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ABSTRACT

We present the results of a systematic study ofchiatextual gain
hypothesigor image classification. This hypothesis relates the tradi-
tional strategy of direct visual classification (DVC), and an alterna-
tive strategy based on indirect contextual classification (ICC). DVC
is composed of classifiers that operate directly on pixel or feature
based image representations. ICC relies on DVC to label images 0 el X
with respect to a pre-defined set of contextual semantic features. Im-

age classification is then performed by a classifier that operates qflg 1. an image and its associated SMN (see Sec. 2.3). Note thate whil
the semantic space of these classifier outputs. The contextual gaifbst of the concepts of largest probability are present ifrtiage, the SMN
hypothesis states that, in this semantic space, it is possible to dassigns significant probability to “bridge” and “arch”. $tis due to the pres-
sign classifiers with better accuracy than those achievable with DVGnce of a geometric structure similar to that of “bridge” ancthe, shown

A framework for the systematic comparison of the DVC and ICccon the image close-up.

strategies is introduced, and an extensive comparison of the perfor-
mance of the two strategies is carried out. Its results strongly suggest
that the contextual gain hypothesis holds.

probability

The presence of thesentextual cue¢e.g. that locomotives are
usually on tracks and pull trains) increases the detection rate for the
Index Terms— Image analysis, image classification, contextualobject of interest. This is illustrated in Figure 1, where we present the

learning, semantic space, image retrieval. posterior probabilities of a locomotive image belonging to a number
of visual concept classes, according to a number of direct visual de
1. INTRODUCTION tectors trained on those classes. Although, posterior probability of

“bridge” is slightly higher than that of “locomotive”, due to the pres-

Image classification is an important problem for various areas of im&nce of an ‘arch-like structure in the locomotive's rooftop, a context-

age processing, including image and video retrieval, texture analysiSENsitive classifier could still assign the image to the “locomotive”
and the design of recognition or surveillance systems. While the la&{@SS by noting that the contextual cues “railroad”, and “train” also
decade has produced significant advances with respect to this pro2ve high posterior probability. We refer to this classification strat-
lem, the fundamental strategy for classifying images has not chang&®y asndirect contextual classificatioiCC), since classifiers oper-
significantly from what has been the norm for a number of decade&t€ N higher-levekontextual cuesvhich provide additional infor-
It consists of 1) identifying a number of visual classes of interest, 2jnation for the classification process.
designing a set of appearance based features such as image pixels, Indirect contextual classification has been previously studied by
edge responses, texture features etc, that are optimally discriminadthumber of authors[3, 4, 5, 6]. In [3], Wolf et. al. presents a con-
for those classes, 3) postulating a model for the classification of thogése review of various techniques employed to integrate contextual
features, and 4) relying on sophisticated mathematical tools to fit th&ues in the classification architecture. Inspite of these advances, the
to examples. We refer to this strategydisect visual classification ~fundamental questions of whether there is an intrinsic value to us-
(DVC), because the associated classifiers rely on image representfd ICC for image classification, remains poorly understood. More-
tions which are either direct visual appearance features or derjved toVver, the complexity of learning and inference in existing algorithms,
simple deterministic mappings of those features. makes it impractical t@ystematicallystudy relevant questions per-
While there is no question that DVC will retain a predominanttaining to ICC, for example the question of how classification per-
role in the future of image understanding, it is not as clear that it wilformance depends on richness of the set of contextual cues.
be sufficientto solve all classification problems. In fact, there is so In this work, we address the problem of whether there is a ben-
far little evidence that it can solve all but a small class of problemsfit in considering context for classification and presesystematic
(such as face detection) with accuracies comparable to those of study of ICC. For this, we introduce a framework for objective com-
ological vision. One striking property of the latter, at least in whatparison of the two - visual and contextual strategies. In particular, we
concerns humans, is that it rarely seems to ground decisions excladopt two image classification systems that, while simple, have been
sively on low-level visual features. This has been well documentedhown to perform well in image retrieval context. The firstis a DVC
in psychophysics, through unambiguous evidence that scene intesystem [7], which evaluates similarity in strict visual terms. The sec-
pretation depends arontext[1, 2]. By this, it is usually meant that ond is an ICC system [8], which evaluates similarity at the contex-
detection of an object of interest (e.g. a locomotive) is facilitated bytual level in two stages. First, in tleemantic labelingtage, a bank
the presence, in the scene, of other objects (e.g. railroad tracks of parallel andindependentirect visual classifiers are trained for
trains) which may not themselves be of interest. the detection of pre-specified semantic concepts. An image is thus



represented as the posterior concept probabilities, which constitut€iven a query imagé&,, the MPE decision rule is to assign it to the

a higher-level semantic spade which all classification decisions class of largest posterior probability, i.e.

are ultimately made. In the second stage, these posterior concept

probabilities are fed to a contextual classifier, that returns the data-

base images with closest concept posterior distribution to that of t%ZV
c

y* = arg max Py x (y|Zy). 3)

. - S e refer to the nearest-neighbor operation of (3) as the direct visual
query image. The two adopted systems are identical in all aspe 9 P 3)

Tassifier, in the remainder of this work.
of 1) visual representation, and 2) classification architecture, whic assifier, in the remainder of this wo
makes the difference in classification strategy the only explanation ) o
for the differences in performance. 2.3. Indirect Contextual Classification System

An extensive comparison of classification accuracy is performedrhe |CC system operates at the semantic level, representing images
on a diverse set of image databases. The results are very clearlyw vectors of concept couns = (c1,...,c.)”, wherec; is the
support of the hypothesis that there iz@ntextual gain The de-  number of feature vectors drawn from tH& semantic concept. The
pendence of this gain on a number of factors, includingabeu-  count vector for the*” image is drawn from a multinomial variable

racy of the underlying DVC architecturand thenumber of infor- T of parametersr,, = (nl,... 7T
mative semantic dimensigrare then systematically characterized. ) |
It is shown that the contextual gain increases with these two factors. nl L
Pry (Zly;my) (my), 4)

ot
|| EERC A ket

Wherew; is the probability that an image feature vector is drawn
In this section, we first introduce the image representation used &lom the :*" concept. We refer to the probability vectar, that
the visual and the contextual level, and then describe the DVC angharacterizes thg" image as theemantic multinomiglSMN), and
ICC architecture, compatible with the minimum probability of error the space of all SMN’s as tteemantic spagelenoted byS;.. In the

2. PROPOSED FRAMEWORK

(MPE) classification [7]. example of Fig. 1 this is &71-dimensional vector space.
The indirect contextual classifier, then performs a nearest neigh-
2.1. Image Representation bor operation on the spac®;,, according to a similarity mapping

. . . . i ) J:SL—>{1,...,D}suchthat
The starting point for all image classification systems is an imag

databas® = {Z,...,Zp}. Atthevisual-level images are obser- f(m) = arg max s(m, my) ®)
vations from a random variablX, defined on some visual feature Y

spaceY. Each image is considered an observation from a class, davherer is the query SMNzr,, the SMN of they*" database image,
termined by a random variablé. Animage is represented as a set of and s(-, -) an appropriate similarity function. We next describe, in
n feature vectord = {x1,...,X.},x; € X. Although any type of more detail, a method for estimating SMNs, and a similarity function
visual features are acceptable, we only considealized features  between them, which are compatible with the MPE decision rule.
i.e., features of limited spatial support, assumed to be sampled inde-

pendently. An image is thus represented as, 2.3.1. Semantic labeling system
Pxiy(Ily) = H Px v (x5]y). (1)  All SMNs =; are learned with a semantic labeling system, which is
j implemented by computing posterior concept probabilities given the

. L . . . r f r r
and a density estimation [9] procedure is used to estimate the dlstr?-bSe ved feature vectors

butionspx‘y(xkl/). Tw = Pw‘x(’w‘l-) (6)

At the semantic-level, the databage is augmented with a A semantic class densitix (x|w) is learned for each con-

vocabulary £ = e of semantic concepts or key- A .
words w yand eaéﬁﬁmagdy}ﬁith a captionc; makFi)ng D = y ceptw from the setD,, of all training images labeled with the*"
@ CI)Z,- e Nc;te thate, is a binazr’yL-dimensionaI label in£. This is based on kierarchical estimatiomprocedure [10],

which estimates semantic class densities directly from the image
densities used, for DVC, in (1). In this way, it is guaranteed that
both the visual representation and the visual classification architec-
ture used by the DVC and ICC systems are identical.

Given an imag€ = {xu,...,Xx»} the posterior concept prob-
Ghilities of (6) are computed by combining (2) and Bayes rule, as-
suming a uniform prior concept distributidPy- (w).

vector such that; ; = 1 if the i*" image was annotated with the
4" keyword in£. Concepts are drawn from a random varialile
which takes values i1, ..., L}, so thatW = ¢ if and only if x

is a sample from the concept;. Each concept induces a proba-
bility density { Px;w (x|i)}/=, on X, from which feature vectors
are drawn. Images are assumed to be independently sampled fr
concept distributions

Pxjw (Z|w) =[] Pxjw (x;]w), (2 2.3.2. Similarity function

! The similarity between SMNs and=’ is measured by the Kullback-

and the density estimation procedure used in (1) is also used to eslieibler divergence
mate the distribution®x jw (x|w). .
s 7r,7r' = KL(w||7) = 7 lo E. 7
2.2. Direct Visual Classification System xr{ ) (i) ; & e ")
The DVC system operates at the visual level. In the absence dfhis can be seen as the asymptotic limit of (3), wheis uniformly

class labels, each image is considered an observation from a diffedistributed, guaranteeing consistency with the similarity function
ent class, i.e the random variaifeis then defined od1,..., D}. used for DVC.
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—cc supersedes that of DVC system. In the cadeliokr18 the gain is of
T Mesringless Semantics 55.47%, and forCorel150f 36.95%. Since the visual representation
and classification architecture are identical for the two approaches,
this is strong indication thahere is a contextual gain
Fig. 2 also presents the PR curves obtainedCamel50 with
DVC and ICC. It can be seen that the precision of ICC is signifi-
cantly higher than that of DVC, at all levels of recall. The benefits
of contextual classification are also illustrated by Fig. 3, where we
present some query results, under both DVC and ICC. Note that, for
the example of Figure 1, the arch like structure of the locomotive
S S S S S S Sl it ekl rooftop is indeed a dominant feature for visual similarity: three of
0 01 02 03 04 05 06 07 08 09 1 . . . .
Recall the five matches are images of bridges (using DVC). Nevertheless,
the contextual correlations visible in the SMN of Figure 1, allow the
Fig. 2. Precision-recall curves achieved with ICC and DVC @orel5Q ICC system to favor the correct locomotive interpretation.
Also shown is the precision-recall with a meaningless semaptice. To further investigate the contextual gain hypothesis we per-
formed an experiment, using ICC with a semantically meaningless
Table 1. Contextual gains of ICC over DVC on all datasets. space. This was achieved by replicating the ICC experiments with
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Database || Chance | DVC ICC % CG random image groupings. That is, instead of a semantic space com-
(MAP) | (MAP) | (MAP) posed of concepts like “sky” (learned from images containing sky),
Corel50 0.0200 | 0.1067 | 0.2259 | 111.73 we created a “semantic space” of nameless concepts learned from
Corel15 0.0667 | 0.2176 | 0.2980 | 36.95 random collections of images. Fig. 2 compares Qamel50 the PR
Flickr18 0.0556 | 0.1373| 0.2134| 55.47 obtained with ICC on this “meaningless semantic space”, with the

previous results of DVC and ICC. It is clear that,the absence of
semantic structure, ICC has very poor performance, and is clearly
inferior to DVC. This is further evidence that the source of the con-

. . textual gain of Table 1 are the contextual correlations of the under-
In all experiments, the semantic space was learned from the Cor§

; X ing (meaningful) semantic space.
database used in [8, 11]. This dataset, henceforth referred to as 9( gful) P
Corel5Q consists ob, 000 images fronb0 Corel Stock Photo CDs, .
of which 4500 images were used to learn the semantic space. Each2. Growth rate of the contextual gain

image is labeled with 1-5 semantic concepts, from a s8vbfcon- Having established the existence of a contextual gain, we next study

cepts, leading to 871-dimensional semantic simplex. All images . ) .
were converted from RGB to the YBR color space. Image obser'-ts dependence on two factors: the accuracy of the underlying DVC

vations were derived from3 x 8 patches obtained with a sliding and the number of informative semantic dimensions.
window, moved in a raster-scan fashion. A feature transformation

was applied to this space by computing thex 8 discrete cosine 3.2.1. Direct visual space

transform (DCT) of the three color components of each patch.

To evaluate classification performance of DVC and ICC sys-ds.Ince the V||sual reprfe;ecn_lt_atlonﬁl_s_batseqt(_)n a su.tt);p?ce thhleth
tems, we carried out tests on three databases. Firstiibe Imensional space o coetlicients, 1t 1S possible 1o control the

training images fronCorel50served as theetrieval databaseand ~ accuracy of DVC by simply varying the dimension of this subspace.
the remainings00 as the database gliery images Next, we con- As the number of features decreases, the performance of DVC tends
sidered two databas€orell5, Flickrl8where both the query and to o:ﬁgradg. Fig. 4d'(a) shc_)ws the_ M?Zrtsnfzzle f’(\)lr ?Ottz ?\t/rf and ICC
retrieval set contained concepts unknown to the semantic labefS the subspace dimension varies Iroro 62. Note that the con-

ing system, that is they were composed of concepts foottside textual gain is positive and increases with the accuracy of the visual

the trained semantic spaceCorell5 combprised ofl. 500 imades classifiers. Thi§ is more clear in Fig. 4 (b) which show_s the MAP of
from 1:,) previously IunuZed Corel ?:DS a%ickrlB v(/as cl)lle(?ted ICC as a function of that of DVC. The dashed blue line traces the

fromwww. f 1 i ckr. com containingl800 images divided intd 8 set _Of points where the two MAPS. are identical, i.e. Wk@@ = 0.'

classes according to the manual annotations provided by the onlir{%m'ce that th? slope of th_e_curve Is greater t_han 1, which implies the

users. In both caseg0% of randomly selected images served as contextual gain has a positive growth rate with the.accu.r acy of DVC.

gueriesand the remaining0% as theretrieval database This sugges_ts that altho_u_gh _the accuracy of DVC Isan |mpo_rtant pa-
The performance was measured with precision-recall (PR ame_te_rfo_rlmage classmcatlon, it should be p_ossmle to ‘.’?5'9” good

curves and mean average precision (MAP) [11]. Toetextual lassification systems with less than perfect visual classifiers.

gain of the ICC system was measured by

3. EXPERIMENTAL EVALUATION

VAP VAP 3.2.2. Informative dimensions of the semantic space
CG = ree — PVC % 100%. 8
MAPpve x 100% ®

With respect to the impact of the structure the semantic space on
the contextual gain, retrieval was performed for different numbers
3.1. Contextual Gain of dimensions of the semantic space. Semantic spaceslimhen-
sions, were produced by ordering the semantic feature by the vari-
Table 1 summarizes the contextual gains of ICC over DVC, for allance of their posterior probabilities, and selecting thef largest
datasets considered. It is clear that ICC significantly outperformsariance, (fork ranging fromo0 to 371). Fig. 4 (c) shows a plot of
DVC, the average contextual gain beingldfl.73% for Corel5Q the normalized MAP score (normalized by the maximum MAP for
Even outside the semantic space, the performance of the ICC systemgiven database) as a function of semantic space dimensions. The
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Fig. 3. Some examples where ICC performs better than DVC. The seconshroms the images retrieved by ICC.
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Fig. 4. (a) MAP of DVC and ICC forCorel50andFlickr18 as the accuracy of the underlying visual space varies. Alsws are the contextual gain at two
extremes. (b) Contextual gain as a function of the accura®u@. (c) Normalized MAP scores for ICC as a function of the numdfesemantic features. (d)
% variability as explained by semantic concepts sorted daugto the variance of their posterior probabilities.
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plot also shows the normalized DVC score for both datasets. Noticemensions of the semantic spaédl these observations suggest that,
that the contextual gain is positive for a semantic space with as litwhile the improvement of DVC is an important direction of research
tle as12(32) dimensions foFlickr18(Corel50. However, there isa for the advancement of image classification, it should be possible
saturation effect, i.e. not ali71 semantic concepts are equally in- to design highly accurate recognizers with less than perfect visual
formative. This is explained by Fig. 4 (d) which shows the varianceclassifiers.

of the posterior probabilities of the 371 semantic concepts. In par-
ticular, the MAP score saturated fasterickr18 than onCorel50

as almost all the variability is explained by arour) concepts for
Flickr18 and more tha00 for Corel5Q This shows that contextual
correlations only help if the concepts are informative to start with.

(1

[2]

4. DISCUSSION

[3]
In this work, we presented the firsgstematistudy of the contextual
gain hypothesis, i.e. that the ICC strategy outperforms the classical
strategy of DVC. This study was based on a relatively simple classifi-
cation architecture, which we do not claim to be the ultimate solution g,
for image classification, but exhibits two properties of interest: 1) a
unified architecture for both DVC and the visual component of ICC, [g)
which makes all performance gains attributable to the classification
strategy, and 2) simplicity of implementation, which allowed us to
control parameters, such as the accuracy of DVC, in a systematic angy]
fine-grained manner. It produced a number of observations that, we
believe, are of importance. The first was strong evidencipport [8]
of the existence of a contextual gaifhis gain was consistent across
various databases, and happened even when the images to classif]
depicted concepts not known to the semantic labeling system (out-
side the semantic space). Secotlte contextual gain appears to [10]
have a positive growth rateith the accuracy of underlying DVC.
Third, contextual gains appear to be very easy to ohtasga positive
contextual gain required, at mo$g semantic features fdtlickr18.
Fourth,contextual gain increases with the number of informative di-

|

[11]
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