useful for diverse applications. Al-
gorithms that can produce reliable “figure-ground” seg-
mentation are used as a pre-processing step for object and
event detection, activity and gesture recognition, tracking,

surveillance and video retrieval. As an example, in robotic
path planning, an autonomous device could benefit from a
background subtraction module to simplify the task of iden-
tifying objects that approach it.

Unlike biological vision, background subtraction has
proven quite challenging for computer vision. After
decades of research on this problem (see [20] for a review),
there has been little progress in the development of methods
that are robust and generic enough to handle the complex-
ities of most natural dynamic scenes. For example, many
of the state-of-the-art techniques [8, 16, 22] assume a static
camera, and are unsuitable for video shot with hand-held
cameras or from moving platforms (as in the robot exam-
ple). The conventional approach to background subtraction
in the presence of ego-motion is to first explicitly [17], or
approximately [19], compensate for the camera motion, and
then rely on stationary camera background subtraction tech-
niques. Accurate compensation of ego-motion is, however,
cumbersome and can be quite difficult when the background
is itself dynamic.

Several popular methods also model the background ex-
plicitly, assuming a bootstrapping phase where the algo-
rithm is presented with frames containing only the back-
ground [16, 22, 25]. We refer to these techniques as im-
plicitly supervised, and to the initial phase as a training step
for learning background parameters. This training must be
repeated for each scene where the algorithms are deployed,
but training information may not always available, and the
background parameters may need to be continuously up-
dated if the scene is dynamic. This is, once again, cum-
bersome and can sometimes be technically challenging. A
further shortcoming is the use of several (often unjustified)
assumptions on the motion characteristics of the foreground
object. For instance, it is often assumed that the fore-
ground moves in a consistent direction (temporal persis-
tence) [2, 15, 24], with faster appearance changes than the
background [20]. Such assumptions are not always valid,
and are particularly questionable when there is egomotion
(e.g. a camera that tracks a moving object).

To address these limitations, we propose a novel
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paradigm for background subtraction. This paradigm is in-
spired by biological vision, where background subtraction
is inherent to the task of deploying visual attention. This can
be done in multiple ways but frequently relies on motion
saliency mechanisms, which identify regions of the visual
field where objects move differently from the background.
We equate background subtraction to the problem of de-
tecting salient motion, and propose a solution based on a
generic hypothesis for biological salience, which is referred
to as the discriminant center-surround hypothesis. Under
this hypothesis, bottom-up saliency is formulated as the re-
sult of optimal discrimination between center and surround
stimuli at each location of the visual field. Locations where
the discrimination between the two can be performed with
smallest expected probability of error are declared as most
salient. Background subtraction is then equivalent to simply
ignoring the locations declared as non-salient.

This strictly local approach to background subtraction
has various advantages over the traditional global proce-
dures. First, there is no need to train or maintain a global
model of the background. As the latter changes, so do the
surround windows at all locations of the visual field. Thus,
the local saliency measures are automatically adapted to
variations in the background, and there is no need to keep
track of, or update, a global model. Second, background
modeling is considerably simplified. While, globally, a dy-
namic background is rarely homogeneous (e.g. different
trees have different motion), the assumption of spatial ho-
mogeneity is usually accurate locally. This enables the use
of much simpler probabilistic models (e.g. unimodal distri-
butions vs. mixtures) which are easier to learn and update.
Third, because discriminant saliency compares the center
and surround regions, it depends only on the relative dis-
parity between their motion characteristics, and therefore is
invariant to camera motion. Finally, discriminant saliency
can be adapted to various problems by simply modifying
the features and probabilistic models used to discriminate
between center and surround. For example, motion features
can be complemented with depth measurements, if range
sensors are available, and different types of models can be
chosen to account for different background dynamics. In
this work, we choose dynamic texture [7] models, due to
their versatility in modeling complex moving patterns, abil-
ity to replicate the motion of natural scenes, and the rich
statistical formulations they lend themselves to.

Overall, the main contributions of this work are three-
fold. First, the proposed algorithm is completely unsuper-
vised and does not require initial training with ‘background-
only’ frames. In effect, it is a bottom-up approach that can
adapt to any situation. Second, due to its locally discrimi-
nant nature, the algorithm is insensitive to egomotion, and
applicable to video shot with moving cameras. Third, by
relying on dynamic textures as models for the video, it ac-

counts for joint saliency in motion and appearance in a prin-
cipled manner, and is robust enough to handle backgrounds
of complex dynamics. Experimental results on sequences
with such dynamics show that the proposed algorithm out-
performs the current state-of-the-art in background subtrac-
tion.

The paper is organized as follows. The discriminant
saliency architecture is presented in Section 2. Dynamic
texture models and their use in motion saliency are dis-
cussed in Section 3. Experimental evaluation and results
form Section 4.

2. Discriminant Center-Surround Saliency
We use local measurements of motion contrast as the

central source of information for the motion saliency de-
tector now proposed. To produce a quantitative mea-
sure of saliency we rely on the principle of discriminant
saliency [9, 10]. This is a generic saliency principle, ap-
plicable to a broad set of problems. For example, dif-
ferent specifications of its components have been used to
define top-down [9] and bottom-up saliency for static im-
ages [10]. Here we consider bottom-up motion saliency, us-
ing a center-surround architecture and motion models which
are suitable for dynamic scenes.

2.1. Mathematical Formulation

Discriminant saliency is defined with respect to two
classes of stimuli: the class of stimuli of interest, and the
background or null hypothesis, consisting of stimuli that
are not salient. The locations of the visual field that can
be classified, with lowest expected probability of error, as
containing stimuli of interest are denoted as salient. This is
accomplished by setting up a binary classification problem
which opposes the stimuli of interest to the null hypothe-
sis. The saliency of each location in the visual field is then
equated to the discriminant power (expected classification
error) of the visual features extracted from that location to
differentiate the two classes.

Formally, let V be a d dimensional dataset (d = 2 for
static images, d = 3 for video) indexed by location vector
l ∈ L ⊂ RD and consider the responses to visual stimuli
of a predefined set of features Y (e.g. raw pixel values, Ga-
bor or Fourier features), computed from V at all locations
l ∈ L. A classification problem opposing two classes, of
class label C(l) ∈ {0, 1}, is posed at location l. Two win-
dows are defined: a neighborhoodW1

l of l which is denoted
as center, and a surrounding annular window W0

l which is
denoted as the surround. The union of the two windows is
denoted the total window, Wl = W0

l ∪W1
l .

Let y be the vector of feature responses at location
j ∈ L. Features in the center are drawn from the class
of interest (or alternate hypothesis) C(l) = 1, with prob-



Figure 1. Illustration of discriminant center-surround saliency.

ability density p(y|1). Features in the surround are drawn
from the null hypothesis C(l) = 0, with probability density
p(y|0). An illustration of the classification problem involv-
ing center and surround for static images is shown in Figure
1. The saliency of location l, S(l), is the extent to which the
features Y can discriminate between center and surround.
This is quantified by the mutual information between fea-
tures, Y, and class label, C,

S(l) = Il(Y;C) =
∑

c

∫
p(y, c) log

p(y, c)
p(y)p(c)

dy. (1)

which can also be written as

S(l) =
∑

c

p(c)KL (p(y|c) ‖p(y) ) (2)

where KL (p ‖q ) represents the Kullback-Leibler diver-
gence between two densities p and q. This mutual informa-
tion is an approximation to the probability of correct clas-
sification (one minus the Bayes error rate) of the classifica-
tion problem [23]. Hence, a large S(l) implies that center
and surround have a large disparity of feature responses, i.e.
large local feature contrast.

2.2. Modeling spatio-temporal stimulus statistics

The discriminant saliency measure in (1) is defined in
a generic sense, and the does not depend on the type of
stimulus or feature set Y. In [11] it was shown that for
static saliency, under the common assumption of general-
ized Gaussian feature statistics [12], discriminant saliency
can be mapped into a biologically plausible neural archi-
tecture which replicates the computations of the standard
model of V1 [3]. In this work, we consider the problem
of motion saliency, showing that by using suitable models
of spatio-temporal stimulus statistics, the formulation can
compute saliency in highly dynamic scenes.

In particular, we adopt the dynamic texture (DT) model
of [7], due to its ability to account for spatial and temporal
characteristics of the visual stimulus in an elegant unified

stochastic framework. A DT is an autoregressive generative
model that represents the appearance of the stimulus yt ∈
Rm (the two-dimensional image stimulus is first converted
into a column vector of length m), observed at time t, as a
linear function of a hidden state process xt ∈ Rn subject
to Gaussian observation noise. The state and appearance
processes form a linear dynamical system (LDS)

xt = Axt−1 + vt

yt = Cxt + wt
(3)

where A ∈ Rn×n is the state transition matrix, C ∈
Rm×n the observation matrix, and vt ∼iid N (0,Q) and
wt ∼iid N (0,R) are Gaussian state and observation noise
processes, respectively. The initial condition is assumed to
be distributed as x1 ∼ N (µ1,S1), and the model is param-
eterized by Θ = (A,C,Q,R, µ1,S1). The hidden state
space sequence xt is a first order Markov chain that encodes
stimulus dynamics, while yt is a linear combination of pro-
totypical basis functions (the columns of C) and encodes
the appearance component of the stimulus at time t.

3. Background subtraction

In this work, background subtraction is formulated as the
complement of saliency detection. Recall that we define
saliency with respect to the expected probability of error of
the classification problem which opposes the stimulus at a
location to that in its surround. In particular, locations of
minimal saliency are those where the distinction between
stimulus and surround has lowest confidence. This pro-
vides a natural, objective, definition of background based
on strictly local computations: background points are those
of lowest center-surround saliency. We next present a back-
ground subtraction algorithm based on this definition.

We start with the estimation of the DT parameters Θ.
Given center and surround regions, they could in princi-
ple be learned by maximum likelihood (using expectation-
maximization [21], or N4SID [18]). However, due to the
high dimensionality of video sequences, these solutions are
too complex for motion saliency. A suboptimal alternative,
that works well in practice, is to learn the spatial and tem-
poral parameters separately [5, 7].

3.1. Probability Distributions

Using the learned model parameters, we can compute
probability distributions over the DT. Since the states of
a DT form a Markov process with Gaussian conditional
probability of xt given xt−1, and the initial state condi-
tions are Gaussian, the density of the state sequence, x1:τ =
[xT

1 . . .xT
τ ]T is also Gaussian [5]:

p(x1:τ ) = G(x1:τ , µ,Σ) (4)



where µ =
[

µT
1 · · · µT

τ

]T
and the covariance is

Σ =




S1 (AS1)T · · · (Aτ−1S1)T

AS1 S2 · · · (Aτ−2S2)T

...
...

. . .
...

Aτ−1S1 Aτ−2S2 · · · Sτ


 . (5)

Similarly, the image sequence y1:τ is distributed as

p(y1:τ ) = G(y1:τ , γ,Φ) (6)

where γ = Cµ and Φ = CΣCT + R, and C and R are
block diagonal matrices formed from C and R respectively:

C =




C 0 · · · 0
0 C · · · 0
...

...
. . .

...
0 0 · · · C


 ,R =




R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 · · · R


 .

For a given location l, the densities of (6) can be es-
timated from a collection of spatio-temporal patches ex-
tracted from the center and surround windows. The com-
putation of S(l), with (2), requires the evaluation of the KL
divergence between DTs. Let p0(y1:τ ) and p1(y1:τ ) be the
probabilities of a sequence of τ frames under two DTs pa-
rameterized by Θ0 and Θ1, respectively. For Gaussian p0

and p1, the KL divergence has the closed-form [6]:

KL (p0 ‖p1 ) (7)

=
1
2

[
log

|Φ1|
|Φ0| + tr

(
Φ−1

1 Φ0

)
+ ‖γ0 − γ1‖2Φ1

−mτ

]

where m is the number of pixels in each frame. Direct eval-
uation of the KL is computationally intractable, since the
expression depends on Φ0 and Φ1, which are very large co-
variance matrices. An efficient recursive procedure is, how-
ever, available [4].

3.2. Background subtraction algorithm

Background pixels are identified by computing the
saliency map S(l) at each location l. Center and surround
windows are centered at the location, and a collection of
spatio-temporal patches extracted from each window. DT
parameters are then learned, from the center, surround, and
total windows, to obtain the densities p(y1:τ |1), p(y1:τ |0)
and p(y1:τ ), respectively. S(l) is finally computed with (2),
using the efficient implementation of (7) given in [4]. The
procedure is summarized in Algorithm 1, and illustrated in
Figure 2. All locations whose saliency is below a threshold
are assigned to the background.

4. Experiments
To evaluate background subtraction performance, we

tested it on two sequences with object(s) of interest moving

in extremely dynamic backgrounds. The sequences were
collected from the Internet, and representative frames are
shown in panel (a) of Figures 3 - 4. In both cases, the
background is non-stationary and complex. Frames in Fig-
ure 3(a), depict two people skiing in a heavy snowfall, while
those of Figure 4(a) show a surfer riding a wave. The
lower frequency sweeping wave is interspersed with high
frequency components due to turbulent wakes (created by
the surfer, and crest of the sweeping wave) creating signifi-
cant challenges for background subtraction.

4.1. Comparison to previous methods

To compare the performance of the proposed algorithm
(denoted in short as DiscSal) with existing methods, we
selected four representatives of the current state of the art
in background subtraction - the modified Gaussian mixture
model (GMM) of [1, 25], the non-parametric kernel den-
sity estimator (KDE) of [8], the linear dynamical model of
Monnet et al. [16], and the “surprise” model proposed by Itti
and Baldi [13, 14]. The original implementation of Monnet
et al. [16] is not publicly available, and the algorithm re-
quires explicit training with background frames. Since no
training data was available for the sequences considered, we
implemented an adaptive version, where the auto-regressive
model parameters were estimated from the 20 frames pre-
ceding the location under consideration.

The sequences were converted to grayscale, and saliency
maps computed at subsampled locations of the video, using
a grid scaled down by a factor of 4 spatially and 2 tempo-
rally. At each grid location, the center window occupied
16 × 16 pixels and spanned 11 frames - 5 past frames , the
current frame and 5 frames in the future (nc = 16, τ = 11).
The surround window was, in both cases, set to six times the
size of the center. DTs with a 10-dimensional state space,
patch dimension np = 8, and temporal dimension τ = 11,
were learned using overlapping 8×8×11 patches from the
center and surround windows.

Saliency maps obtained with DiscSal, Surprise, KDE,
Monnet, and GMM are shown in panels (b)-(f), respec-
tively, of Figures 3-4. The proposed algorithms clearly out-
perform all other methods, detecting the foreground mo-
tion and almost entirely ignoring the complex moving back-
ground. For all other methods, foreground detection is very
noisy, and does not adapt well to the fast background dy-
namics, sometimes missing the foreground objects com-
pletely.
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Figure 2. Illustration of the center and surround windows for every location l in the video clip. Using conditional distributions learned
from the center and surround window, and the marginal distribution learned from the total window, the saliency measure S(l) is computed
using (2).

Algorithm 1 Computing Discriminant Center Surround Motion Saliency

1: Input: Given video V indexed by location vector l ∈ L ⊂ R3, state-space dimension n, center window size nc, patch size np,
temporal window τ .

2: for l ∈ L do
3: Identify center W1

l and surround W0
l .

4: list all overlapping patches {y1:τ} of size np × np × τ in W1
l and W0

l

5: Learn dynamic texture parameters for surround, center and total windows.
6: Compute the class conditional probability density for surround p(y1:τ |0) and center p(y1:τ |1) and marginal density p(y1:τ ) us-

ing (6).
7: Compute the mutual information, S(l), between class-conditional and marginal densities (2), using the efficient implementation

of (7) given in [4].
8: end for
9: Output: Saliency map for S(l), l ∈ L
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