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Abstract image annotation is a labor intensive process, research was
focused orsemantic labeling systemd, 6, 2, 3]. The ad-

In recent years, query-by-semantic-example (QBSE) hasvantages of query-by-keyword lies in its ability to perform
become a popular approach to do content based image re-retrieval at a higher level of query abstraction. Howewuer, i
trieval [20, 23, 18]. QBSE extends the well established is limited by the size of the vocabulary of concepts which
query-by-example retrieval paradigm to the semantic do- the retrieval system is trained to recognize.
main. While various authors have pointed out the benefits of Realizing that the shortcomings and advantages of

QBSE, the_re are still vgrious open questions_ with respect to QVBE and query-by-keyword are in many respects comple-
this paradigm. These include a lack of precise understand- entary, several authors have proposed their combination
ing of how the overall performance depends on various dif- \\hich is rapidly gaining popularity [26, 27, 20, 24, 23, 18].
ferent parameters of the system. In this work, we present arhis combination extends the query-by-example paradigm
systematic experimental study of the QBSE framework. Thisg the semantic domain, and can be formulated as a two
can be broadly divided into three categories. First, we ex- stage process. In the first stage, as is common in query-
amine the space of low-level visual features for its effects by-keyword, images are fed to a semantic labeling sys-
on the retrieval performance. Second, we study the spacgem which detects pre-defined semantic concepts. An im-
of Iegrned semantic concepts, herein deno.ted as the “se—age is then represented as a vector of posterior concept
mantic space”, and show that not all semantic concepts are yropapilities.  These probabilities can be interpreted as
equally informative for retrieval. Finally, we present aidy high-level semantic featuregendered by projection of the
of the intrinsic structure of the semantic space, by anatyzi image onto the abstract space of semantic concepts sup-
the contextual relationships between semantic concejts an ported by the labeling system. This space is commonly re-
show that this intrinsic structure is crucial for the perfor  tarred to as the “semantic space” [24, 23] or the “model
mance improvements. space” [26, 16]. The second stage performs all classifica-
tion decisions on this higher-level semantic space, usiag t

. guery-by-example principle: the concept probability vec-

1. Introduction tor of the query image is used to find the database images

Content based image retrieval has been an active subjecyVith concept distributions closest to that of the query. Us-
of research over the last decades [5], when three diffeeentr N9 the terminology of [24], we refer to this framework as
trieval paradigms have gained popularity. In the earlygear ~duery-by-semantic-example” (QBSE) in the remainder of
the predominant paradigm was query-by-visual-example this work.

(QBVE) [11, 25, 21, 22]. Under QBVE, each image is de-  While various authors have pointed out the benefits of
composed into a number &dw-level visual featurege.g. QBSE, there are still various open questions with respect to
color, texture or shape histograms) and retrieval is basedthis paradigm. These include a lack of precise understand-
on an example (query) image. One significant limitation of ing of how the overall performance depends on the accuracy
this paradigm is that the similarity of low-level image de- of each of the stages, and how the performance improve-
scriptors does not always correlate with human judgmentsments are related to the structure of the intermediate seman
of similarity. This motivated the introduction of query-by tic space. In this work, we present the results of a systemati
keyword paradigm [1, 6, 2, 3]. Under this paradigm, users experimental study of the performance of a QBSE system,
specify their queries through a natural language deseripti  which addresses these questions. The experiments under-
of the desired concepts. Such a paradigm requires the imtaken can be broadly divided into three categories: studies
ages to be annotated with semantic keywords. Since manuabf how 1) the low-level visual space, and 2) the high-level



semantic space affect the overall retrieval performarnee, a
3) a study of the intrinsic structure of the semantic spaoe. T
analyze the impact of the low-level visual space, we have
built semantic spaces from various combinations of stan-
dard representations for color and texture. With regards to
color, we consider a number of colorspaces, viz. “YBR”
(luminance, normalized blue, normalized red), perceptual

uniform “LAB”, “HSV” (hue, saturation, luminance) and ™ anotations -
“Y” (luminance only). In what concerns texture, we apply Figure 1. An image and its associated semantic representation.
a standard feature transformation (in this paper we use theNote that, while most of the concepts of largest probability are
discrete cosine transform, although similar results were o  present in the image, significant probability is also assigned to
tained with wavelets) and vary the number of dimensions “bridge” and “arch”. This is due to the presence of a geometric
in a coarse-to-fine manner. By varying the dimensionality Structure similar to that of “bridge” and “arch”, shown on the im-
(adding more or less high-frequencies) it is possible tg var 29€ close-up.

the accuracy of the low-level visual representation, and ex

amine its impact on the overall retrieval accuracy. ] . )
To analyze the impact of the high-level semantic space, dUery-by-example in the space of resulting semantic con-

we then vary the dimensions of the latter, by gradually elim- C€PtS. They later extended QBSE to perform retrieval on
inating non-informative semantic features. We show that Video databases in [27, 20]. A semantic space representa-
the overall retrieval performance is directly proportibna tion of images was also used by Lu etal. in [16] to perform
to the number of informative dimensions of the semantic aUtomatic image annotation, rather than image retrieval. A
space. Finally, we characterize the intrinsic structurtiisf ~ @BSE system based on the semantic labeling algorithm
space, by analyzing contextual relationships between conOf [3] was presented in [24]. The authors highlight the
cepts. We also show that these relationships play a cruciaSUPeriority of QBSE over QBVE on benchmark datasets.
role in the retrieval operation. This is further substaetia M [23], the authors showed that this superiority also holds
by building a semantic space devoid of any (meaningful) quts@e the space of learned semantic concepts, using mul-
structure, which is shown to obliterate the benefits (in re- tiPle image queries. Another approach to QBSE, using the
trieval accuracy) of QBSE over QBVE. semantic labeling system of [19], is presented in [18].

The paper is organized as follows. Section 2 discusses Although laying the foundations for QBSE, these previ-
the related work on semantic spaces and QBSE. In Sec-0us works lack a systematic study of the QBSE paradigm.
tion 3, we review implementations of QBVE [28] and In this work, using the QBSE implementation of [23], we
query-by-keyword [3], based on the minimum probability address this problem by studying some of the parameters
of error (MPE) formulation of image retrieval [28]. This that affect the performance of a QBSE system. In particu-
MPE formulation has also been successfully applied to lar, we examine the dependence of the retrieval performance
QBSE [23], which we review in Section 4. An extensive ex- on both the low-level visual space and the high-level seman-
perimental study of the performance of QBSE is presentedtic space. We also characterize the intrinsic structurbef t
in Section 5. Finally, we present conclusions, and somesemantic space, by analyzing the contextual relationships

locomotivel

railroad
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probability
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ideas for future research in Section 6. between the semantic concepts. We use the implementation
of [23], because it allows the control of various parame-
2. Related Work ters of the system, for example, the dimensions of the two

i i i spaces, in a systematic and fine-grained manner.
The idea of representing documents on semantic spaces

is commonly used in information retrieval [8]. In im-

age retrieval, earliest efforts on building semantic space 3. Minimum probability of error retrieval

were based on semantic information extracted from meta-

data [12]. Later on, semantic spaces were also constructed The retrieval architecture adopted for the implementa-

with resort to active learning, based on user relevance feed tion of all retrieval strategies discussed in this work iatth

back[9, 17]. However, itis not always clear how the learned of minimum probability of error (MPE) retrieval [28]. We

semantic information could be combined with the visual adopt this architecture as it has been shown to perform

search at the core of the retrieval system. well in all retrieval contexts discussed herein: QBVE [28],
A solution to this was pioneered by Smith et al. [26] by query-by-keyword [3] and QBSE [23]. Moreover, it is also

extending query-by-example to the semantic domain. Thisconducive to the examination of various relevant parame-

was done by learning a semantic space, by learning a septers of a QBSE system. We start by briefly reviewing this

arate statistical model for each concept, and performingarchitecture.



3.1. Visual-level retrieval system

x — database
images

Under the MPE framework, images are characterized as Be
observations from a random variati¥e, defined on some
visual feature spac&’. The starting point for an image re-
trieval system is an image datab&3e= {Z;,...,Zp}. In
the absence of any labels, each image is considered an ob-
servation from a different class. The class is determined by
arandom variabl&” defined on{1, ..., D}. Given a query
imageZ,, the MPE decision rule for retrieval is to assign it
to the class of largest posterior probability, i.e.

o - query

y" = arg max Pyix(y|Zq)- @) Figure 2. Under QBSE the user provides a query image, posterior
] - ) robabilities (given the image) are computed for all concepts, and
At the visual level, each image is represented as a set the image represented by the concept probability distribution.
n feature vectorsZ = {xi,...,x,},x; € X. Itis as-
sumed that the feature vectors which compose any image

T are sampled independently. Concepts are determined by the random varidible

which takes values ifil, . .., L}, so thatiV = i if and only
Pxy(Zly) = H Px v (x;ly). ) if xisa s_gmple fr(_)m the congewg. Each concept induces
J a probability density Px|w (x|7) };=; on X'. At theseman-

) tic levelimages are assumed to be independently sampled
Although any type of visual features are acceptable, we onlyfrom concept distributions

considerlocalized featuresi.e., features of limited spatial

support. S Pxw (Z|w) = HPX\W(Xj|w)' ®)
In this work, the distributionsPx |y (x|y) are modeled ;

as Gaussian mixtures. The parameters of the distributions ) ]

are learned from the training sample (thdeature vectors ~ FOr €ach concept, the semantic class densif,y (x|w)

{x1,...,x,} perimage) using the well known expectation- IS learned from the seb,, of all training images labeled

maximization (EM) algorithm. with the w'h label in L. In the implementation of [3], this
Image retrieval is based on the mappigg: X — is based on &ierarchical procedure [29], which estimates

{1,...,D} of (1), implemented by combining (2) and Semantic class densities directly from the image densities

Bayes rule. Although any prior class distributiy (i) can used for QBVE, in (2). _

be supported, we assume a uniform distribution. In the re- ~ T0 Support retrieval from the database using natural lan-
mainder of this work we refer to the nearest-neighbor oper- 9uage queries, the unlabeled images are first annotated with
ation of (1), at the visual level, amiery-by-visual-example ~ the concepts of high posterior probability.

(QBVE). w* = arg max Py x (w|Z). 4)
3.2. Semantic-level retrieval system Given a query concepi,, the optimal retrieval decision (in
A semantic-level retrieval system augments the data-the MPE sense) is then to select the image for whigthas

base D with a vocabulary L = {w;,...,wp} of the largest posterior annotation probability.
semantic concepts or keywords;, and each image
7, with a pre-specified captionc;, making D = 4. Query by Semantic Example

{(Z1,¢1),...,(Zp,cp)}. Note thatc; is a binary L-
dimensional vector such thaf ; = 1 if the it" image was -
annotated with thg" keyword inZ representing images by vectors of concept couhts=
. T )
The database is said to be weakly labeled if the absence ¢l - - -»¢z)" - Each feature vector extracted from an image

of a keyword from caption; does not necessarily mean that is assumed .to be sampled from the probability distribution
the associated concept is not preseriinFor example, an  ©Of @ Semantic class (concept), ands the number of fea-

“Ah
image containing “sky” may not be explicitly labeled with ture vec}gr; drawp from thé concept.' The'count' vector
that keyword. This is usually the case in practical scenar- ©OF they™ image is drawn from a multinomial variable

A QBSE retrieval system operates at the semantic level,

— 1 LN\T
ios, since each image is likely to be annotated with a small Of Parametersr, = (m, ..., ;)
caption that only identifies the semantics deemed as most | I
i n j\Cj
relevgnt to the labeler. We assume weak labeling through- Pry(Zly;my) = —)—— H(”i) i (5)
out this work. [T= cx! j=1



where 7’ is the probability that an image feature vector Table 1. Retrieval and Query Database

: Y th : . | Database | Corel50 [ Corell5 | Flickrl8 |
is drawn from thei** concept. Given an imagé = Somantic Soace ide Sisds T Oieids
{x1,...,x,}, the posterior concept probabilities Sourcep CorelCDs | CorelCDs | 1T ok
# Retrieval Images 4500 1200 1440
=P z 6

mw = Pvx(w[T) ) #Query Images 500 300 360
are maximum a posteriori estimates of the parameteys # Classes 50 15 18
and can be computed by combining (3) and Bayes rule, as-
suming a uniform prior concept distributidPyy (w). 5. Experimental evaluation

The random variabld is the result of a feature trans-

formation from the space of visual featur@sto the L- In this section, we report on the experimental study of

dimensional probability simple$;. This mapping estab- the QBSE system. First, we examine the dependence of
lishes a one-to-one correspondence between images antetrieval performance on both the low-level visual and the
pointsw, € S;. We refer to the probability vector, high-level semantic spaces. This is done by considering
as thesemantic multinomia{SMN) that characterizes the two cases: 1) where the query and database images contain
y'" image. For example, in Fig. 1 this is3d1-dimensional semantic concepts known to the semantic labeling system,
vector. and 2) where this is not true. We refer to the formereas

The QBSE system, then performs a nearest neighbor opirieval inside the semantic spaaad to the latter a®trieval
eration on the simple§;, according to a similarity map- outside the semantic spaclext, we also present a study

ping f : S — {1,..., D} such that of the structure of the semantic space, showing that it cap-
tures contextual relationships between semantic concepts
f(m) = argmind(w, ) @) This intrinsic structure is also shown to be essential fer th

Y success of the overall retrieval operation. In all cases, pe

formance is measured with precision-recall (PR) curves and

h is th MN7r, the SMN of they'” dat e
wherer is the query SMNr, the SMN of they™ database mean average precision (MAP) [7].

image, andi(-, -) an appropriate dissimilarity function. In
this work, the dissimilarity between two SMNs,and~’ is 51. Databases
measured using the Kullback-Leibler divergence, i.e. o
The study of a QBSE system requires three databases:
, L i atraining databaseused by the semantic labeling system
d(m,7') = Zﬂi log vy ®) to learn concept probabilities, retrieval databasgfrom
=1 ! which images are to be retrieved, and a databasgiefy
This is the asymptotic limit of (1), whel is uniformly images which plays the role of test set. All experiments are

distributed. Similarity matching in semantic space is also conducted on datasets used in [23]. Table 1 summarizes
illustrated in Fig. 2, which depicts a query and the tlas- the composition of the databases used. The retrieval data-

estdatabase matches. base ofCorel50is used as th&raining databaseo learn the

The mapping of visual features to thedimensional semant|chspacrt]'-z. f multiole-i ies has b
probability simplexS;, can be seen as an abstract projec- Note that the use ° mu.tlp e-image queries has been
tion of the image onto aemantic spacehere each concept shown to outperform single-image queries in [23]. In this
probability 7, w = 1 L can be thought of as se- work, we restrict our attention to single-image queries, as

w s - AR

mantic featureas illustrated by Fig. 2. Features (semantic the aim s not so much to maximize performance, but to
concepts) that are not the part of semantic vocabulary de-Obtaln a deeper understanding of the QBSE system.
fine directions that are orthogonal to this semantic space.
Their projection onto the learned semantic simplex enables
QBSE to generalize beyond the known semantic concepts, In all experiments, images are normalized to a maximum
and hence achieves better performance exdside the se-  of 180 pixels on the longest side, keeping the aspect ratio
mantic spaceThis is exemplified by Fig. 8 where images of constant. To represent images at the low-level, they are con
‘construction’ (a concept absent from the semantic vocab- verted to various colorspaces, including various 3-chinne
ulary) are successfully retrieved from the database. k thi colorspaces (“YBR”, “HSV”, and “Lab”) and one single-
case, the projection of ‘construction’ images on the ledrne channel colorspace (“Y”, luminance only). Image observa-
semantic simplex assigns higher probabilities to (known) tions are derived fror§ x 8 patches obtained with a sliding
concepts such as ‘people’, ‘buildings’, ‘streets’, ‘tadiletc. window, moved in a raster-scan fashion. A feature trans-
Since these are an effective alternative characterizétion formation is applied by computing the x 8 discrete co-

the ‘construction’ concept, the retrieval operation secse sine transform (DCT) coefficients per patch and color chan-

5.2. Low-level visual space
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Figure 3. PR curves achieved with different color spaces on the tateeval databases. (a) Inside the semantic spaoe2(50. (b,c)
Outside the semantic spadeqrell5, Flickrl.

nel. These DCT coefficients are then ordered by decreas- 022

ing variance, producing 4 dimensional feature vector. 021

For 3-channel colorspaces, features from different channe e
are interleaved, e.g., the “YBR” channels are interleaved 0.9 *

according to a “YBRYBR...” pattern. The parameters of 018l
the semantic class mixture hierarchies are learned in a sub-
space of these DCT coefficients. We evaluate subspaces of
various dimensionalities, ranging frognto 64 dimensions

MAP

0.17F

0.161

0.15F

per channel. Typically, low-dimensional subspaces captur e ' T Corer0 o
. . . . [ =x=Corel

low-frequency information, producing a coarse image rep- o v - v - Flck1s

resentation. As the dimensionality increases, so does the 1% 16 32 48 64 80 96 112 128 144 160 176 102

Dimensions of low-level visual space

Figure 5. MAP scores of QBSE for different dimensions of the
low-level visual space across all the databases.

accuracy of the low-level visual representation. Overall,
this choice of features enables a number of possibilities fo
color and texture representation: from perceptual to non-
perceptual color spaces, to texture only, in each case con-

trolling the amount of texture representation by varying th “LAB”, and “HSV” colorspaces). This suggests that only

subspace dimensionality. the learned “texture” correlations are informative for gen
eralization with respect to previously unseen concepts. If
5.2.1 Colorspace true, this assertion would imply that color features cagtur

information that, while characteristic of the images inadat
Retrieval experiments were conducted with four different base, is not characteristic of the underiying conceptss Thi
colorspaces, viz. “YBR”, “LAB”, “HSV”, “Y". Fig. 3 could be due to the existence of certain global regularities
presents the PR curves obtained on different databases. Inwithin each class in the database (e.g. most images taken at
side the semantic space (Fig. 3(a)), the performance of 3ertain times of the day or year) that create commonalities
channel colorspaces supersedes that of luminance only colof color distribution which, although artificial, are notségt
orspace significantly. This indicates, that the color darre detected by visual inspection_ Itis an interesting asserti
tions are a Significant source of information for this data- given the |ong history of research in color-based image re-
base. Among the different 3-channel colorspaces, “YBR” trieval. While further experiments will be required to reach
performs better than the perceptually uniform “LAB” and definitive conclusions, these results have lead us to adopt
the cylindrical co-ordinate based “HSV” spaces. The MAP the “YBR” colorspace in the remaining experiments. Fig. 4

scores for the three colorspaces a7, 0.152 and0.174 shows a query and the corresponding retrieved images for
respectively, the chance performance standsiano. the "YBR’ and 'Y’ colorspace.

Outside the semantic space, the experiments reveal a
different behavior (Fig. 3(b)(c)). Interestingly, the foer
mance of the “Y” colorspace is only marginally lower than
those of the 3-channel colorspaces. That is, using justSince the visual representation is based on a subspace of the
the “texture” (“Y” colorspace) information, the retrieval 192-dimensional space of DCT coefficients, it is possible
system performs as well as when color is also availableto control the accuracy of visual representation by simply
(“texture+color” representation with any of the “YBR”, varying the dimension of this subspace. As the number of

5.2.2 Dimensionality of visual space



Query Image Top 5 retrieved images using QBSE
Adventure Sailing

Figure 4. An example of a query and corresponding retrieved imagesQGorell5dataset. The first and the second row shows results
using “YBR” and “Y” colorspace respectively. This figure is best welin color.

ble 2. Semantic feature pairs with highest mutual information.
Feature Pair Ml Feature Pair Ml
‘polar-bear’ | 0.1949 'sun-sunset’ 0.1684
'beach-sand’ | 0.1579 'stone-ruins’ 0.1566
‘plane-jet’ 0.1297 'leaf-flowers’ 0.1075
'sun-sea’ 0.0976 || ’light-restaurant’ | 0.0881

visual features decreases, the performance of QBSE, tendda
to degrade. Fig. 5 shows the MAP score as the subspace
dimension varies frons to 192 for the interleaved “YBR”

colorspace. The performance across the three databases are
qualitatively similar, it increases rapidly frogto 64 di-

mensions and then remains fairly stable over a large range Sky-tree’ 0.0852 [ restaurant-tables| 0.0832
of dimensions. This suggests that 1) accuracy of low-level sunset-sea’ | 0.0734 ‘Statue-pillar’ 0.0700
visual space is an important parameter for retrieval, and 2) ™ gky-heach” | 0.0690 petals-leaf’ 0.0687

the system is robust to the noise, introduced by the high fre- [“sky-mountain’ | 0.0583 | ‘tree-mountain’ | 0.0568
quency components of the DCT features. We use the first

64 dimensions of the interleaved “YBR” colorspace for rest

of the experiments. on Corel5Q as almost all the variability is explained by less

than100 concepts for the former while more thano0 are

needed for the latter. However, unlike most learning prob-

lems, the inclusion of uninformative features does not seem
We next study the dependence of QBSE performance onto degrade retrieval performance. We have, therefore, used

the number of informative semantic dimensions. Assuming all semantic features in the remaining experiments.

that the dimensions of the learned semantic space are not

equally useful for retrieval, it should be possible to aghie 5.4. Structure of the semantic space

improved performance with feature selection. It s_hould, In this section we demonstrate that 1) the labeling

ngvertheless, be nqteq that standard feature gxtracnbn te process does seem to produce a space with semantic struc-

mque_s,_such_ as principal component anaIyS|_s or Iate_nt Se'ture, and 2) this semantic structure is a necessary conditio

mant!c mde_xmg, do not preserve the_ semantm meaning Offor the success of QBSE.

the dimensions of the space. To avoid this problem, we in-

vestigated the benefits of feature selection by simply 1) or-

dering the semantic features by decreasing variance of thei>-4-1 Relationship between semantic features

posterior probabilities (over the retrieval database) 2nd o unveil some of the structure of the semantic space, we

selecting the to, for values ofk ranging fromd to 371. analyzed the relationship between pairs of semantic fea-
Fig 6 shows the MAP score obtained on the three data-tures, by measuring their mutual information (MI) [4]

bases, as a function &f In each figure, the right vertical- ( )

axis shows the percent of the variance (over the retrieval ) _ p(wy, w2

database) explained by the tbjfeatures, as a function &f T(wr;wz) = Z Z plwr, wa)log p(wr) p(ws)’ ©)

It can be observed that retrieval performance improves pro-

portionally to the increase in the number of informative se- wherep(w;) is estimated from the posterior probability of

mantic dimensions. This is explained by the fact that more the semantic feature; in a given set of SMNs. Since

features enable a greater diversity of contextual coioglat Ml is a measure of the statistical dependence between vari-

between concepts, and the similarity judgments are moreables, it should be strong for pairs of concepts that areeith

robust. However, there is a saturation effect, i.e. natall synonyms or frequently appear together in natural imagery.

semantic concepts are equally informative. In particular, Table 2 presents the most dependent concept pairs for the

the MAP score saturated faster Biickrl8, Corell5than SMNs in the retrieval dataset @orel15 Note that, even

5.3. High-level Semantic space

woEL w1 EL
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Figure 6. MAP scores for all the databases, as it varies with the dimensidhe semantic space. (a) Inside the semantic sgzarel60.
(b,c) Outside the semantic spacofell5, Flickrl§. Also shown are the % variance of the semantic dimensions, as it variessahe
respective retrieval database (on the right Y-axis).
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Figure 7. A visualization of the semantic correlationgOarel15
dataset. The mutual information of the top 30 concepts (sortedretrieval success is purely due to the effectiveness of such
according to their variance), is used to learn an embedding in acontextual relationships.

two-dimensional space, by non-metric multidimensional scaling.

QUERY
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.

0.038 people
0.033 buildings
0.031 post
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0.026 street
0.022 door

I e
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Figure 8. Query from class ‘commercial construction’ and top

QBSE matches. Shown below each image are the semantic fea

tures of highest posterior probability.

contextual relationships.

To further substantiate this claim, Fig 8 shows a query
image from the class ‘Commercial constructio@ofell15.
Although the ‘construction’ concept is absent from the se-
mantic vocabulary, the top retrieved images are all in this
class. This illustrates how the QBSE system is effectively
able to rely on contextual correlations to retrieve sermanti
cally similar images. Analyzing the SMN's of the query
and retrieved images, it is clear that the semantic featfres
largest probability (shown below each image) include var-
ious words that are contextually related to the concept of
‘construction’. This shows that outside the semantic space

5.4.2 Meaningless semantic space

The fact that QBSE significantly outperforms QBVE both
inside and outside the semantic space is strong evidence
for the benefits of image retrieval on semantic spaces. To
study the benefits of the contextual structure of the semanti
space, QBSE was applied toreeaningless semantic space

a semantic space without any contextual structure. This was
achieved by replicating the QBSE experiments with ran-
dom image groupings. That is, instead of a semantic space
composed of concepts like ‘sky’ (learned from images con-
taining sky), we created a semantic space of nameless con-
cepts learned from random collections of images. Fig. 9
compares (or€Corel50 the PR obtained with QBSE on this
“meaningless semantic space”, with the previous results of

though none of the images in this set was used to train theQBVE and QBSE. Although, as before, the classification
semantic space, all pairs consist of words which are, indeedis performed on @emantic spacélbeit meaningless), the
semantically correlated. Fig.7 presents a visualizatfoheo
semantic correlations amongst the top 30 concepts (sdlecte performance, even clearly inferior to that of QBVE. This
according to highest variance)@orel15 To obtain this vi-
sualization, the mutual informations between conceptgwer intrinsic to the semantic nature of the image represematio
used to learn a two-dimensional embedding of the seman-and strengthens the claim that the contextual correlatbns
tic space, with non-metric multidimensional scaling [13]. the underlying semantic space are the reason for its advan-
These correlations show that the semantic space encodetages over QBVE.

absence of true semantic structure leads to very poor QBSE

suggests that the gains previously observed for QBSE are
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Figure 9. Comparison of precision-recall curve for the retrieval
results using meaningless semantic space to that of QBSE and

QBVE inside the semantic spadgdrel50. [10]
) [11]

6. Conclusion
[12]

We have presented an extensive study of the QBSE im-
age retrieval framework. This study supports various con- [13]
clusions. First, experiments on the low-level visual space
reveal that 1) inside the semantic space colorspaces playi4]
an important role in retrieval performance, with the “YBR”
color space achieving the best results, but 2) outside the S€[15]
mantic space there are only small differences across col-
orspaces. Second, experiments on the high-level semanti¢Lé]
space, reveal that 1) semantic features are not all equally[ 17]
informative for retrieval, and 2) the number of informative
features grows proportionally to the variance of the seman-
tic multinomials. Third, a study of the intrinsic structure (18]
the semantic space revealed the presence of contextual reI:Tlg]
tionships between concepts, that seems to substantially im
prove the robustness of similarity judgments. Finally,isw
shown that, in the absence of meaningful semantic struc-[20]
ture, QBSE performs worse than QBVE.

It should be noted that our current implementation [21
does not incorporate spatial scene information, curreint ev
dence [14] favoring integration of weak spatial informatio

. . . 22]
Furthermore, although our visual representations is based
on DCT features, the current success of scale invariant fea-
tures such as SIFT [15] warrants a preference for them. At[23]
the semantic level, instead of using variance based feature
selection, more sophisticated feature extraction teclesiq |54
which conserve the semantic meaning of the space, such
as probabilistic latent semantic indexing [10], can also be [25]
used. We intend to investigate these question in future work
[26]
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