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ABSTRACT

A new algorithm for the design of complex features, to be
used in the discriminant saliency approach to object classi-
fication, is presented. The algorithm consists of sequential
rotations of an initial basis of simple features, so as to maxi-
mize the discriminant power of the feature set for image clas-
sification. Discrimination is measured in an information the-
oretic sense. The proposed algorithm has lower complex-
ity than popular techniques for learning parts, and is evalu-
ated on classification tasks from the PASCAL challenge. It is
shown that complex features consistently outperform simple
features.

Index Terms— feature selection, complex feature, visual
recognition

1. INTRODUCTION

It has long been known that the careful selection of visual
measurements, orfeatures, is important for the solution of
most image processing problems. In the area of object recog-
nition, there has been a recent emphasis on localized represen-
tations, i.e. measurements that have a relatively small region
of image support. This simplifies the design of the subsequent
recognition stages, by constraining the dimensionality ofthe
feature space in which they operate, and improves the robust-
ness of the representation to geometric transformations, due
to camera motion, pose variability, etc. There are two main
types of localized representations, which we refer to asfea-
tures [1] and parts [2, 3, 4, 5], and both have been widely
used in the recent recognition literature.

Part-based representations rely on prototypical patches,
usually produced by key-point detectors and clustering, which
depict image-like structures. They have recently become
quite popular for the representation of objects as constel-
lations of parts [6] and image classification with “visual
texture” [2, 4, 5]. These methods typically have significant
computation, because the design of a part dictionary with
good generalization requires learning a large codebook from
a large number of training examples.

Since any orthonormal feature set spans the space of im-
age neighborhoods of a given size, recognition can also be
based on combinations of features that do not require learn-

ing, but simple selection of the best subset from a small num-
ber of orthonormal families (such as wavelets [7], Gabor [8,
9], or localized Fourier decompositions [1]). One low com-
plexity solution of this type, first proposed in [10], relieson
the principle of discriminant saliency. The idea is to, given a
class of interest, find a set of features that are discriminant for
that class (i.e. which best separate it from images in all other
classes). Given an image to classify, salient locations canthen
be detected as the locations where the discriminant features
produce a strong response. The resulting saliency map is in-
dicative of the presence of objects from the class of interest
in the image. Simple classifiers, whose input is this saliency,
have been shown to achieve good classification performance,
sometimes comparable to the state-of-the-art for much more
complicated classification architectures, with minimal com-
putation and significant robustness to clutter [10].

Previous work on discriminant saliency has relied on very
basic methods for the selection of discriminant features. In
this paper, we investigate the extension of the saliency frame-
work, by providing it with the capability to learn the opti-
mal feature sets. This is done through a computationally ef-
ficient feature extraction algorithm, which producescomplex
features. These are combinations of the originalsimple fea-
tures, which are more tuned for the discrimination of the class
of interest. The complex features now produced are more like
the patches underlying the patch-based approaches, but canbe
learned with much less complexity. The performance of the
new algorithm is tested on image classification problems from
the PASCAL challenge [11], where it is shown that complex
features can lead to improved performance.

2. FEATURE SELECTION

2.1. Simple features

The central problem for the design of a discriminant saliency
detector is feature selection. Assuming that feature vectors
are drawn from a random processX = (X1, . . . , Xn)T ac-
cording to a random variableY ∈ {0, 1} which determines
the class (Y = 1 for objects in the class of interest, e.g.
“faces”, andY = 0 for the null hypothesis, e.g. “non-faces”),
the saliency of each feature is measured by the marginal mu-



tual information between the feature and the class label [12]

I(Xk; Y ) =< KL[PXk|Y (x|i)||PXk
(x)] >Y , (1)

whereKL[p||q] =
∫

p(x) log p(x)
q(x)dx is the Kullback-Leibler

divergence between the distributionsp(x) and q(x) and <

f(i) >Y =
∑

i PY (i)f(i). Salient features for the class of
interest are those that maximize this mutual information.

2.2. Complex feature selection

The use of (1) makes feature selection tractable, from a com-
putational point of view, but can limit the classification per-
formance. Since the features are chosen independently of
each other, any discriminant information which is captured
by their dependences will be lost. In the feature selection
literature, this problem is usually avoided by consideringfea-
ture selection costs that account for such dependences. This,
however, leads to an exponential increase in the complexity
of the feature selection process. One alternative, which we
pursue here, is to keep the cost of (1), but search for the fea-
ture space where this cost is sensible. This is done by se-
lecting new basis functionsZi, for then-dimensional feature
space, which are most discriminant than the initialXi. As-
suming that both the new and the existing basis are orthonor-
mal, this can be achieved by searching for the rotation of the
space which maximizes (1). The process is illustrated by fig-
ure 1, forn = 2. While, in the original space, it is impossible
to achieve optimal classification by picking one of theXi, the
projection onto the rotated axis creates one optimally discrim-
inant feature, and one which is completely non-informative
for classification. The optimal rotation can be identified by
searching for the space containing the feature which maxi-
mizes (1).

Fig. 1. Example two-dimensional classification problem, with two classes.
Original basis (left) and rotated basis (right).

Let Z be the new feature,Z = φT
X, whereφ is a1 × n

vector with||φ||2 = 1. The best projection, in a discriminant
sense, is given by

φ∗ = argmax
φ

I(φT
X; Y ). (2)

However, the solution of this problem is still not trivial,
since (2) has no closed-form solution. An exhaustive search

for the optimalφ is also not feasible, given the high dimen-
sionality of the space of rotations for anyn of practical inter-
est. To address this problem we adopt a coordinate-descent
type of solution. Starting from the initial basis, we proceed
iteratively, at each point identifying the subspace containing
the two most discriminant features. We then find the best
rotation within that subspace. Since this is a two-dimensional
rotation, it can be performed efficiently by searching over a
number of pre-defined rotation angles. If the old basis was
orthonormal, the new basis is guaranteed to have this prop-
erty, since the rotation takes place within a two dimensional
subspace, which is orthogonal to all other dimensions of the
space. The process is iterated until there is no increase in the
sum of the marginal mutual information of (1).

The search, at each iteration, for the best two dimensional
subspace can still be expensive. For example, if there are64
features (8 × 8 image patches) there will be(642 ) = 2016
possible two dimensional subspaces. To improve efficiency,
we restrict the search to those containing the currently most
discriminating feature. This makes the search linear in the
number of features, e.g.O(63) in the example above. Since
other features can always become most discriminant in sub-
sequent iterations, we have found that this does not affect the
feature selection results in any significant way. Overall, the
algorithm is as follows:

1. setΦ = {φi|i = 1, . . . , n}, whereφi is a1 × n vector
of zeros except for a1 in the ith component (Φ is the
identity matrix)

2. findθ∗ andj∗ such that

{θ∗, j∗} = arg max
θ,j

I(cos θφi∗X+sin θφjX ; Y ) (3)

wherei∗ is the feature such that

i∗ = arg max
k

I(φkX ; Y ) (4)

= < KL[PφkX|Y (x|y)||PφkX(x)] >Y

3. replace theith andjth features with their rotation by
θ∗ i.e.

φ′
i = cos θ∗φi + sin θ∗φj (5)

φ′
j = − sin θ∗φi + cos θ∗φj .

4. compute the overall mutual information

I =
∑

k

I(φkX ; Y ) (6)

go to 2) if it is larger than that of the previous iteration.

3. SALIENCY MAP GENERATION

Given an object class of interest, and an image where salient
locations are to be identified, the saliency map is a map of



weighted feature responses at all image locations. Each fea-
ture is weighted according to its discriminant power with re-
spect to the classification problem that opposes the class of
interest to the null hypothesis. The saliencyS(l) of locationl

is the weighted sum of the energy of all feature responses at
that location

S(l) =
∑

k

I(Xk; Y )Rk(l)

whereRk(l) is the result of half-wave rectification of the con-
volution of the image with the filterFk, associated feature
Xk [10]. We refer toS(l) as thesaliency map with respect to
the class of interest.

4. SCALE ADJUSTMENT

Since the size of the object of interest, in the image where
saliency must be determined, is usually not known, the
saliency operation should search for the best image scale.
This can be done by measuring feature responses at multi-
ple scales, i.e. consideringX = {X i

j|i = 1, . . . , S, j =
1, . . . , F}, whereF is the selected number of features andS

the number of scales, and searching for the scale

i∗ = argmin
i

F∑

j=1

KL[P t
Xi

j
(x)||PXj

(x)], (7)

wherePXj
(x) is the distribution ofXj in the training set

(assumed to display images of roughly the same scale) and
P t

Xi
j

(x) the distribution on the test image of the responses of

featurej and scalei. Feature responses of multiple scales can
be obtained by applying the same feature set to various levels
of a Gaussian pyramid decomposition of the test image.

5. EXPERIMENTS

To evaluate the impact of feature selection on discriminant
saliency, we used an object classification task from the PAS-
CAL challenge. A saliency map is produced for each image,
histogrammed (in all experiments we used36 bin histograms)
and fed to a support vector machine (SVM). The SVM is
trained to classify histograms into the class of interest and
the null hypothesis. The saliency detector is evaluated by the
accuracy of this classification.

5.1. Simple features vs. complex features

We start by analyzing the complex features produced by the
proposed algorithm. We consider the Caltech face database,
where the objects of interest (faces) have roughly constant
size, and occupy a relatively large portion of each image.
A comparison between the original simple features and the
learned complex features is shown in figure 2. The number
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Fig. 2. Comparison of simple (left) and complex (right) features learned
from the Caltech “face” class.

simple complex scale scale [11]
simple complex

bicycle 89.5 86.8 96.5 98.2 93
car 92 92 93.1 94.2 96.1

motorbike 92.6 93.5 94.9 94.9 97.7
people 91.7 97.6 95.5 97.3 91.7

Table 1. ROC equal error rate (detection rate at which the false positive
rate is equal to the miss rate) for the four object classes on PASCAL.

at the top of each feature indicates its scale (n means that the
size of feature is2n by 2n).

Figure 3 presents a few examples of feature responses
from the learned complex features. The first feature, whose
responses appear in the first row, seems to capture the contour
on the right side of the face. The second feature (second row)
has strong response to the region around the left eye. The
third feature (third row) appears to be tuned to the left halfof
the face.

5.2. Object category classification

For the classification experiments we relied on the PASCAL
2005 dataset 1. In this dataset, each image contains one
from four classes of objects, plus background clutter. Table 1
shows the ROC equal error rate (EER) produced by the SVM
histogram classifier, with various types of features (simple
at single scale, complex at single scale, and the two types
with scale selection). Overall, complex features achieve bet-
ter rates than simple feature, and scale selection seems to be
beneficial in both cases. The features learned for the “peo-
ple” class are shown in figure 4. Note how the simple DCT
features are transformed into complex ‘face-like’ features.

For completeness, we also present the best results re-
ported in the literature (with more complex classifiers) for
this dataset [11]. With complex features and scale selection,
the simple classifier now proposed achieves better perfor-
mance, than these methods, on two of the four classes.
Figure 5 presents a comparison of the EER obtained with
simple and complex features, as a function of the number of
selected features. Note that, for all object classes, complex
features produce better results, and the differences are larger
when the number of features is small.



Fig. 3. Top four complex features and examples of their responses. Features are shown on the leftmost column, and responses to each feature fill the remainder
of each row. In each case, we present the image on the left and saliency map (due to the feature only) on the right. The location of maximum response is
highlighted with a circle of radius proportional to the scale of the feature.

3 4 4 4 4

2 2 4 3 2

3 2 2 4 3

3 1 1 3 3

4 3 2 3 2

4 3 4 4 3

2 2 4 2 3

2 4 3 2 2

Fig. 4. Selected features. Simple DCT features(left) and complex features
learned from the “people” class(right).

6. CONCLUSION

In this work, we have analyzed the impact of feature selec-
tion on discriminant saliency. Two conclusions can be drawn.
First, complex features appear to improve object classification
performance. Second, scale selection appears to be beneficial
even with simple features. In the future, we plan to study how
to account for variable scale during training.
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