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ABSTRACT

We present the results of a systematic study of thecontextual gain
hypothesisfor image classification. This hypothesis relates the tradi-
tional strategy of direct visual classification (DVC), and an alterna-
tive strategy based on indirect contextual classification (ICC). DVC
is composed of classifiers that operate directly on pixel or feature
based image representations. ICC relies on DVC to label images
with respect to a pre-defined set of contextual semantic features. Im-
age classification is then performed by a classifier that operates on
the semantic space of these classifier outputs. The contextual gain
hypothesis states that, in this semantic space, it is possible to de-
sign classifiers with better accuracy than those achievable with DVC.
A framework for the systematic comparison of the DVC and ICC
strategies is introduced, and an extensive comparison of the perfor-
mance of the two strategies is carried out. Its results strongly suggest
that the contextual gain hypothesis holds.

Index Terms— Image analysis, image classification, contextual
learning, semantic space, image retrieval.

1. INTRODUCTION

Image classification is an important problem for various areas of im-
age processing, including image and video retrieval, texture analysis,
and the design of recognition or surveillance systems. While the last
decade has produced significant advances with respect to this prob-
lem, the fundamental strategy for classifying images has not changed
significantly from what has been the norm for a number of decades.
It consists of 1) identifying a number of visual classes of interest, 2)
designing a set of appearance based features such as image pixels,
edge responses, texture features etc, that are optimally discriminant
for those classes, 3) postulating a model for the classification of those
features, and 4) relying on sophisticated mathematical tools to fit that
to examples. We refer to this strategy asdirect visual classification
(DVC), because the associated classifiers rely on image representa-
tions which are either direct visual appearance features or derived by
simple deterministic mappings of those features.

While there is no question that DVC will retain a predominant
role in the future of image understanding, it is not as clear that it will
besufficientto solve all classification problems. In fact, there is so
far little evidence that it can solve all but a small class of problems
(such as face detection) with accuracies comparable to those of bi-
ological vision. One striking property of the latter, at least in what
concerns humans, is that it rarely seems to ground decisions exclu-
sively on low-level visual features. This has been well documented
in psychophysics, through unambiguous evidence that scene inter-
pretation depends oncontext[1, 2]. By this, it is usually meant that
detection of an object of interest (e.g. a locomotive) is facilitated by
the presence, in the scene, of other objects (e.g. railroad tracks or
trains) which may not themselves be of interest.

Fig. 1. An image and its associated SMN (see Sec. 2.3). Note that, while
most of the concepts of largest probability are present in theimage, the SMN
assigns significant probability to “bridge” and “arch”. This is due to the pres-
ence of a geometric structure similar to that of “bridge” and “arch”, shown
on the image close-up.

The presence of thesecontextual cues(e.g. that locomotives are
usually on tracks and pull trains) increases the detection rate for the
object of interest. This is illustrated in Figure 1, where we present the
posterior probabilities of a locomotive image belonging to a number
of visual concept classes, according to a number of direct visual de-
tectors trained on those classes. Although, posterior probability of
“bridge” is slightly higher than that of “locomotive”, due to the pres-
ence of an ‘arch-like structure in the locomotive’s rooftop, a context-
sensitive classifier could still assign the image to the “locomotive”
class by noting that the contextual cues “railroad”, and “train” also
have high posterior probability. We refer to this classification strat-
egy asindirect contextual classification(ICC), since classifiers oper-
ate on higher-level,contextual cueswhich provide additional infor-
mation for the classification process.

Indirect contextual classification has been previously studied by
a number of authors[3, 4, 5, 6]. In [3], Wolf et. al. presents a con-
cise review of various techniques employed to integrate contextual
cues in the classification architecture. Inspite of these advances, the
fundamental questions of whether there is an intrinsic value to us-
ing ICC for image classification, remains poorly understood. More-
over, the complexity of learning and inference in existing algorithms,
makes it impractical tosystematicallystudy relevant questions per-
taining to ICC, for example the question of how classification per-
formance depends on richness of the set of contextual cues.

In this work, we address the problem of whether there is a ben-
efit in considering context for classification and present asystematic
study of ICC. For this, we introduce a framework for objective com-
parison of the two - visual and contextual strategies. In particular, we
adopt two image classification systems that, while simple, have been
shown to perform well in image retrieval context. The first is a DVC
system [7], which evaluates similarity in strict visual terms. The sec-
ond is an ICC system [8], which evaluates similarity at the contex-
tual level in two stages. First, in thesemantic labelingstage, a bank
of parallel and independentdirect visual classifiers are trained for
the detection of pre-specified semantic concepts. An image is thus
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represented as the posterior concept probabilities, which constitutes
a higher-level semantic spacein which all classification decisions
are ultimately made. In the second stage, these posterior concept
probabilities are fed to a contextual classifier, that returns the data-
base images with closest concept posterior distribution to that of the
query image. The two adopted systems are identical in all aspects
of 1) visual representation, and 2) classification architecture, which
makes the difference in classification strategy the only explanation
for the differences in performance.

An extensive comparison of classification accuracy is performed
on a diverse set of image databases. The results are very clearly in
support of the hypothesis that there is acontextual gain. The de-
pendence of this gain on a number of factors, including theaccu-
racy of the underlying DVC architecture, and thenumber of infor-
mative semantic dimensions, are then systematically characterized.
It is shown that the contextual gain increases with these two factors.

2. PROPOSED FRAMEWORK

In this section, we first introduce the image representation used at
the visual and the contextual level, and then describe the DVC and
ICC architecture, compatible with the minimum probability of error
(MPE) classification [7].

2.1. Image Representation

The starting point for all image classification systems is an image
databaseD = {I1, . . . , ID}. At thevisual-level, images are obser-
vations from a random variableX, defined on some visual feature
spaceX . Each image is considered an observation from a class, de-
termined by a random variableY . An image is represented as a set of
n feature vectorsI = {x1, . . . ,xn},xi ∈ X . Although any type of
visual features are acceptable, we only considerlocalized features,
i.e., features of limited spatial support, assumed to be sampled inde-
pendently. An image is thus represented as,

PX|Y (I|y) =
Y

j

PX|Y(xj |y). (1)

and a density estimation [9] procedure is used to estimate the distri-
butionsPX|Y (x|y).

At the semantic-level, the databaseD is augmented with a
vocabularyL = {w1, . . . , wL} of semantic concepts or key-
words wi, and each imageIi with a captionci, making D =
{(I1, c1), . . . , (ID, cD)}. Note thatci is a binaryL-dimensional
vector such thatci,j = 1 if the ith image was annotated with the
jth keyword inL. Concepts are drawn from a random variableW ,
which takes values in{1, . . . , L}, so thatW = i if and only if x
is a sample from the conceptwi. Each concept induces a proba-
bility density {PX|W (x|i)}L

i=1 on X , from which feature vectors
are drawn. Images are assumed to be independently sampled from
concept distributions

PX|W (I|w) =
Y

j

PX|W(xj |w), (2)

and the density estimation procedure used in (1) is also used to esti-
mate the distributionsPX|W (x|w).

2.2. Direct Visual Classification System

The DVC system operates at the visual level. In the absence of
class labels, each image is considered an observation from a differ-
ent class, i.e the random variableY is then defined on{1, . . . , D}.

Given a query imageIq, the MPE decision rule is to assign it to the
class of largest posterior probability, i.e.

y
∗ = arg max

y
PY |X(y|Iq). (3)

We refer to the nearest-neighbor operation of (3) as the direct visual
classifier, in the remainder of this work.

2.3. Indirect Contextual Classification System

The ICC system operates at the semantic level, representing images
by vectors of concept countsI = (c1, . . . , cL)T , whereci is the
number of feature vectors drawn from theith semantic concept. The
count vector for theyth image is drawn from a multinomial variable
T of parametersπy = (π1

y, . . . , πL
y )T

PT|Y (I|y; πy) =
n!QL

k=1
ck!

LY
j=1

(πj
y)cj , (4)

whereπi
y is the probability that an image feature vector is drawn

from the ith concept. We refer to the probability vectorπy that
characterizes theyth image as thesemantic multinomial(SMN), and
the space of all SMN’s as thesemantic space, denoted bySL. In the
example of Fig. 1 this is a371-dimensional vector space.

The indirect contextual classifier, then performs a nearest neigh-
bor operation on the spaceSL, according to a similarity mapping
f : SL → {1, . . . , D} such that

f(π) = arg max
y

s(π, πy) (5)

whereπ is the query SMN,πy the SMN of theyth database image,
ands(·, ·) an appropriate similarity function. We next describe, in
more detail, a method for estimating SMNs, and a similarity function
between them, which are compatible with the MPE decision rule.

2.3.1. Semantic labeling system

All SMNs πi are learned with a semantic labeling system, which is
implemented by computing posterior concept probabilities given the
observed feature vectors

πw = PW |X(w|I). (6)

A semantic class densityPX|W (x|w) is learned for each con-
ceptw from the setDw of all training images labeled with thewth

label inL. This is based on ahierarchical estimationprocedure [10],
which estimates semantic class densities directly from the image
densities used, for DVC, in (1). In this way, it is guaranteed that
both the visual representation and the visual classification architec-
ture used by the DVC and ICC systems are identical.

Given an imageI = {x1, . . . ,xn} the posterior concept prob-
abilities of (6) are computed by combining (2) and Bayes rule, as-
suming a uniform prior concept distributionPW (w).

2.3.2. Similarity function

The similarity between SMNsπ andπ
′ is measured by the Kullback-

Leibler divergence

sKL(π, π
′) = KL(π||π′) =

LX
i=1

πi log
πi

π′
i

. (7)

This can be seen as the asymptotic limit of (3), whenY is uniformly
distributed, guaranteeing consistency with the similarity function
used for DVC.
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Fig. 2. Precision-recall curves achieved with ICC and DVC onCorel50.
Also shown is the precision-recall with a meaningless semantic space.

Table 1. Contextual gains of ICC over DVC on all datasets.
Database Chance DVC ICC % CG

(MAP) (MAP) (MAP)
Corel50 0.0200 0.1067 0.2259 111.73
Corel15 0.0667 0.2176 0.2980 36.95
Flickr18 0.0556 0.1373 0.2134 55.47

3. EXPERIMENTAL EVALUATION

In all experiments, the semantic space was learned from the Corel
database used in [8, 11]. This dataset, henceforth referred to as
Corel50, consists of5, 000 images from50 Corel Stock Photo CDs,
of which 4500 images were used to learn the semantic space. Each
image is labeled with 1-5 semantic concepts, from a set of371 con-
cepts, leading to a371-dimensional semantic simplex. All images
were converted from RGB to the YBR color space. Image obser-
vations were derived from8 × 8 patches obtained with a sliding
window, moved in a raster-scan fashion. A feature transformation
was applied to this space by computing the8 × 8 discrete cosine
transform (DCT) of the three color components of each patch.

To evaluate classification performance of DVC and ICC sys-
tems, we carried out tests on three databases. First, the4500
training images fromCorel50served as theretrieval databaseand
the remaining500 as the database ofquery images. Next, we con-
sidered two databasesCorel15, Flickr18where both the query and
retrieval set contained concepts unknown to the semantic label-
ing system, that is they were composed of concepts fromoutside
the trained semantic space. Corel15, comprised of1, 500 images
from 15 previously unused Corel CDs andFlickr18 was collected
from www.flickr.com, containing1800 images divided into18
classes according to the manual annotations provided by the online
users. In both cases,20% of randomly selected images served as
queriesand the remaining80% as theretrieval database.

The performance was measured with precision-recall (PR)
curves and mean average precision (MAP) [11]. Thecontextual
gainof the ICC system was measured by

CG =
MAP ICC − MAP DV C

MAP DV C

× 100%. (8)

3.1. Contextual Gain

Table 1 summarizes the contextual gains of ICC over DVC, for all
datasets considered. It is clear that ICC significantly outperforms
DVC, the average contextual gain being of111.73% for Corel50.
Even outside the semantic space, the performance of the ICC system

supersedes that of DVC system. In the case ofFlickr18 the gain is of
55.47%, and forCorel15of 36.95%. Since the visual representation
and classification architecture are identical for the two approaches,
this is strong indication thatthere is a contextual gain.

Fig. 2 also presents the PR curves obtained onCorel50 with
DVC and ICC. It can be seen that the precision of ICC is signifi-
cantly higher than that of DVC, at all levels of recall. The benefits
of contextual classification are also illustrated by Fig. 3, where we
present some query results, under both DVC and ICC. Note that, for
the example of Figure 1, the arch like structure of the locomotive
rooftop is indeed a dominant feature for visual similarity: three of
the five matches are images of bridges (using DVC). Nevertheless,
the contextual correlations visible in the SMN of Figure 1, allow the
ICC system to favor the correct locomotive interpretation.

To further investigate the contextual gain hypothesis we per-
formed an experiment, using ICC with a semantically meaningless
space. This was achieved by replicating the ICC experiments with
random image groupings. That is, instead of a semantic space com-
posed of concepts like “sky” (learned from images containing sky),
we created a “semantic space” of nameless concepts learned from
random collections of images. Fig. 2 compares (onCorel50) the PR
obtained with ICC on this “meaningless semantic space”, with the
previous results of DVC and ICC. It is clear that,in the absence of
semantic structure, ICC has very poor performance, and is clearly
inferior to DVC. This is further evidence that the source of the con-
textual gain of Table 1 are the contextual correlations of the under-
lying (meaningful) semantic space.

3.2. Growth rate of the contextual gain

Having established the existence of a contextual gain, we next study
its dependence on two factors: the accuracy of the underlying DVC
and the number of informative semantic dimensions.

3.2.1. Direct visual space

Since the visual representation is based on a subspace of the192-
dimensional space of DCT coefficients, it is possible to control the
accuracy of DVC by simply varying the dimension of this subspace.
As the number of features decreases, the performance of DVC tends
to degrade. Fig. 4 (a) shows the MAP score for both DVC and ICC
as the subspace dimension varies from4 to 64. Note that the con-
textual gain is positive and increases with the accuracy of the visual
classifiers. This is more clear in Fig. 4 (b) which shows the MAP of
ICC as a function of that of DVC. The dashed blue line traces the
set of points where the two MAPs are identical, i.e. whereCG = 0.
Notice that the slope of the curve is greater than 1, which implies the
contextual gain has a positive growth rate with the accuracy of DVC.
This suggests that although the accuracy of DVC is an important pa-
rameter for image classification, it should be possible to design good
classification systems with less than perfect visual classifiers.

3.2.2. Informative dimensions of the semantic space

With respect to the impact of the structure the semantic space on
the contextual gain, retrieval was performed for different numbers
of dimensions of the semantic space. Semantic spaces ofk dimen-
sions, were produced by ordering the semantic feature by the vari-
ance of their posterior probabilities, and selecting thek of largest
variance, (fork ranging from0 to 371). Fig. 4 (c) shows a plot of
the normalized MAP score (normalized by the maximum MAP for
a given database) as a function of semantic space dimensions. The



Query Image Top 5 retrieved images using DVC and ICC

Fig. 3. Some examples where ICC performs better than DVC. The second rowshows the images retrieved by ICC.
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Fig. 4. (a) MAP of DVC and ICC forCorel50andFlickr18 as the accuracy of the underlying visual space varies. Also shown are the contextual gain at two
extremes. (b) Contextual gain as a function of the accuracy ofDVC. (c) Normalized MAP scores for ICC as a function of the number of semantic features. (d)
% variability as explained by semantic concepts sorted according to the variance of their posterior probabilities.

plot also shows the normalized DVC score for both datasets. Notice
that the contextual gain is positive for a semantic space with as lit-
tle as12(32) dimensions forFlickr18(Corel50). However, there is a
saturation effect, i.e. not all371 semantic concepts are equally in-
formative. This is explained by Fig. 4 (d) which shows the variance
of the posterior probabilities of the 371 semantic concepts. In par-
ticular, the MAP score saturated faster onFlickr18 than onCorel50
as almost all the variability is explained by around100 concepts for
Flickr18 and more than200 for Corel50. This shows that contextual
correlations only help if the concepts are informative to start with.

4. DISCUSSION

In this work, we presented the firstsystematicstudy of the contextual
gain hypothesis, i.e. that the ICC strategy outperforms the classical
strategy of DVC. This study was based on a relatively simple classifi-
cation architecture, which we do not claim to be the ultimate solution
for image classification, but exhibits two properties of interest: 1) a
unified architecture for both DVC and the visual component of ICC,
which makes all performance gains attributable to the classification
strategy, and 2) simplicity of implementation, which allowed us to
control parameters, such as the accuracy of DVC, in a systematic and
fine-grained manner. It produced a number of observations that, we
believe, are of importance. The first was strong evidence insupport
of the existence of a contextual gain. This gain was consistent across
various databases, and happened even when the images to classify
depicted concepts not known to the semantic labeling system (out-
side the semantic space). Second,the contextual gain appears to
have a positive growth ratewith the accuracy of underlying DVC.
Third,contextual gains appear to be very easy to obtain, as a positive
contextual gain required, at most,12 semantic features forFlickr18.
Fourth,contextual gain increases with the number of informative di-

mensions of the semantic space. All these observations suggest that,
while the improvement of DVC is an important direction of research
for the advancement of image classification, it should be possible
to design highly accurate recognizers with less than perfect visual
classifiers.
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