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Abstract

A novel approach to scene categorization is proposed.

Similar to previous works of [11, 15, 3, 12], we introduce

an intermediate space, based on a low dimensional seman-

tic “theme” image representation. However, instead of

learning the themes in an unsupervised manner, they are

learned with weak supervision, from casual image anno-

tations. Each theme induces a probability density on the

space of low-level features, and images are represented as

vectors of posterior theme probabilities. This enables an

image to be associated with multiple themes, even when

there are no multiple associations in the training labels.

An implementation is presented and compared to various

existing algorithms, on benchmark datasets. It is shown

that the proposed low dimensional representation correlates

well with human scene understanding, and is able to learn

theme co-occurrences without explicit training. It is also

shown to outperform unsupervised latent-space methods,

with much smaller training complexity, and to achieve per-

formance close to the state of the art methods, which rely

on much higher-dimensional image representations. Finally

a study of the effect of dimensionality on the classification

performance is presented, indicating that the dimensional-

ity of theme space grows sub-linearly with the number of

scene categories.

1. Introduction

Scene classification is an important problem for com-

puter vision, and has received considerable attention in the

recent past. It differs from the conventional object detec-

tion/classification, to the extent that a scene is composed

of several entities often organized in an unpredictable lay-

out [15]. For a given scene, it is virtually impossible to de-

fine a set of properties that would be inclusive of all its pos-

sible visual manifestations. Frequently, images from two

different scene categories are visually similar, e.g., it can be

difficult to distinguish between scenes such as “Street” and

“City” (see Sec. 4).

Early efforts at scene classification targeted binary prob-

lems, such as distinguishing indoor from outdoor scenes

[18] etc. Subsequent research was inspired by the litera-

ture on human perception. In [1], it was shown that hu-

mans can recognize scenes by considering them in a “holis-

tic” manner, without recognizing individual objects. Draw-

ing inspiration from the perceptual literature, [14] proposed

a low dimensional representation of scenes, based on sev-

eral global properties such as “naturalness”, “openness”,

etc. More recently, there has been an effort to solve the

problem in greater generality, through design of techniques

capable of classifying relatively large number of scene cat-

egories [20, 11, 15, 10, 3, 12]. These methods tend to rely

on local region descriptors, modeling an image as an order

less collection of descriptors, commonly known as the “bag-

of-features”. The space of local region descriptors is then

quantized, based on some clustering mechanism, and the

mean vectors of these clusters, commonly known as “vis-

terms”1 are chosen as their representatives. The representa-

tion of an image in this quantized space, is referred to as the

“bag-of-visterms” representation. A set of cluster means, or

visterms, forms a “codebook”, and a scene is characterized

as a frequency vector over the visterms in the codebook [5].

This representation is motivated by the time-tested “bag-of-

words” model, widely used in text-retrieval [16]. The anal-

ogy between visual-words and text-words is also explored

in [17].

Lately, various extensions of this basic “bag-of-

visterms” model have been proposed [11, 15, 3, 12]. All

such methods aim to provide a compact lower dimen-

sional representation using some intermediate characteriza-

tion on a latent space, commonly known as the intermediate

“theme” or “topic” representation [11]. The rationale is that

images which share frequently co-occurring visterms have

similar representation in the latent space, even if they have

1In the literature the terms “textons”, “keypoints”, “visual-words”,

“visual-terms” or “visterms” have been used with approximately the same

meaning, i.e. mean vectors of the clusters in a high-dimensional space.
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no visterms in common. This leads to representations ro-

bust to the problems of polysemy - a single visterm may

represent different scene content, and synonymy - different

visterms may represent the same content [15]. It also helps

to remove the redundancy that may be present in the basic

“bag-of-visterms” model, and provides a semantically more

meaningful image representation. Moreover, a lower di-

mensional latent space speeds up computation: for example,

the time complexity of a Support Vector Machine (SVM) is

linear in the dimension of the feature space. Finally, it is un-

clear that the success of the basic “bag-of-visterms” model

would scale to very large problems, containing both large

image corpuses and a large number of scene categories. In

fact, this has been shown not to be the case in text-retrieval,

where it is now well established that a flat representation

is insufficient for large scale systems, and the use of inter-

mediate latent spaces leads to more robust solutions [8, 2].

However, a direct translation of these methods to computer

vision has always incurred a loss in performance, and latent

models have not yet been shown to be competitive with the

flat “bag-of-visterms” representation [12, 10].

In this paper we propose an alternative solution. Like

the latent model approaches, we introduce an intermediate

space, based on a low dimensional semantic “theme” rep-

resentation. However, instead of learning the themes in an

unsupervised manner, from the “bag-of-visterms” represen-

tation, the semantic themes are explicitly defined, and the

images are casually annotated with respect to their pres-

ence2. This can always be done since, in the absence of

“thematic” annotations, the “themes” can be made equal

to the class labels, which are always available. The num-

ber of semantic themes used defines the dimensionality of

the intermediate theme space, henceforth referred to as “se-

mantic space”. Each theme induces a probability density

on the space of low-level features, and the image is repre-

sented as the vector of posterior theme probabilities. An

implementation of this approach is presented and compared

to existing algorithms on benchmark datasets. It is shown

that the proposed low dimensional representation correlates

well with human scene understanding, captures theme co-

occurrences without explicit training, outperforms the un-

supervised latent-space approaches, and achieves perfor-

mance close to the state of the art, previously only acces-

sible with the flat “bag-of-visterms” representation, using a

much higher dimensional image representation.

2. Related Work

Low dimensional representations for scene classification

have been studied in [11, 15, 3, 12]. On one hand, it is no-

ticed that increasing the size of the codebook improves clas-

sification performance[13]. Csurka et al. [5] compare dif-

2Here, “casually” means that the image may only be annotated with a

subset of the themes that it actually contains.

ferent codebook sizes ranging from 100 to 2500 visterms,

showing that performance degrades monotonically as size

decreases. Quelhas et al. [15] also experience a monotonic

degradation of performance for 3-class classification, and

use a codebook of 1000 visterms. In [10], Lazebnik et al.

show that performance increases when codebook size is in-

creased from 200 to 400 visterms.

On the other hand, there is a strong desire for low dimen-

sional representations, for the benefits elucidated in Sec. 1.

This is achieved by resorting to techniques from the text-

processing literature, such as Latent Dirichlet Allocation

(LDA) [2], Probabilistic Latent Semantic Analysis (pLSA)

[8] etc, which produce an intermediate latent “theme” rep-

resentation. Fei-Fei et al. [11] motivate the use of interme-

diate representations, citing the use of “textons” in texture

retrieval. They then propose two variations of LDA to gen-

erate the intermediate theme representation. In [15], Quel-

has et al. use pLSA, to generate the compact representation.

They argue that pLSA has the dual ability to generate a ro-

bust, low dimensional scene representation, and to automat-

ically capture meaningful scene aspects or themes. pLSA is

also used by Bosch et al. in [3]. Another approach to two-

level representation based on the Maximization of Mutual

Information (MMI) is presented in [12]. However, a steep

drop in classification performance is often experienced as a

result of dimensionality reduction [12, 10].

3. Proposed Approach

A scene classification system can be broadly divided into

two modules. The first defines the image representation,

while the second delineates the classifier used for decision

making. Since the main goal of this work is to present a

low-dimensional semantic theme representation, we do not

duel on the choice of classifier, simply using an SVM. This

is the standard choice in the scene classification literature

[20, 13, 5]. To obtain the semantic theme representation, the

image is first represented as a bag of localized descriptors

on a space of low-level features, which is then mapped to

the space of semantic themes using machine learning tech-

niques. This is similar in principle to the two level image

representations of [11, 15, 3, 12].

3.1. Image Representation

We start by formalizing the image representation.

3.1.1 Low-level Representation

Consider a labeled image database D =
{(I1, s1), . . . , (ID, sd)} where images Ii are observa-

tions from a random variable X, defined on some feature

space X . Each image is represented as a set of n low-level

feature vectors I = {x1, . . . ,xn},xi ∈ X , which are

vectors of localized descriptors, assumed to be sampled
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Figure 1. Left) The proposed scene classification architecture. Right) Learning the semantic theme density from the set Dt of all training

images annotated with the t
th caption in L, using hierarchical estimation [4].

independently. This framework is common to the “bag-of-

visterms” representation, where each local descriptor xi is

further quantized into one of the visterms according to a

nearest neighbor rule [15]. Here, however, we do not rely

on such quantization. The image labels si is considered to

be an observation from a semantic scene category S defined

on {s1, . . . , sK}. Note that the label si is an indicator

vector such that si,j = 1 if the ith image is an observation

from the jth scene category.

3.1.2 Semantic Theme Representation

To represent images by semantic themes, the database D
is augmented with a vocabulary L = {t1, . . . , tL} of se-

mantic themes ti, and each image Ii with a pre-specified

caption ci, making D = {(I1, s1, c1), . . . , (ID, sD, cD)}.

Here ci is a binary L-dimensional vector such that ci,j = 1
if the ith image was annotated with the jth theme in L.

Themes are drawn from a random variable T , which takes

values in {t1, . . . , tL}. Each theme induces a probability

density {PX|T (x|ti)}
L
i=1 on X , from which feature vec-

tors are drawn. In general, themes are different from im-

age classes. For example, images in the “Street” class of

Figure 2 contain themes such as “road”, “sky”, “people”,

or “cars”. However, in the absence of “theme” annotations

in the training dataset, the set of semantic scene categories

{s1, . . . , sK}, e.g. “Street”, can serve as a proxy for the

theme vocabulary. In this case, each image is only explicitly

annotated with one “theme”, even though it may depict mul-

tiple: e.g. most images in the “Street” class of Fig. 2 also

depict “Buildings”. We refer to this limited type of scene

labeling as casual annotation. This is the annotation mode

for all results reported in this paper, to enable comparison to

previous scene classification work. We will see that super-

vised learning of the intermediate theme space with casual

annotations can be far superior to unsupervised learning of

a latent theme space, as previously proposed [11].

3.1.3 Scene Classification

Due to the limited information contained in casual anno-

tations, images cannot be simply represented by the cap-

tion vectors ci. In fact, ci is only available for training

images, and ci,j = 0 does not mean that the ith image

does not contain the jth theme, simply that it was not an-

notated with it. Instead, the proposed classification sys-

tem represents images by vectors of theme frequency, or

counts, I = (f1, . . . , fL)T . Each low level feature vector

extracted from an image is assumed to be sampled indepen-

dently from the probability distribution of a semantic theme,

and fi is the number of vectors drawn from the ith theme. In

this way, an image can be associated with multiple themes,

even when there are no multiple associations in the labels

used for training.

Formally, the count vector for the yth image is an obser-

vation from a multinomial variable T of parameters π
(y) =

(π
(y)
1 , . . . , π

(y)
L )T

PT|Y (I|y;π(y)) =
n!

∏L

k=1 fk!

L∏

j=1

(π
(y)
j )fj , (1)

where π
(y)
i is the probability that an image feature vector

is drawn from the ith theme. Note that this is a generic

representation which can be implemented in many different

ways. An implementation must simply specify a method to

estimate the parameters π = (π1, . . . , πL)T from the ca-

sually annotated training set. Each such vector π
(y) lies

on an L-dimensional probability simplex, SL, as shown in

Fig. 1(left), which is a semantic feature space (i.e. its di-

mensions have a semantic interpretation). The scene classi-

fier (e.g. SVM) then operates on this feature space. We next

describe an implementation compatible with this generic

framework.

3.2. Implementation Details

Although any semantic labeling system can be used to

learn the semantic theme densities, we adopt the weakly

supervised method of Carneiro et al. [4] as it is shown to

achieve better performance than a number of other state-of-

the-art methods available in the literature [7, 9]. The se-

mantic theme density PX|T (x|t) is learned for each theme

ti from the set Dt of all training images annotated with the

tth caption in L, using a hierarchical estimation procedure

first proposed in [19], for image indexing. This procedure is

itself composed of two steps as shown in Fig. 1(right). First,
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Figure 2. Some correctly classified images and their theme vectors, from 15-scene categories.

a Gaussian mixture is learned for each image in Dt, produc-

ing a sequence of mixture densities PX|S,T (x|s, t), where S

is a hidden variable that indicates the index of the image in

Dt. The second step is an extension of the EM algorithm,

which clusters the Gaussian components of each image into

a single mixture distribution, (see [4, 19] for details).

PX|T (x|t; Ωt) =
∑

j

β
j
tG(x, ν

j
t ,Φ

j
t ) (2)

It should be noted that the first step, learning of individual

mixtures for all images in the training set, has complexity

identical to that of learning a visterm codebook in the bag-

of-visterms representation. The second step is extremely ef-

ficient, and has negligible complexity when compared with

the first. This makes it much simpler than the unsupervised

approaches previously used to learn latent spaces (LDA,

pLSA, etc.), which frequently cannot be computed exactly

and require variational approximations or Monte Carlo sim-

ulation.

Given an image I = {x1, . . . ,xn}, the posterior theme

probabilities

πt = PT |X(t|I) (3)

are maximum a posteriori estimates of the parameters πi,

and can be computed by combining (2) and Bayes rule, (as-

suming a uniform prior concept distribution PT (t)), condi-

tioned on the fact that all xi are sampled independently.

4. Experimental evaluation

We now present an empirical evaluation of the proposed

model for two publicly available datasets, comparing per-

formance with [12, 3, 11, 10]. We also show that the theme

vectors capture the semantic characteristics of most images

in these datasets, and are efficiently able to learn theme co-

occurrences. Finally a study of classification accuracy as a

function of semantic space dimensions is presented.

4.1. Datasets

Scene classification results are presented on two public

datasets: 1) 15-natural scene categories [10] and 2) Corel

stock photos, used in [4] for image annotation comprising

of 50 scene categories. The 15-scene categories contains 13

categories that were used by [11, 3]. The use of the 15-scene

category dataset allow us to directly compare with the ex-

isting results on scene classification. In particular, we show

a comparison of our results using low-dimensional repre-

sentation with those of [12, 10, 11, 3]. The Corel dataset

has 100 high resolution images per category. To the best

of our knowledge, this is the database with maximum num-

ber of scene categories so far studied in the literature (viz.

50). Since the dimension of our semantic theme represen-

tation directly depends on the number of scene categories

(see Sec. 3.1.2), this dataset enables the study of the effects

of dimensionality as the number of categories grows.

4.2. Experimental Protocol

At the low level, images are represented as bags of

8×8 vectors of discrete cosine transform (DCT) coefficients

sampled on a uniform grid. The Corel dataset consists of

color images which are converted from RGB to YCrCb col-

orspace 3. The 15-scene categories, consist of grayscale im-

ages hence no such conversion is required. Semantic theme

densities are learned on a 36(out of 64) / 64(out of 192) di-

mensional subspace of the DCT coefficients for 15-scene

categories and Corel dataset respectively, with each theme

modeled as a mixture of 128 Gaussian components. The im-

ages at the semantic theme level are represented by 15 (50)

dimensional theme vectors for 15-scene categories (Corel

dataset). Later on, we also show that not all 50 themes are

equally informative on Corel. 100 (90) images per scene

are used to learn the theme density for 15-scene categories

3We also conducted experiments with the CIE lab colorspace and the

results are almost similar.
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Figure 3. Confusion Table for our method using 100 training im-

age and rest as test examples from each category of 15-scene cat-

egories. The average performance is 72.2% ± 0.2

(Corel Dataset), and the rest of the images are used as the

test set. All experiments on 15-scene categories are re-

peated 5 times with different randomly selected train and

test images. For Corel dataset, we use the same training

and test images as used in [4, 6]. A multi-class SVM using

one-vs-all strategy with Gaussian kernel is used for classifi-

cation, with the parameters obtained by 3-fold cross valida-

tion.

4.3. Results

We start by studying scene classification accuracy.

4.3.1 Scene classification

Fig. 2 shows some example images from the 15-scene cate-

gories, along with their semantic theme representation. All

images shown are actually classified correctly by the classi-

fier. Two interesting observations can be made: 1) semantic

theme vectors do capture the different semantic meanings

of the images, hence correlating well with human percep-

tion. For example, the theme vector shown for the scene

from the category “Forest” in Fig. 2(i), has large weights for

themes such as “forest”, “mountain” and “open-country”,

which are suitable themes for the scene, and 2) in many

examples (viz. Fig. 2(a)-(d),(g)), even though the seman-

tic theme corresponding to the same semantic scene cat-

egory does not have the highest probability, the scene is

still classified correctly. For example in Fig. 2(d), in spite

of the “street” theme having much lower probability than

“tall-building”, “inside-city”, “highway”, the image is clas-

sified as belonging to the “Street” category. This is a direct

consequence of the classifier learning associations between

themes, despite the casual nature of the annotations. Fig. 4

presents some of the misclassified images from the worst

performing scene categories, along with the scene category

they are classified into.

The confusion table for 15-scene categories is shown in

Fig. 3. The average classification accuracy, over all cate-

→ Kitchen
Bedroom (36%)

→ Office
Livingroom (55%)

→ Inside City
Street (66%)

→ Store
Kitchen (66%)

Figure 4. Some misclassified images from worst performing

scenes in 15-scene categories. (→) implies the category image

is classified into.

→ Trains
(b) Trains

→ Flowers
(c) Peru

→ Rural France
(d) Africa

→ Tropical Plants
(e) Birds

Figure 5. Some images from the Corel dataset. (→) implies the

category image is classified into.

gories is 72.2± 0.2%. On Corel, the classification accuracy

stands at 56.8%, the chance classification accuracy being

2%. Fig. 5 shows some of the images from various scene

categories of Corel dataset.

4.3.2 Comparison with existing work

Table. 1 compares classification accuracy of the proposed

method on 15-scene categories with existing results in the

literature. It is evident that when compared to the MMI

based dimensionality reduction of Liu et at. [12], which

achieves a rate of 63.32% using a 20 dimensional space,

the method performs substantially better, achieving a rate

of 72.2% on an even lower dimensional space of 15 themes.

Performance is equal to that of Lazebnik et al. [10]4, who

represent images as the basic “bag-of-visterms” model, us-

ing 200 visterms. A similar comparison on the thirteen sub-

categories of the dataset used in [11, 3] is also presented in

Table. 1.

4.3.3 Informative semantic themes

In all the experiments conducted above, scene categories

served as a proxy for the intermediate themes. This is a

practical approach to scene classification where the images

are devoid of other annotations. However, it might seem

that the extension of the current framework to very large-

scale problems involving thousands of categories, will an-

nul the benefits gained by the proposed representation, as

the dimension of the semantic space would grow with the

number of categories. The effects of varying the dimen-

sions of the semantic space on the classification accuracy is

4Note that the best results on this dataset, are obtained by incorporat-

ing spatial information, and representing images as histograms at different

spatial resolution, with Spatial Pyramid Matching [10]. The accuracy is

81.1%, with a 4200 dimensional feature space. However these extensions

are beyond the scope of current discussion.



Table 1. Classification Result for 15 and 13 scene categories.

Method Dataset Dimensions Accuracy

Our method 15 Cat. 15 72.2 ± 0.2

Liu et al. [12] ” 20 63.32

Liu et al. [12] ” 200 75.16

Lazebnik et al. [10] ” 200 72.2 ± 0.6

Our method 13 Cat. 13 72.7 ± 0.3

Bosch et al. [3] ” 25 73.4

Fei-Fei et al. [11] ” 40 65.2

Lazebnik et al. [10] ” 200 74.7
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Figure 6. Classification performance as a function of the semantic

space dimensions. Also shown, is the growth of the variance of

the semantic themes, scaled appropriately.

studied, on Corel dataset. Semantic spaces of k dimensions

were produced by ordering the semantic themes by the vari-

ance of their posterior probabilities, and selecting the k of

largest variance (for k ranging from 2 to 50). Classifica-

tion was performed on each of these resulting spaces and

Fig. 6 presents the performance as a function of the dimen-

sion. It can be observed that not all of the 50 dimensions

are equally informative, as moving from 40 to 50 dimen-

sions increases performance by only 3.8% (a relative gain

of 6.7%). This can be explained by the plot of variance of

the posterior probabilities for the 50 themes (in the same

figure). For very large scale problems, where most of the

variance is expected to be captured by a subset of the fea-

tures, the correlation of classification performance with the

variance of the themes indicates that the number of infor-

mative themes would grow sub-linearly as the number of

scene categories is increased. It is unclear that this type of

behavior will hold for the flat bag-of-visterms representa-

tions. In the works previously presented in the literature,

the codebook has linear size on the number of classes.

5. Discussion and Conclusion

The results presented above allow a number of conclu-

sions. While low dimensional semantic representations are

desirable for the reasons discussed in Section 1, previous

approaches based on latent-space models have failed to

match the performance of the flat bag-of-visterms model,

which has high dimensionality. We have shown that this

is indeed possible, with methods that have much lower

complexity than the latent-space approaches previously pro-

posed, but make better use of the available labeling informa-

tion. We have also shown that the proposed method extracts

meaningful semantic image descriptors, despite the casual

nature of the training annotations, and is able to learn co-

occurrences of semantic themes without explicit training for

these. Finally a study of the effect of dimensionality on the

classification performance was presented, and indicated that

the dimensionality would grow sub-linearly with the num-

ber of scene categories. This could be a significant advan-

tage over the flat bag-of-visterms models which, although

successful for the limited datasets in current use, will likely

not scale well when the class vocabulary increases.
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