
On the Design of Loss Functions for Classification:
theory, robustness to outliers, and SavageBoost

Hamed Masnadi-Shirazi
Statistical Visual Computing Laboratory,

University of California, San Diego
La Jolla, CA 92039

hmasnadi@ucsd.edu

Nuno Vasconcelos
Statistical Visual Computing Laboratory,

University of California, San Diego
La Jolla, CA 92039
nuno@ucsd.edu

Abstract

The machine learning problem of classifier design is studiedfrom the perspective
of probability elicitation, in statistics. This shows thatthe standard approach of
proceeding from the specification of a loss, to the minimization of conditional
risk is overly restrictive. It is shown that a better alternative is to start from the
specification of a functional form for the minimum conditional risk, and derive
the loss function. This has various consequences of practical interest, such as
showing that 1) the widely adopted practice of relying on convex loss functions is
unnecessary, and 2) many new losses can be derived for classification problems.
These points are illustrated by the derivation of a new loss which is not convex,
but does not compromise the computational tractability of classifier design, and
is robust to the contamination of data with outliers. A new boosting algorithm,
SavageBoost, is derived for the minimization of this loss. Experimental results
show that it is indeed less sensitive to outliers than conventional methods, such as
Ada, Real, or LogitBoost, and converges in fewer iterations.

1 Introduction

The binary classification of examplesx is usually performed with recourse to the mappingŷ =
sign[f(x)], wheref is a function from a pre-defined classF , andŷ the predicted class label. Most
state-of-the-art classifier design algorithms, includingSVMs, boosting, and logistic regression, de-
termine the optimal functionf∗ by a three step procedure: 1) define a loss functionφ(yf(x)), where
y is the class label ofx, 2) select a function classF , and 3) search withinF for the functionf∗ which
minimizes the expected value of the loss, known as minimum conditional risk. Although tremen-
dously successful, these methods have been known to suffer from some limitations, such as slow
convergence, or too much sensitivity to the presence of outliers in the data [1, 2]. Such limitations
can be attributed to the loss functionsφ(·) on which the algorithms are based. These are convex
bounds on the so-called0-1 loss, which produces classifiers of minimum probability of error, but is
too difficult to handle from a computational point of view.

In this work, we analyze the problem of classifier design froma different perspective, that has long
been used to study the problem of probability elicitation, in the statistics literature. We show that the
two problems are identical, and probability elicitation can be seen as a reverse procedure for solving
the classification problem: 1) define the functional form of expected elicitation loss, 2) select a
function classF , and 3) derive a loss functionφ. Both probability elicitation and classifier design
reduce to the problem of minimizing a Bregman divergence. Wederive equivalence results, which
allow the representation of the classifier design procedures in “probability elicitation form”, and the
representation of the probability elicitation proceduresin “machine learning form”. This equivalence
is useful in two ways. From the elicitation point of view, therisk functions used in machine learning
can be used as new elicitation losses. From the machine learning point of view, new insights on the
relationship between lossφ, optimal functionf∗, and minimum risk are obtained. In particular, it is
shown that the classical progression from loss to risk is overly restrictive: once a lossφ is specified,

1

both the optimalf∗, and the functional form of the minimum risk are immediatelypined down.
This is, however, not the case for the reverse progression: it is shown that any functional form of
the minimum conditional risk, which satisfies some mild constraints, supports many(φ, f∗) pairs.
Hence, once the risk is selected, one degree of freedom remains: by selecting a class off∗, it is
possible to tailor the lossφ, so as to guarantee classifiers with desirable traits. In addition to this,
the elicitation view reveals that the machine learning emphasis on convex lossesφ is misguided. In
particular, it is shown that what matters is the convexity ofthe minimum conditional risk. Once a
functional form is selected for this quantity, the convexity of the lossφ does not affect the convexity
of the Bregman divergence to be optimized.

These results suggest that many new loss functions can be derived for classifier design. We illustrate
this, by deriving a new loss that trades convexity for boundedness. Unlike all previousφ, the one
now proposed remains constant for strongly negative valuesof its argument. This is akin to robust
loss functions proposed in the statistics literature to reduce the impact of outliers. We derive a new
boosting algorithm, denoted SavageBoost, by combination of the new loss and the procedure used
by Friedman to derive RealBoost [3]. Experimental results show that the new boosting algorithm is
indeed more outlier resistant than classical methods, suchas AdaBoost, RealBoost, and LogitBoost.

2 Classification and risk minimization

A classifier is a mappingg : X → {−1, 1} that assigns a class labely ∈ {−1, 1} to a feature
vectorx ∈ X , whereX is some feature space. If feature vectors are drawn with probability density
PX(x), PY (y) is the probability distribution of the labelsy ∈ {−1, 1}, andL(x, y) a loss function,
the classification risk isR(f) = EX,Y [L(g(x), y)]. Under the0-1 loss, L0/1(x, y) = 1 if g(x) 6= y
and0 otherwise, this risk is the expected probability of classification error, and is well known to be
minimized by the Bayes decision rule. Denoting byη(x) = PY |X(1|x) this can be written as

g∗(x) = sign[2η(x) − 1]. (1)

Classifiers are usually implemented with mappings of the form g(x) = sign[f(x)], wheref is some
mapping fromX to R. The minimization of the0-1 lossrequires that

sign[f∗(x)] = sign[2η(x) − 1], ∀x (2)

When the classes are separable, anyf(x) such thatyf(x) ≥ 0,∀x has zero classification error. The
0-1 losscan be written as a function of this quantity

L0/1(x, y) = φ0/1[yf(x)] = sign[−yf(x)].

This motivates the minimization of the expected value of this loss as a goal for machine learning.
However, this minimization is usually difficult. Many algorithms have been proposed to minimize
alternative risks, based on convex upper-bounds of the0-1 loss. These risks are of the form

Rφ(f) = EX,Y [φ(yf(x))] (3)

whereφ(·) is a convex upper bound ofφ0/1(·). Some examples ofφ(·) functions in the literature are
given in Table 1. Since these functions are non-negative, the risk is minimized by minimizing the
conditional riskEY |X[φ(yf(x))|X = x] for everyx ∈ X . This conditional risk can be written as

Cφ(η, f) = ηφ(f) + (1 − η)φ(−f), (4)

where we have omitted the dependence ofη andf onx for notational convenience.

Various authors have shown that, for theφ(·) of Table 1, the functionf∗
φ which minimizes (4)

f∗
φ(η) = arg min

f
Cφ(η, f) (5)

satisfies (2) [3, 4, 5]. These functions are also presented inTable 1. It can, in fact, be shown that (2)
holds for anyf∗

φ(·) which minimizes (4) wheneverφ(·) is convex, differentiable at the origin, and
has derivativeφ′(0) = 0 [5].

While learning algorithms based on the minimization of (4), such as SVMs, boosting, or logistic
regression, can perform quite well, they are known to be overly sensitive to outliers [1, 2]. These
are points for whichyf(x) < 0. As can be seen from Figure 1, the sensitivity stems from the large

2

Table 1: Machine learning algorithms progress from lossφ, to inverse link functionf∗

φ(η), and minimum
conditional riskC∗

φ(η).
Algorithm φ(v) f∗

φ(η) C∗
φ(η)

Least squares (1 − v)2 2η − 1 4η(1 − η)
Modified LS max(1 − v, 0)2 2η − 1 4η(1 − η)

SVM max(1 − v, 0) sign(2η − 1) 1 − |2η − 1|

Boosting exp(−v) 1
2 log η

1−η 2
√

η(1 − η)

Logistic Regression log(1 + e−v) log η
1−η -η log η − (1 − η) log(1 − η)

(infinite) weight given to these points by theφ(·) functions whenyf(x) → −∞. In this work, we
show that this problem can be eliminated by allowing non-convex φ(·). This may, at first thought,
seem like a bad idea, given the widely held belief that the success of the aforementioned algorithms
is precisely due to the convexity of these functions. We willsee, however, that the convexity ofφ(·)
is not important. What really matters is the fact, noted by [4], that the minimum conditional risk

C∗
φ(η) = inf

f
Cφ(η, f) = Cφ(η, f∗

φ) (6)

satisfies two properties. First, it is a concave function ofη (η ∈ [0, 1])1. Second, iff∗
φ is differen-

tiable, thenC∗
φ(η) is differentiable and, for any pair(v, η̂) such thatv = f∗

φ(η̂),

Cφ(η, v) − C∗
φ(η) = B−C∗

φ
(η, η̂), (7)

where
BF (η, η̂) = F (η) − F (η̂) − (η − η̂)F ′(η̂). (8)

is the Bregman divergence of the convex functionF . The second property provides an interesting
interpretation of the learning algorithms as methods for the estimation of the class posterior proba-
bility η(x): the search for thef(x) which minimizes (4) is equivalent to a search for the probability
estimateη̂(x) which minimizes (7). This raises the question of whether minimizing a cost of the
form of (4) is the best way to elicit the posterior probability η(x).

3 Probability elicitation

This question has been extensively studied in statistics. In particular, Savage studied the problem of
designing reward functions that encourage probability forecasters to make accurate predictions [6].
The problem is formulated as follows.

• let I1(η̂) be the reward for the prediction̂η when the eventy = 1 holds.

• let I−1(η̂) be the reward for the prediction̂η when the eventy = −1 holds.

The expected reward is
I(η, η̂) = ηI1(η̂) + (1 − η)I−1(η̂). (9)

Savage asked the question of which functionsI1(·), I−1(·) make the expected reward maximal when
η̂ = η,∀η. These are the functions such that

I(η, η̂) ≤ I(η, η) = J(η), ∀η (10)

with equality if and only ifη̂ = η. Using the linearity ofI(η, η̂) on η, and the fact thatJ(η) is
supported byI(η, η̂) at, and only at,η = η̂, this implies thatJ(η) is strictly convex [6, 7]. Savage
then showed that (10) holds if and only if

I1(η) = J(η) + (1 − η)J ′(η) (11)

I−1(η) = J(η) − ηJ ′(η). (12)

Defining the loss of the prediction ofη by η̂ as the difference to the maximum reward

L(η, η̂) = I(η, η) − I(η, η̂)

1Here, and throughout the paper, we omit the dependence ofη onx, whenever we are referring to functions
of η, i.e. mappings whose range is[0, 1].

3

Table 2: Probability elicitation form for various machine learning algorithms, and Savage’s procedure. In
Savage 1 and 2m′ = m + k.

Algorithm I1(η) I−1(η) J(η)
Least squares −4(1 − η)2 −4η2 −4η(1 − η)
Modified LS −4(1 − η)2 −4η2 −4η(1 − η)

SVM sign[2η − 1] − 1 −sign[2η − 1] − 1 |2η − 1| − 1

Boosting −
√

1−η
η −

√

η
1−η −2

√

η(1 − η)

Log. Regression log η log(1 − η) η log η + (1 − η) log(1 − η)
Savage 1 −k(1 − η)2 + m′ + l −kη2 + m kη2 + lη + m
Savage 2 −k(1/η + log η) + m′ + l −k log η + m′ m + lη − k log η

it follows that
L(η, η̂) = BJ(η, η̂), (13)

i.e. the loss is the Bregman divergence ofJ . Hence, for any probabilityη, the best prediction̂η is the
one of minimum Bregman divergence withη. Savage went on to investigate which functionsJ(η)
are admissible. He showed that for losses of the formL(η, η̂) = H(h(η) − h(η̂)), with H(0) = 0
andH(v) > 0, v 6= 0, andh(v) any function, only two cases are possible. In the firsth(v) = v, i.e.
the loss only depends on the differenceη − η̂, and the admissibleJ are

J1(η) = kη2 + lη + m, (14)

for some integers(k, l,m). In the secondh(v) = log(v), i.e. the loss only depends on the ratioη/η̂,
and the admissibleJ are of the form

J2(η) = m + lη − k log η. (15)

4 Classification vs. probability elicitation

The discussion above shows that the optimization carried out by the learning algorithms is identical
to Savage’s procedure for probability elicitation. Both procedures reduce to the search for

η̂∗ = arg min
η̂

BF (η, η̂), (16)

whereF (η) is a convex function. In both cases, this is done indirectly.Savage starts from the speci-
fication ofF (η) = J(η), from which the conditional rewardsI1(η) andI2(η) are derived, using (11)
and (12).η̂∗ is then found by maximizing the expected rewardI(η, η̂) of (9) with respect tôη. The
learning algorithms start from the lossφ(·). The conditional riskCφ(η, f) is then minimized with
respect tof , so as to obtain the minimum conditional riskC∗

φ(η) and the correspondingf∗
φ(η̂). This

is identical to solving (16) withF (η) = −C∗
φ(η). Using the relationJ(η) = −C∗

φ(η) it is possible
to express the learning algorithms in “Savage form”, i.e. asprocedures for the maximization of (9),
by deriving the conditional reward functions associated with each of theC∗

φ(η) in Table 1. This is
done with (11) and (12) and the results are shown in Table 2. Inall casesI1(η) = −φ(f∗

φ(η)) and
I−1(η) = −φ(−f∗

φ(η)).

The opposite question of whether Savage’s algorithms be expressed in “machine learning form”, i.e.
as the minimization of (4), is more difficult. It requires that theIi(η) satisfy

I1(η) = −φ(f(η)) (17)

I−1(η) = −φ(−f(η)) (18)

for somef(η), and therefore constrainsJ(η). To understand the relationship betweenJ, φ, andf∗
φ it

helps to think of the latter as an inverse link function. Or, assuming thatf∗
φ is invertible, to think of

η = (f∗
φ)−1(v) as a link function, which maps a realv into a probabilityη. Under this interpretation,

it is natural to consider link functions which exhibit the following symmetry

f−1(−v) = 1 − f−1(v). (19)

Note that this implies thatf−1(0) = 1/2, i.e. f mapsv = 0 to η = 1/2. We refer to such link
functions as symmetric, and show that they impose a special symmetry onJ(η).

4

Table 3:Probability elicitation form progresses from minimum conditional risk, and link function(f∗

φ)−1(η),
to lossφ. f∗

φ(η) is not invertible for the SVM and modified LS methods.

Algorithm J(η) (f∗
φ)−1(v) φ(v)

Least squares −4η(1 − η) 1
2 (v + 1) (1 − v)2

Modified LS −4η(1 − η) NA max(1 − v, 0)2

SVM |2η − 1| − 1 N/A max(1 − v, 0)

Boosting −2
√

η(1 − η) e2v

1+e2v exp(−v)

Logistic Regression η log η + (1 − η) log(1 − η) ev

1+ev log(1 + e−v)

Theorem 1. Let I1(η) and I−1(η) be two functions derived from a continuously differentiable
functionJ(η) according to (11) and (12), andf(η) be an invertible function which satisfies (19).
Then (17) and (18) hold if and only if

J(η) = J(1 − η). (20)

In this case,
φ(v) = −J [f−1(v)] − (1 − f−1(v))J ′[f−1(v)]. (21)

The theorem shows that for any pairJ(η), f(η), such thatJ(η) has the symmetry of (20) andf(η)
the symmetry of (19), the expected reward of (9) can be written in the “machine learning form”
of (4), using (17) and (18) with theφ(v) given by (21). The following corollary specializes this
result to the case whereJ(η) = −C∗

φ(η).

Corollary 2. Let I1(η) andI−1(η) be two functions derived with (11) and (12) from any continu-
ously differentiableJ(η) = −C∗

φ(η), such that

C∗
φ(η) = C∗

φ(1 − η), (22)

andfφ(η) be any invertible function which satisfies (19). Then

I1(η) = −φ(fφ(η)) (23)

I−1(η) = −φ(−fφ(η)) (24)

with
φ(v) = C∗

φ[f−1
φ (v)] + (1 − f−1

φ (v))(C∗
φ)′[f−1

φ (v)]. (25)

Note that there could be many pairsφ, fφ for which the corollary holds2. Selecting a particularfφ

“pins down” φ, according to (25). This is the case of the algorithms in Table 1, for whichC∗
φ(η)

andf∗
φ have the symmetries required by the corollary. The link functions associated with these

algorithms are presented in Table 3. From these and (25) it ispossible to recoverφ(v), also shown
in the table.

5 New loss functions

The discussion above provides an integrated picture of the “machine learning” and “probability elic-
itation” view of the classification problem. Table 1 summarizes the steps of the “machine learning
view”: start from the lossφ(v), and find 1) the inverse link functionf∗

φ(η) of minimum condi-
tional risk, and 2) the value of this riskC∗

φ(η). Table 3 summarizes the steps of the “probability
elicitation view”: start from 1) the expected maximum reward functionJ(η) and 2) the link func-
tion (f∗

φ)−1(v), and determine the loss functionφ(v). If J(η) = −C∗
φ(η), the two procedures are

equivalent, since they both reduce to the search for the probability estimatêη∗ of (16).

Comparing to Table 2, it is clear that the least squares procedures are special cases of Savage 1, with
k = −l = 4 andm = 0, and the link functionη = (v + 1)/2. The constraintk = −l is necessary

2This makes the notationfφ andC∗

φ technically inaccurate.C∗

f,φ would be more suitable. We, nevertheless,
retain theC∗

φ notation for the sake of consistency with the literature.

5

−6 −5 −4 −3 −2 −1 0 1 2

0

0.5

1

1.5

2

2.5

3

3.5

4

v

φ(
v)

Least squares

Modified LS

SVM

Boosting

Logistic Reg.

Savage Loss

Zero−One

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

η

C
* φ(η

)

Least squares
Modified LS
SVM
Boosting
Logistic Reg.
Savage Loss
Zero−One

Figure 1:Loss functionφ(v) (left) and minimum conditional riskC∗

φ(η) (right) associated with the different
methods discussed in the text.

for (22) to hold, but not the others. For Savage 2, a “machine learning form” is not possible (at
this point), becauseJ(η) 6= J(1 − η). We currently do not know if such a form can be derived
in cases like this, i.e. where the symmetries of (19) and/or (22) are absent. From the probability
elicitation point of view, an important contribution of themachine learning research (in addition
to the algorithms themselves) has been to identify newJ functions, namely those associated with
the techniques other than least squares. From the machine learning point of view, the elicitation
perspective is interesting because it enables the derivation of newφ functions.

The main observation is that, under the customary specification of φ, both C∗
φ(η) andf∗

φ(η) are
immediately set, leaving no open degrees of freedom. In fact, the selection ofφ can be seen as the
indirect selection of a link function(f∗

φ)−1 and a minimum conditional riskC∗
φ(η). The latter is an

approximation to the minimum conditional risk of the0-1 loss, C∗
φ0/1

(η) = 1−max(η, 1− η). The
approximations associated with the existing algorithms are shown in Figure 1. The approximation
error is smallest for the SVM, followed by least squares, logistic regression, and boosting, but all
approximations are comparable. The alternative, suggested by the probability elicitation view, is
to start with the selection of the approximation directly. In addition to allowing direct control over
the quantity that is usually of interest (the minimum expected risk of the classifier), the selection of
C∗

φ(η) (which is equivalent to the selection ofJ(η)) has the added advantage of leaving one degree
of freedom open. As stated by Corollary 2 it is further possible to select acrossφ functions, by
controlling the link functionfφ. This allows tailoring properties of detail of the classifier, while
maintaining its performance constant, in terms of the expected risk.

We demonstrate this point, by proposing a new loss functionφ. We start by selecting the minimum
conditional risk of least squares (using Savage’s version with k = −l = 1,m = 0) C∗

φ(η) =

η(1 − η), because it provides the best approximation to the Bayes error, while avoiding the lack of
differentiability of the SVM. We next replace the traditional link function of least squares by the
logistic link function (classically used with logistic regression)f∗

φ = 1
2 log η

1−η . When used in the
context of boosting (LogitBoost [3]), this link function has been found less sensitive to outliers than
other variants [8]. We then resort to (25) to find theφ function, which we denote bySavage loss,

φ(v) =
1

(1 + e2v)2
. (26)

A plot of this function is presented in Figure 1, along with those associated with all the algorithms
of Table 1. Note that the proposed loss is very similar to thatof least squares in the region where|v|
is small (the margin), but quickly becomes constant asv → −∞. This is unlike all other previousφ
functions, and suggests that classifiers designed with the new loss should be more robust to outliers.

It is also interesting to note that the new loss function is not convex, violating what has been an
hallmark of theφ functions used in the literature. The convexity ofφ is, however, not important,
a fact that is made clear by the elicitation view. Note that the convexity of the expected reward
of (9) only depends on the convexity of the functionsI1(η) andI−1(η). These, in turn, only depend
on the choice ofJ(η), as shown by (11) and (12). From Corollary 2 it follows that, as long as
the symmetries of (22) and (19) hold, andφ is selected according to (25), the selection ofC∗

φ(η)

6

Algorithm 1 SavageBoost
Input: Training setD = {(x1, y1), . . . , (xn, yn)}, wherey ∈ {1,−1} is the class label of
examplex, and numberM of weak learners in the final decision rule.
Initialization: Select uniform weightsw(1)

i = 1
|D| ,∀i.

for m = {1, . . . ,M} do
compute the gradient stepGm(x) with (30).
update weightswi according tow(m+1)

i = w
(m)
i × eyiGm(xi).

end for
Output: decision ruleh(x) = sgn[

∑M
m=1 Gm(x)].

completely determines the convexity of the conditional risk of (4). Whetherφ is itself convex does
not matter.

6 SavageBoost

We have hypothesized that classifiers designed with (26) should be more robust than those derived
from the previousφ functions. To test this we designed a boosting algorithm based in the new loss,
using the procedure proposed by Friedman to derive RealBoost [3]. At each iteration the algorithm
searches for the weak learnerG(x) which further reduces the conditional riskEY |X[φ(y(f(x) +
G(x)))|X = x] of the currentf(x), for everyx ∈ X . The optimal weak learner is

G∗(x) = arg min
G(x)

{

η(x)φw(G(x)) + (1 − η(x))φw(−G(x))
}

(27)

where

φw(yG(x)) =
1

(1 + w(x, y)2e2y(G(x)))2
(28)

and

w(x, y) = eyf(x) (29)

The minimization is by gradient descent. Setting the gradient with respect toG(x) to zero results in

G∗(x) =
1

2

(

log
Pw(y = 1|x)

Pw(y = −1|x)

)

(30)

wherePw(y = i|x) are probability estimates obtained from the re-weighted training set. At each
iteration the optimal weak learner is found from (30) and reweighing is performed according to (29).
We refer to the algorithm asSavageBoost, and summarize it in the inset.

7 Experimental results

We compared SavageBoost to AdaBoost [9], RealBoost [3], andLogitBoost [3]. The latter is gen-
erally considered more robust to outliers [8] and thus a goodcandidate for comparison. Ten binary
UCI data sets were used: Pima-diabetes, breast cancer diagnostic, breast cancer prognostic, original
Wisconsin breast cancer, liver disorder, sonar, echo-cardiogram, Cleveland heart disease, tic-tac-toe
and Haberman’s survival. We followed the training/testingprocedure outlined in [2] to explore the
robustness of the algorithms to outliers. In all cases, five fold validation was used with varying
levels of outlier contamination. Figure 2 shows the averageerror of the four methods on the Liver-
Disorder set. Table 4 shows the number of times each method produced the smallest error (#wins)
over the ten data sets at a given contamination level, as wellas the average error% over all data
sets (at that contamination level). Our results confirm previous studies that have noted AdaBoost’s
sensitivity to outliers [1]. Among the previous methods AdaBoost indeed performed the worst, fol-
lowed by RealBoost, with LogistBoost producing the best results. This confirms previous reports
that LogitBoost is less sensitive to outliers [8]. SavageBoost produced generally better results than
Ada and RealBoost at all contamination levels, including0% contamination. LogitBoost achieves

7

0 5 10 15 20 25 30 35 40
28

30

32

34

36

38

40

42

44

46

48

%
E

rr
or

Outlier Percentage

Sav. Loss (SavageBoost)

Exp Loss (RealBoost)

Log Loss (LogitBoost)

Exp Loss (AdaBoost)

Figure 2:Average error for four boosting methods at different contamination levels.

Table 4:(number of wins, average error%) for each method and outlier percentage.

Method 0% outliers 5% outliers 40% outliers
Savage Loss (SavageBoost)(4,19.22%) (4,19.91%) (6,25.9%)

Log Loss(LogitBoost) (4, 20.96%) (4, 22.04%) (3, 31.73%)
Exp Loss(RealBoost) (2, 23.99%) (2, 25.34%) (0, 33.18%)
Exp Loss(AdaBoost) (0, 24.58%) (0, 26.45%) (1, 38.22%)

comparable results at low contamination levels (0%, 5%) but has higher error when contamination
is significant. With40% contamination SavageBoost has6 wins, compared to3 for LogitBoost
and, on average, about6% less error. Although, in all experiments, each algorithm was allowed
50 iterations, SavageBoost converged much faster than the others, requiring an average of25 itera-
tions at0% cantamination. This is in contrast to50 iterations for LogitBoost and45 iterations for
RealBoost. We attribute fast convergence to the bounded nature of the new loss, that prevents so
called ”early stopping” problems [10]. Fast convergence is, of course, a great benefit in terms of the
computational efficiency of training and testing. This issue will be studied in greater detail in the
future.

References

[1] T. G. Dietterich, “An experimental comparison of three methods forconstructing ensembles of decision
trees: Bagging, boosting, and randomization,”Machine Learning, 2000.

[2] Y. Wu and Y. Liu, “Robust truncated-hinge-loss support vector machines,”JASA, 2007.

[3] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: A statistical view of boosting,”
Annals of Statistics, 2000.

[4] T. Zhang, “Statistical behavior and consistency of classification methods based on convex risk minimiza-
tion,” Annals of Statistics, 2004.

[5] P. Bartlett, M. Jordan, and J. D. McAuliffe, “Convexity, classification, and risk bounds,”JASA, 2006.

[6] L. J. Savage, “The elicitation of personal probabilities and expectations,” JASA, vol. 66, pp. 783–801,
1971.

[7] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge: Cambridge University Press, 2004.

[8] R. McDonald, D. Hand, and I. Eckley, “An empirical comparison of three boosting algorithms on real
data sets with artificial class noise,” inInternational Workshop on Multiple Classifier Systems, 2003.

[9] Y. Freund and R. Schapire, “A decision-theoretic generalization ofon-line learning and an application to
boosting,”Journal of Computer and System Sciences, 1997.

[10] T. Zhang and B. Yu, “Boosting with early stopping: Convergence and consistency,”Annals of Statistics,
2005.

8

A Proof of Theorem 1

Proof. We start by noting that (17) and (18) are equivalent to

I1[f
−1(v)] = −φ(v) (31)

I−1[f
−1(v)] = −φ(−v), (32)

or
I−1[f

−1(v)] = I1[f
−1(−v)]. (33)

Using (19)
I−1[f

−1(v)] = I1[1 − f−1(v)] (34)

and
I−1[η] = I1[1 − η]. (35)

From (11) and (12), it follows that (17) and (18) hold if and only if

J(η) − J(1 − η) = η[J ′(η) + J ′(1 − η)]. (36)

Assume that (20) holds. Taking derivatives on both sides,J ′(η) = −J ′(1−η), (36) holds and, thus,
so do (17) and (18). To show the converse, assume that (36) holds. This implies thatJ(0) = J(1).
To show that (20) holds forη 6∈ {0, 1}, we take derivatives on both sides of (36), which leads to

J ′′(η) = J ′′(1 − η). (37)

This implies that
J ′(η) = −J ′(1 − η) + k (38)

for some constantk. Since, from (36),J ′(1/2) = 0 it follows thatk = 0. This implies that

J(η) = J(1 − η) + k (39)

for some constantk. FromJ(0) = J(1) it follows thatk = 0, showing that (20) holds. Finally, (21)
follows from (31) and (11).

9

