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Abstract

In recent years, query-by-semantic-example (QBSE) has
become a popular approach to do content based image re-
trieval [20, 23, 18]. QBSE extends the well established
query-by-example retrieval paradigm to the semantic do-
main. While various authors have pointed out the benefits of
QBSE, there are still various open questions with respect to
this paradigm. These include a lack of precise understand-
ing of how the overall performance depends on various dif-
ferent parameters of the system. In this work, we present a
systematic experimental study of the QBSE framework. This
can be broadly divided into three categories. First, we ex-
amine the space of low-level visual features for its effects
on the retrieval performance. Second, we study the space
of learned semantic concepts, herein denoted as the “se-
mantic space”, and show that not all semantic concepts are
equally informative for retrieval. Finally, we present a study
of the intrinsic structure of the semantic space, by analyzing
the contextual relationships between semantic concepts and
show that this intrinsic structure is crucial for the perfor-
mance improvements.

1. Introduction

Content based image retrieval has been an active subject
of research over the last decades [5], when three different re-
trieval paradigms have gained popularity. In the early years,
the predominant paradigm was query-by-visual-example
(QBVE) [11, 25, 21, 22]. Under QBVE, each image is de-
composed into a number oflow-level visual features(e.g.
color, texture or shape histograms) and retrieval is based
on an example (query) image. One significant limitation of
this paradigm is that the similarity of low-level image de-
scriptors does not always correlate with human judgments
of similarity. This motivated the introduction of query-by-
keyword paradigm [1, 6, 2, 3]. Under this paradigm, users
specify their queries through a natural language description
of the desired concepts. Such a paradigm requires the im-
ages to be annotated with semantic keywords. Since manual

image annotation is a labor intensive process, research was
focused onsemantic labeling systems[1, 6, 2, 3]. The ad-
vantages of query-by-keyword lies in its ability to perform
retrieval at a higher level of query abstraction. However, it
is limited by the size of the vocabulary of concepts which
the retrieval system is trained to recognize.

Realizing that the shortcomings and advantages of
QVBE and query-by-keyword are in many respects comple-
mentary, several authors have proposed their combination
which is rapidly gaining popularity [26, 27, 20, 24, 23, 18].
This combination extends the query-by-example paradigm
to the semantic domain, and can be formulated as a two
stage process. In the first stage, as is common in query-
by-keyword, images are fed to a semantic labeling sys-
tem which detects pre-defined semantic concepts. An im-
age is then represented as a vector of posterior concept
probabilities. These probabilities can be interpreted as
high-level semantic features, rendered by projection of the
image onto the abstract space of semantic concepts sup-
ported by the labeling system. This space is commonly re-
ferred to as the “semantic space” [24, 23] or the “model
space” [26, 16]. The second stage performs all classifica-
tion decisions on this higher-level semantic space, using the
query-by-example principle: the concept probability vec-
tor of the query image is used to find the database images
with concept distributions closest to that of the query. Us-
ing the terminology of [24], we refer to this framework as
“query-by-semantic-example” (QBSE) in the remainder of
this work.

While various authors have pointed out the benefits of
QBSE, there are still various open questions with respect to
this paradigm. These include a lack of precise understand-
ing of how the overall performance depends on the accuracy
of each of the stages, and how the performance improve-
ments are related to the structure of the intermediate seman-
tic space. In this work, we present the results of a systematic
experimental study of the performance of a QBSE system,
which addresses these questions. The experiments under-
taken can be broadly divided into three categories: studies
of how 1) the low-level visual space, and 2) the high-level
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semantic space affect the overall retrieval performance, and
3) a study of the intrinsic structure of the semantic space. To
analyze the impact of the low-level visual space, we have
built semantic spaces from various combinations of stan-
dard representations for color and texture. With regards to
color, we consider a number of colorspaces, viz. “YBR”
(luminance, normalized blue, normalized red), perceptually
uniform “LAB”, “HSV” (hue, saturation, luminance) and
“Y” (luminance only). In what concerns texture, we apply
a standard feature transformation (in this paper we use the
discrete cosine transform, although similar results were ob-
tained with wavelets) and vary the number of dimensions
in a coarse-to-fine manner. By varying the dimensionality
(adding more or less high-frequencies) it is possible to vary
the accuracy of the low-level visual representation, and ex-
amine its impact on the overall retrieval accuracy.

To analyze the impact of the high-level semantic space,
we then vary the dimensions of the latter, by gradually elim-
inating non-informative semantic features. We show that
the overall retrieval performance is directly proportional
to the number of informative dimensions of the semantic
space. Finally, we characterize the intrinsic structure ofthis
space, by analyzing contextual relationships between con-
cepts. We also show that these relationships play a crucial
role in the retrieval operation. This is further substantiated
by building a semantic space devoid of any (meaningful)
structure, which is shown to obliterate the benefits (in re-
trieval accuracy) of QBSE over QBVE.

The paper is organized as follows. Section 2 discusses
the related work on semantic spaces and QBSE. In Sec-
tion 3, we review implementations of QBVE [28] and
query-by-keyword [3], based on the minimum probability
of error (MPE) formulation of image retrieval [28]. This
MPE formulation has also been successfully applied to
QBSE [23], which we review in Section 4. An extensive ex-
perimental study of the performance of QBSE is presented
in Section 5. Finally, we present conclusions, and some
ideas for future research in Section 6.

2. Related Work

The idea of representing documents on semantic spaces
is commonly used in information retrieval [8]. In im-
age retrieval, earliest efforts on building semantic spaces
were based on semantic information extracted from meta-
data [12]. Later on, semantic spaces were also constructed
with resort to active learning, based on user relevance feed-
back [9, 17]. However, it is not always clear how the learned
semantic information could be combined with the visual
search at the core of the retrieval system.

A solution to this was pioneered by Smith et al. [26] by
extending query-by-example to the semantic domain. This
was done by learning a semantic space, by learning a sep-
arate statistical model for each concept, and performing

Figure 1. An image and its associated semantic representation.
Note that, while most of the concepts of largest probability are
present in the image, significant probability is also assigned to
“bridge” and “arch”. This is due to the presence of a geometric
structure similar to that of “bridge” and “arch”, shown on the im-
age close-up.

query-by-example in the space of resulting semantic con-
cepts. They later extended QBSE to perform retrieval on
video databases in [27, 20]. A semantic space representa-
tion of images was also used by Lu et al. in [16] to perform
automatic image annotation, rather than image retrieval. A
QBSE system based on the semantic labeling algorithm
of [3] was presented in [24]. The authors highlight the
superiority of QBSE over QBVE on benchmark datasets.
In [23], the authors showed that this superiority also holds
outside the space of learned semantic concepts, using mul-
tiple image queries. Another approach to QBSE, using the
semantic labeling system of [19], is presented in [18].

Although laying the foundations for QBSE, these previ-
ous works lack a systematic study of the QBSE paradigm.
In this work, using the QBSE implementation of [23], we
address this problem by studying some of the parameters
that affect the performance of a QBSE system. In particu-
lar, we examine the dependence of the retrieval performance
on both the low-level visual space and the high-level seman-
tic space. We also characterize the intrinsic structure of the
semantic space, by analyzing the contextual relationships
between the semantic concepts. We use the implementation
of [23], because it allows the control of various parame-
ters of the system, for example, the dimensions of the two
spaces, in a systematic and fine-grained manner.

3. Minimum probability of error retrieval

The retrieval architecture adopted for the implementa-
tion of all retrieval strategies discussed in this work is that
of minimum probability of error (MPE) retrieval [28]. We
adopt this architecture as it has been shown to perform
well in all retrieval contexts discussed herein: QBVE [28],
query-by-keyword [3] and QBSE [23]. Moreover, it is also
conducive to the examination of various relevant parame-
ters of a QBSE system. We start by briefly reviewing this
architecture.



3.1. Visual-level retrieval system

Under the MPE framework, images are characterized as
observations from a random variableX, defined on some
visual feature spaceX . The starting point for an image re-
trieval system is an image databaseD = {I1, . . . , ID}. In
the absence of any labels, each image is considered an ob-
servation from a different class. The class is determined by
a random variableY defined on{1, . . . ,D}. Given a query
imageIq, the MPE decision rule for retrieval is to assign it
to the class of largest posterior probability, i.e.

y∗ = arg max
y

PY |X(y|Iq). (1)

At the visual level, each image is represented as a set of
n feature vectorsI = {x1, . . . ,xn},xi ∈ X . It is as-
sumed that the feature vectors which compose any image
I are sampled independently.

PX|Y (I|y) =
∏

j

PX|Y(xj |y). (2)

Although any type of visual features are acceptable, we only
considerlocalized features, i.e., features of limited spatial
support.

In this work, the distributionsPX|Y (x|y) are modeled
as Gaussian mixtures. The parameters of the distributions
are learned from the training sample (then feature vectors
{x1, . . . ,xn} per image) using the well known expectation-
maximization (EM) algorithm.

Image retrieval is based on the mappingg : X →
{1, . . . ,D} of (1), implemented by combining (2) and
Bayes rule. Although any prior class distributionPY (i) can
be supported, we assume a uniform distribution. In the re-
mainder of this work we refer to the nearest-neighbor oper-
ation of (1), at the visual level, asquery-by-visual-example
(QBVE).

3.2. Semantic-level retrieval system

A semantic-level retrieval system augments the data-
base D with a vocabulary L = {w1, . . . , wL} of
semantic concepts or keywordswi, and each image
Ii with a pre-specified captionci, making D =
{(I1, c1), . . . , (ID, cD)}. Note that ci is a binary L-
dimensional vector such thatci,j = 1 if the ith image was
annotated with thejth keyword inL.

The database is said to be weakly labeled if the absence
of a keyword from captionci does not necessarily mean that
the associated concept is not present inIi. For example, an
image containing “sky” may not be explicitly labeled with
that keyword. This is usually the case in practical scenar-
ios, since each image is likely to be annotated with a small
caption that only identifies the semantics deemed as most
relevant to the labeler. We assume weak labeling through-
out this work.
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Figure 2. Under QBSE the user provides a query image, posterior
probabilities (given the image) are computed for all concepts, and
the image represented by the concept probability distribution.

Concepts are determined by the random variableW ,
which takes values in{1, . . . , L}, so thatW = i if and only
if x is a sample from the conceptwi. Each concept induces
a probability density{PX|W (x|i)}L

i=1
onX . At theseman-

tic level images are assumed to be independently sampled
from concept distributions,

PX|W (I|w) =
∏

j

PX|W(xj |w). (3)

For each conceptw, the semantic class densityPX|W (x|w)
is learned from the setDw of all training images labeled
with thewth label inL. In the implementation of [3], this
is based on ahierarchicalprocedure [29], which estimates
semantic class densities directly from the image densities
used for QBVE, in (2).

To support retrieval from the database using natural lan-
guage queries, the unlabeled images are first annotated with
the concepts of high posterior probability.

w∗ = arg max
w

PW |X(w|I). (4)

Given a query conceptwq, the optimal retrieval decision (in
the MPE sense) is then to select the image for whichwq has
the largest posterior annotation probability.

4. Query by Semantic Example

A QBSE retrieval system operates at the semantic level,
representing images by vectors of concept countsI =
(c1, . . . , cL)T . Each feature vector extracted from an image
is assumed to be sampled from the probability distribution
of a semantic class (concept), andci is the number of fea-
ture vectors drawn from theith concept. The count vector
for theyth image is drawn from a multinomial variableT
of parametersπy = (π1

y, . . . , πL
y )T

PT|Y (I|y;πy) =
n!

∏L

k=1
ck!

L∏

j=1

(πj
y)cj , (5)



whereπi
y is the probability that an image feature vector

is drawn from theith concept. Given an imageI =
{x1, . . . ,xn}, the posterior concept probabilities

πw = PW |X(w|I) (6)

are maximum a posteriori estimates of the parametersπi,
and can be computed by combining (3) and Bayes rule, as-
suming a uniform prior concept distributionPW (w).

The random variableT is the result of a feature trans-
formation from the space of visual featuresX to the L-
dimensional probability simplexSL. This mapping estab-
lishes a one-to-one correspondence between images and
points πy ∈ SL. We refer to the probability vectorπy

as thesemantic multinomial(SMN) that characterizes the
yth image. For example, in Fig. 1 this is a371-dimensional
vector.

The QBSE system, then performs a nearest neighbor op-
eration on the simplexSL, according to a similarity map-
pingf : SL → {1, . . . ,D} such that

f(π) = arg min
y

d(π,πy) (7)

whereπ is the query SMN,πy the SMN of theyth database
image, andd(·, ·) an appropriate dissimilarity function. In
this work, the dissimilarity between two SMNs,π andπ

′ is
measured using the Kullback-Leibler divergence, i.e.

d(π,π′) =

L∑

i=1

πi log
πi

π′
i

. (8)

This is the asymptotic limit of (1), whenY is uniformly
distributed. Similarity matching in semantic space is also
illustrated in Fig. 2, which depicts a query and the twoclos-
estdatabase matches.

The mapping of visual features to theL-dimensional
probability simplexSL can be seen as an abstract projec-
tion of the image onto asemantic spacewhere each concept
probability πw, w = 1, . . . , L can be thought of as ase-
mantic feature, as illustrated by Fig. 2. Features (semantic
concepts) that are not the part of semantic vocabulary de-
fine directions that are orthogonal to this semantic space.
Their projection onto the learned semantic simplex enables
QBSE to generalize beyond the known semantic concepts,
and hence achieves better performance evenoutside the se-
mantic space. This is exemplified by Fig. 8 where images of
‘construction’ (a concept absent from the semantic vocab-
ulary) are successfully retrieved from the database. In this
case, the projection of ‘construction’ images on the learned
semantic simplex assigns higher probabilities to (known)
concepts such as ‘people’, ‘buildings’, ‘streets’, ‘tables’ etc.
Since these are an effective alternative characterizationfor
the ‘construction’ concept, the retrieval operation succeeds.

Table 1. Retrieval and Query Database
Database Corel50 Corel15 Flickr18

Semantic Space Inside Outside Outside
Source Corel CDs Corel CDs flickr

# Retrieval Images 4500 1200 1440
# Query Images 500 300 360

# Classes 50 15 18

5. Experimental evaluation

In this section, we report on the experimental study of
the QBSE system. First, we examine the dependence of
retrieval performance on both the low-level visual and the
high-level semantic spaces. This is done by considering
two cases: 1) where the query and database images contain
semantic concepts known to the semantic labeling system,
and 2) where this is not true. We refer to the former asre-
trieval inside the semantic spaceand to the latter asretrieval
outside the semantic space. Next, we also present a study
of the structure of the semantic space, showing that it cap-
tures contextual relationships between semantic concepts.
This intrinsic structure is also shown to be essential for the
success of the overall retrieval operation. In all cases, per-
formance is measured with precision-recall (PR) curves and
mean average precision (MAP) [7].

5.1. Databases

The study of a QBSE system requires three databases:
a training database, used by the semantic labeling system
to learn concept probabilities, aretrieval database, from
which images are to be retrieved, and a database ofquery
images, which plays the role of test set. All experiments are
conducted on datasets used in [23]. Table 1 summarizes
the composition of the databases used. The retrieval data-
base ofCorel50is used as thetraining databaseto learn the
semantic space.

Note that the use of multiple-image queries has been
shown to outperform single-image queries in [23]. In this
work, we restrict our attention to single-image queries, as
the aim is not so much to maximize performance, but to
obtain a deeper understanding of the QBSE system.

5.2. Low-level visual space

In all experiments, images are normalized to a maximum
of 180 pixels on the longest side, keeping the aspect ratio
constant. To represent images at the low-level, they are con-
verted to various colorspaces, including various 3-channel
colorspaces (“YBR”, “HSV”, and “Lab”) and one single-
channel colorspace (“Y”, luminance only). Image observa-
tions are derived from8× 8 patches obtained with a sliding
window, moved in a raster-scan fashion. A feature trans-
formation is applied by computing the8 × 8 discrete co-
sine transform (DCT) coefficients per patch and color chan-
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Figure 3. PR curves achieved with different color spaces on the three retrieval databases. (a) Inside the semantic space (Corel50). (b,c)
Outside the semantic space (Corel15, Flickr18).

nel. These DCT coefficients are then ordered by decreas-
ing variance, producing a64 dimensional feature vector.
For 3-channel colorspaces, features from different channels
are interleaved, e.g., the “YBR” channels are interleaved
according to a “YBRYBR...” pattern. The parameters of
the semantic class mixture hierarchies are learned in a sub-
space of these DCT coefficients. We evaluate subspaces of
various dimensionalities, ranging from3 to 64 dimensions
per channel. Typically, low-dimensional subspaces capture
low-frequency information, producing a coarse image rep-
resentation. As the dimensionality increases, so does the
accuracy of the low-level visual representation. Overall,
this choice of features enables a number of possibilities for
color and texture representation: from perceptual to non-
perceptual color spaces, to texture only, in each case con-
trolling the amount of texture representation by varying the
subspace dimensionality.

5.2.1 Colorspace

Retrieval experiments were conducted with four different
colorspaces, viz. “YBR”, “LAB”, “HSV”, “Y”. Fig. 3
presents the PR curves obtained on different databases. In-
side the semantic space (Fig. 3(a)), the performance of 3-
channel colorspaces supersedes that of luminance only col-
orspace significantly. This indicates, that the color correla-
tions are a significant source of information for this data-
base. Among the different 3-channel colorspaces, “YBR”
performs better than the perceptually uniform “LAB” and
the cylindrical co-ordinate based “HSV” spaces. The MAP
scores for the three colorspaces are0.197, 0.152 and0.174
respectively, the chance performance stands at0.0200.

Outside the semantic space, the experiments reveal a
different behavior (Fig. 3(b)(c)). Interestingly, the perfor-
mance of the “Y” colorspace is only marginally lower than
those of the 3-channel colorspaces. That is, using just
the “texture” (“Y” colorspace) information, the retrieval
system performs as well as when color is also available
(“texture+color” representation with any of the “YBR”,
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Figure 5. MAP scores of QBSE for different dimensions of the
low-level visual space across all the databases.

“LAB”, and “HSV” colorspaces). This suggests that only
the learned “texture” correlations are informative for gen-
eralization with respect to previously unseen concepts. If
true, this assertion would imply that color features capture
information that, while characteristic of the images in data-
base, is not characteristic of the underlying concepts. This
could be due to the existence of certain global regularities
within each class in the database (e.g. most images taken at
certain times of the day or year) that create commonalities
of color distribution which, although artificial, are not easily
detected by visual inspection. It is an interesting assertion,
given the long history of research in color-based image re-
trieval. While further experiments will be required to reach
definitive conclusions, these results have lead us to adopt
the “YBR” colorspace in the remaining experiments. Fig. 4
shows a query and the corresponding retrieved images for
the ’YBR’ and ’Y’ colorspace.

5.2.2 Dimensionality of visual space

Since the visual representation is based on a subspace of the
192-dimensional space of DCT coefficients, it is possible
to control the accuracy of visual representation by simply
varying the dimension of this subspace. As the number of



Query Image Top 5 retrieved images using QBSE
Adventure Sailing

Figure 4. An example of a query and corresponding retrieved images from Corel15dataset. The first and the second row shows results
using “YBR” and “Y” colorspace respectively. This figure is best viewed in color.

visual features decreases, the performance of QBSE, tends
to degrade. Fig. 5 shows the MAP score as the subspace
dimension varies from8 to 192 for the interleaved “YBR”
colorspace. The performance across the three databases are
qualitatively similar, it increases rapidly from8 to 64 di-
mensions and then remains fairly stable over a large range
of dimensions. This suggests that 1) accuracy of low-level
visual space is an important parameter for retrieval, and 2)
the system is robust to the noise, introduced by the high fre-
quency components of the DCT features. We use the first
64 dimensions of the interleaved “YBR” colorspace for rest
of the experiments.

5.3. High-level Semantic space

We next study the dependence of QBSE performance on
the number of informative semantic dimensions. Assuming
that the dimensions of the learned semantic space are not
equally useful for retrieval, it should be possible to achieve
improved performance with feature selection. It should,
nevertheless, be noted that standard feature extraction tech-
niques, such as principal component analysis or latent se-
mantic indexing, do not preserve the semantic meaning of
the dimensions of the space. To avoid this problem, we in-
vestigated the benefits of feature selection by simply 1) or-
dering the semantic features by decreasing variance of their
posterior probabilities (over the retrieval database) and2)
selecting the topk, for values ofk ranging from4 to 371.

Fig 6 shows the MAP score obtained on the three data-
bases, as a function ofk. In each figure, the right vertical-
axis shows the percent of the variance (over the retrieval
database) explained by the topk features, as a function ofk.
It can be observed that retrieval performance improves pro-
portionally to the increase in the number of informative se-
mantic dimensions. This is explained by the fact that more
features enable a greater diversity of contextual correlations
between concepts, and the similarity judgments are more
robust. However, there is a saturation effect, i.e. not all371
semantic concepts are equally informative. In particular,
the MAP score saturated faster onFlickr18, Corel15than

Table 2. Semantic feature pairs with highest mutual information.
Feature Pair MI Feature Pair MI
’polar-bear’ 0.1949 ’sun-sunset’ 0.1684
’beach-sand’ 0.1579 ’stone-ruins’ 0.1566
’plane-jet’ 0.1297 ’leaf-flowers’ 0.1075
’sun-sea’ 0.0976 ’light-restaurant’ 0.0881
’sky-tree’ 0.0852 ’restaurant-tables’ 0.0832

’sunset-sea’ 0.0734 ’statue-pillar’ 0.0700
’sky-beach’ 0.0690 ’petals-leaf’ 0.0687

’sky-mountain’ 0.0583 ’tree-mountain’ 0.0568

onCorel50, as almost all the variability is explained by less
than100 concepts for the former while more than200 are
needed for the latter. However, unlike most learning prob-
lems, the inclusion of uninformative features does not seem
to degrade retrieval performance. We have, therefore, used
all semantic features in the remaining experiments.

5.4. Structure of the semantic space

In this section we demonstrate that 1) the labeling
process does seem to produce a space with semantic struc-
ture, and 2) this semantic structure is a necessary condition
for the success of QBSE.

5.4.1 Relationship between semantic features

To unveil some of the structure of the semantic space, we
analyzed the relationship between pairs of semantic fea-
tures, by measuring their mutual information (MI) [4]

I(w1;w2) =
∑

w2∈L

∑

w1∈L

p(w1, w2) log
p(w1, w2)

p(w1) p(w2)
, (9)

wherep(wi) is estimated from the posterior probability of
the semantic featurewi in a given set of SMNs. Since
MI is a measure of the statistical dependence between vari-
ables, it should be strong for pairs of concepts that are either
synonyms or frequently appear together in natural imagery.
Table 2 presents the most dependent concept pairs for the
SMNs in the retrieval dataset ofCorel15. Note that, even
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Figure 6. MAP scores for all the databases, as it varies with the dimensions of the semantic space. (a) Inside the semantic space (Corel50).
(b,c) Outside the semantic space (Corel15, Flickr18). Also shown are the % variance of the semantic dimensions, as it varies across the
respective retrieval database (on the right Y-axis).
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dataset. The mutual information of the top 30 concepts (sorted
according to their variance), is used to learn an embedding in a
two-dimensional space, by non-metric multidimensional scaling.
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Figure 8. Query from class ‘commercial construction’ and top
QBSE matches. Shown below each image are the semantic fea-
tures of highest posterior probability.

though none of the images in this set was used to train the
semantic space, all pairs consist of words which are, indeed,
semantically correlated. Fig.7 presents a visualization of the
semantic correlations amongst the top 30 concepts (selected
according to highest variance) inCorel15. To obtain this vi-
sualization, the mutual informations between concepts were
used to learn a two-dimensional embedding of the seman-
tic space, with non-metric multidimensional scaling [13].
These correlations show that the semantic space encodes

contextual relationships.
To further substantiate this claim, Fig 8 shows a query

image from the class ‘Commercial construction’ (Corel15).
Although the ‘construction’ concept is absent from the se-
mantic vocabulary, the top retrieved images are all in this
class. This illustrates how the QBSE system is effectively
able to rely on contextual correlations to retrieve semanti-
cally similar images. Analyzing the SMN’s of the query
and retrieved images, it is clear that the semantic featuresof
largest probability (shown below each image) include var-
ious words that are contextually related to the concept of
‘construction’. This shows that outside the semantic space,
retrieval success is purely due to the effectiveness of such
contextual relationships.

5.4.2 Meaningless semantic space

The fact that QBSE significantly outperforms QBVE both
inside and outside the semantic space is strong evidence
for the benefits of image retrieval on semantic spaces. To
study the benefits of the contextual structure of the semantic
space, QBSE was applied to ameaningless semantic space-
a semantic space without any contextual structure. This was
achieved by replicating the QBSE experiments with ran-
dom image groupings. That is, instead of a semantic space
composed of concepts like ‘sky’ (learned from images con-
taining sky), we created a semantic space of nameless con-
cepts learned from random collections of images. Fig. 9
compares (onCorel50) the PR obtained with QBSE on this
“meaningless semantic space”, with the previous results of
QBVE and QBSE. Although, as before, the classification
is performed on asemantic space(albeit meaningless), the
absence of true semantic structure leads to very poor QBSE
performance, even clearly inferior to that of QBVE. This
suggests that the gains previously observed for QBSE are
intrinsic to the semantic nature of the image representation,
and strengthens the claim that the contextual correlationsof
the underlying semantic space are the reason for its advan-
tages over QBVE.
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Figure 9. Comparison of precision-recall curve for the retrieval
results using meaningless semantic space to that of QBSE and
QBVE inside the semantic space (Corel50).

6. Conclusion

We have presented an extensive study of the QBSE im-
age retrieval framework. This study supports various con-
clusions. First, experiments on the low-level visual space,
reveal that 1) inside the semantic space colorspaces play
an important role in retrieval performance, with the “YBR”
color space achieving the best results, but 2) outside the se-
mantic space there are only small differences across col-
orspaces. Second, experiments on the high-level semantic
space, reveal that 1) semantic features are not all equally
informative for retrieval, and 2) the number of informative
features grows proportionally to the variance of the seman-
tic multinomials. Third, a study of the intrinsic structureof
the semantic space revealed the presence of contextual rela-
tionships between concepts, that seems to substantially im-
prove the robustness of similarity judgments. Finally, it was
shown that, in the absence of meaningful semantic struc-
ture, QBSE performs worse than QBVE.

It should be noted that our current implementation
does not incorporate spatial scene information, current evi-
dence [14] favoring integration of weak spatial information.
Furthermore, although our visual representations is based
on DCT features, the current success of scale invariant fea-
tures such as SIFT [15] warrants a preference for them. At
the semantic level, instead of using variance based feature
selection, more sophisticated feature extraction techniques
which conserve the semantic meaning of the space, such
as probabilistic latent semantic indexing [10], can also be
used. We intend to investigate these question in future work.
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