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Abstract

We propose a biologically inspired framework for visual
tracking based on discriminant center surround saliency.
At each frame, discrimination of the target from the back-
ground is posed as a binary classification problem. From a
pool of feature descriptors for the target and background, a
subset that is most informative for classification between the
two is selected using the principle of maximum marginal di-
versity. Using these features, the location of the target in the
next frame is identified using top-down saliency, complet-
ing one iteration of the tracking algorithm. We also show
that a simple extension of the framework to include motion
features in a bottom-up saliency mode can robustly iden-
tify salient moving objects and automatically initialize the
tracker. The connections of the proposed method to existing
works on discriminant tracking are discussed. Experimen-
tal results comparing the proposed method to the state of
the art in tracking are presented, showing improved perfor-
mance.

1. Introduction

Object tracking is a pre-requisite for important applica-
tions of computer vision, such as surveillance [13], activ-
ity or behavior recognition [27]. Many years of research
on the tracking problem have produced a diverse set of ap-
proaches and a rich collection of tracking algorithms [33].
A popular subset among these are the so-called appearance
based methods, which learn and maintain a model of target
appearance and use it to locate the target as time evolves.
For instance, targets can be represented by their contours,
and the temporal evolution of these contours modeled with
particle filters [20]. Alternatively, target appearance can
be represented by kernel weighted histograms, which are
popular in the context of mean shift algorithms [8]. More
sophisticated appearance models include a combination of
long term stable representations and short term descrip-
tors [21], or low-dimensional subspace representations that
are updated incrementally [25]. All of these methods rely

uniquely on models of object appearance and do not take
the background into account. This limits tracking accuracy
when backgrounds are cluttered, or targets have substantial
amounts of geometric deformation, such as out-of-plane ro-
tation. To address this limitation, various authors have pro-
posed the formulation of “discriminant tracking” - object
tracking as continuous object detection, by posing the prob-
lem as one of incremental “target vs. background” clas-
sification [7, 3, 18]. Given a target bounding box at video
frame t, a classifier is trained to distinguish target features
from those of the background. This classifier is then used
to determine the location of the target in frame t + 1. The
bounding box is moved to this location, the classifier up-
dated, and the process iterated.

In the biological world, object tracking is tightly related
to attentional tasks, such as the guidance of eye movements.
Due to the evolutionary advantages of solving these tasks
accurately, it is not surprising that biological vision systems
have developed extremely efficient tracking mechanisms,
in terms of both accuracy and speed. The effectiveness of
these mechanisms, even under the most adverse conditions
(e.g. highly cluttered scenes, low-light, etc), is a conse-
quence of the availability of robust saliency mechanisms,
that cause pre-attentive pop-out of salient locations in the
visual field [24]. These salient locations become the focus
of attention (FoA) for the post-attentive stages of visual pro-
cessing, where top-down feedback from higher level corti-
cal layers is used to solve problems such as tracking or vi-
sual search [32] with modest amounts of computation. The
robustness of the biological solutions has motivated com-
puter vision researchers to augment conventional tracking
algorithms with FoA mechanisms. For instance, Toyama
and Hager [28] proposed an incremental FoA procedure to
combine multiple trackers, leading to increased robustness.
Nevertheless, there has been little work aimed at deriving
a principled understanding of what computational mecha-
nisms could be used by biological vision to solve the track-
ing problem, how these mechanisms relate to the state-of-
the-art algorithms from computer vision, and how these
connections could be exploited to achieve increased com-
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puter vision performance.
In this work, we present a contribution along these three

dimensions. We consider tracking in the context of center-
surround saliency mechanisms that are prevalent in biolog-
ical vision [17, 5]. In particular, we consider a recently
proposed computational principle for visual saliency, de-
noted by discriminant saliency [17]. This principle has
been shown to have a number of attractive properties for
both the biological and computer vision communities. In
the area of biological vision, is has been shown 1) to lead
to computational models of saliency that replicate an ex-
tensive collection of psychophysics from both saliency and
visual search [14], and 2) to have a 1-1 to one mapping to
the standard neurophysiological model of the area V1 of the
brain [17]. For computer vision, it has been shown to pro-
duce algorithms that achieve state-of-the-art performance in
the problems of interest point detection [16], object recog-
nition [15], and background subtraction [23].

In this work, we show that discriminant tracking can be
posed as a particular instance of this generic principle. In
particular, we show that it provides a unified and principled
framework for the solution of the three problems posed by
the design of a discriminant tracker: target initialization,
feature selection and target detection. This unifies tracking
with prior work on background subtraction, enabling highly
robust automatic target initialization. By exploiting connec-
tions between discriminant saliency and the statistics of nat-
ural images, it also enables highly computationally efficient
tracking algorithms without compromise of discrimination
optimality. This is shown not to be the case for previous
computer vision solutions to discriminant tracking, which
the proposed discriminant tracking algorithm is shown to
outperform experimentally.

2. Tracking Using Discriminant Saliency
Discriminant saliency [17] poses the saliency problem as

one of optimal decision-making between two classes of vi-
sual stimuli: a class of stimuli of interest, and a background
or null hypothesis, consisting of stimuli that are not salient.
This is implemented by establishing a binary classification
problem which opposes the stimuli of interest to the null hy-
pothesis. The saliency of each location in the visual field is
then equated to the discriminant power (expected classifica-
tion accuracy) of a set of visual features, extracted from that
location, for the differentiation between the two classes.The
locations that can be classified, with lowest expected prob-
ability of error, as containing stimuli of interest are denoted
as salient.

The discriminant saliency principle is generic and can be
applied to various vision problems, by suitable definition of
class of interest and null-hypothesis. For example, it can
be used to implement one-vs-all object detection, by defin-
ing the class of interest to be an object class, and the null

hypothesis as a collection of other object classes [15]. In
the biological vision literature, this is commonly referred
as top-down saliency, due to the requirement of feedback
from high-level cortical areas for the specification of ob-
ject classes. On the other hand, the principle can be equally
applied to the solution of bottom-up saliency, which is pre-
attentive and purely stimulus driven. This is implemented
by defining the classification problem as one of discrimina-
tion between the visual stimulus contained in a pair of cen-
ter (class of interest) and surround (null hypothesis) win-
dows, at every location of the visual field [17]. For com-
puter vision, this type of saliency is of interest for the so-
lution of problems such as background subtraction, where
the goal is to identify any object that does not belong to the
background. It has been shown that discriminant saliency
can be mapped into a biologically plausible neural archi-
tecture, which replicates both the computations of the stan-
dard neurophysiological model of area V1 of the brain and
a large body of psychophysics of human saliency [17].

Assuming that the initial location of a target object is
known, the tracking problem reduces to two of the three
questions listed above, namely, feature selection and target
detection. Since this assumption underlies all current im-
plementations of discriminant tracking [7, 3, 18], we start
by discussing how top-down discriminant saliency can be
used to solve these two problems, in the remainder of this
section. Later, in Section 3, we show how bottom-up dis-
criminant saliency can be used for automatic tracker initial-
ization.

2.1. Discriminant Saliency

Let V be a d dimensional visual stimulus (d = 3 for
grayscale, d = 4 for color video) and let l indicate the ini-
tial position of the target. Two windows are defined around
this location: a target windowW1

l containing the target, and
a surrounding annular window W0

l containing background.
A classification problem opposing the two classes, target
class with label C(l) = 1 and background class with la-
bel C(l) = 0, is posed at location l. A set of features Y
from a predefined feature space Y (e.g. raw pixel values,
Gabor, DCT, wavelet, or SIFT features), are computed for
each of the windows Wi

l , i ∈ {0, 1}. Features extracted
from the target window are assumed to be drawn with prob-
ability density pY|C(l)(y|1) and those from the background
window with probability density pY|C(l)(y|0).

The saliency of location l, S(l), is defined as the extent
to which the features Y can discriminate between the two
classes. This is quantified by the mutual information be-
tween feature responses, Y, and class label, C,

S(l) = Il(Y ; C) (1)

=

1∑
i=0

∫
pY ,C(l)(y, i) log

pY ,C(l)(y, i)

pY (y)pC(l)(i)
dy,



and can be shown to approximate the expected probabil-
ity of correct classification of the optimal target/background
classifier. More precisely, the mutual information of (1) is
an approximation to one minus the Bayes error rate

L∗ = 1− Ey[max
i

PC|Y(i|y)], (2)

of the classification problem, where Ey denotes expecta-
tion with respect to PY(y) [31]. The mutual information
can also be written as

S(l) =

1∑
c=0

pC(l)(i)KL[pY |C(l)(y|i)||pY (y)] (3)

where KL (p ‖q ) =
∫
X pX(x) log pX(x)

qX(x)dx is the
Kullback-Leibler (KL) divergence between the probability
distributions pX(x) and qX(x).

2.2. Learning Salient Features

The connection between discriminant saliency and the
Bayes error rate for target/background classification, leads
to a very natural criteria for salient feature selection: the
features that enable optimal discrimination between target
and background are those of largest mutual information
with the class label. These salient features can be seen as ei-
ther the most informative features for the target/background
classification, or as the feature set of (approximately) lowest
Bayes error rate for this classification.

Discriminant salient feature selection can also be per-
formed efficiently. Let the feature space Y have dimen-
sion N and denote by Y = (Y1, . . . , YN ) the random pro-
cess from which all vectors of feature responses are drawn.
Defining Y1,k = (Y1, . . . , Yk), the mutual information
of (1) can be expanded ( [30]) into

I(Y; C) (4)

=
∑

k

I(Yk; C) +
∑

k

[I(Yk;Y1,k−1|C)− I(Yk;Y1,k−1)]

where

I(Y; C|Z) (5)

=
∑

i

∫
PY,C,Z(y, i, z) log

PY,C|Z(y, i|z)

pY|Z(y|z)pC|Z(i|z)dydz

is the conditional mutual information between Y and C
given the observation of Z. In (4), the term I(Yk;C) rep-
resents the discriminant power of the kth feature individu-
ally, and is denoted its marginal diversity (MD). The terms
I(Yk;Y1,k−1|C)−I(Yk;Y1,k−1) quantify the discriminant
information contained in feature dependencies between the
kth feature and the set of k − 1 previously selected fea-
tures [30]. This decomposition allows as substantial sim-
plification of the mutual information, by exploiting a well
known property of band-pass features extracted from natu-
ral images: that such features exhibit consistent patterns of

dependence across an extremely wide range of natural im-
age classes [4, 19]. This implies that the dependencies be-
tween features carry little information about the class from
which the features are extracted, allowing the approxima-
tion of (4) by

I(Y; C) ≈
N∑

k=1

I(Yk; C) (6)

=
∑

k

∑
i

PC(i)KL
[
PYk|C(y|i)||PYk (y)

]

Note that this approximation does not require the as-
sumption of feature independence, it simply follows from
the constancy of feature dependences across natural image
classes. The approximation is studied in detail in [30].

Since the mutual information is always non-negative, it
follows that the selection of the optimal subset of K (K <
N ) salient features has very little complexity [31]. It con-
sists of 1) ordering the N features by decreasing I(Yk, C),
and 2) selecting the first K. This procedure is denoted as
feature selection by maximum marginal diversity (MMD)
in [31]. The terms in the right hand side of (6) only require
marginal density estimates. In this work, we adopt a fea-
ture set composed of 8× 8 DCT features at multiple scales.
The fact that the DCT features belong to the set of bandpass
features (as would Gabor coefficients, wavelet features, or
image derivatives) makes these marginal density estimates
extremely simple to compute.

2.3. Efficient Computation of the MD
The probability distribution of feature responses of a

bandpass feature, to natural images, is well known to fol-
low a generalized Gaussian distribution (GGD) [19]

PY (y; α, β) =
β

2αΓ(1/β)
exp

{
−

( |y|
α

)β
}

, (7)

where Γ(z) =
∫∞
0

e−ttz−1dt, t > 0, is the Gamma func-
tion, α a scale parameter, and β a shape parameter. The
parameter β controls the rate of decay from the peak value,
and defines a sub-family of the GGD (e.g. Laplacian when
β = 1 or Gaussian when β = 2). The GGD parameters
can be estimated from a sample of feature responses by the
method of moments [26], using

σ2 =
α2Γ( 3

β
)

Γ( 1
β
)

and κ =
Γ( 1

β
)Γ( 5

β
)

Γ2( 3
β
)

, (8)

where σ2 and κ are, respectively, the variance and kurtosis
of Y

σ2 = EY [(Y − EY [Y ])2], and κ =
EY [(Y − EY [Y ])4]

σ4
.

Furthermore, when the class-conditional densities
PY |C(y|i) and the marginal PY (y) are GGDs PY (y;αi, βi)



Figure 1. MMD feature selection for target/background discrimination.
Feature responses are computed at the target location, from the center (tar-
get) and surround (background) windows. Features are ordered by their
MD, and the most discriminant are selected.

and PY (y; α, β) respectively, the KL divergences of (6)
have closed form [10]

KL[PY (y; αi, βi)||PY (y; α, β)] (9)

= log

(
βiαΓ(1/β)

βαiΓ(1/βi)

)
+

(αi

α

)β Γ((β + 1)/βi)

Γ(1/βi)
− 1

βi
.

These properties enable an extremely efficient computation
of the marginal diversity of (6). The maximum MD (MMD)
feature selection procedure is illustrated in Figure 1.

2.4. Target tracking by saliency detection
Once the salient features that best discriminate target

from background at time step t have been computed, the
goal is to identify the target location at time t + 1. This
reduces to detecting the locations of feature response y that
can be most confindently be assigned to the target class in
video frame t + 1, given the discriminant features selected
at time t. Under the information theoretic definition of dis-
criminantion, classification confidence is measured by

I(C; Y = y) =

1∑
i=0

pC|Y (y|i) log
pY,C(y, i)

pY (y)pC(i)
,

Given the response Yk of the kth feature to the frame at
time t + 1, this results in the saliency measure

Sk(y) =

{
I(C; Yk = yk) if yk ∈ Sk

0, otherwise,
(10)

with

Sk =

{
y

∣∣∣∣
PC,Yk (1, yk)

PC(1)PYk (yk)
>

PC,Yk (0, yk)

PC(0)PYk (yk)

}
. (11)

Sk contains the set of points that are classified as belong-
ing to the target class (C = 1) by the likelihood ratio test
PYk|C(yk|1)/PYk|C(yk|0) > 1 and I(C; Yk = yk) encodes
the confidence of the classification, according to the kth fea-
ture. Points such that the likelihood under the target hypoth-
esis is much larger than that under the background hypothe-
sis are very informative for target detection, and have large
saliency.

Figure 2. Target localization in the next frame. For each selected feature,
a top-down saliency map is computed with (14). These saliency maps are
combined to produce the overall saliency map, the maximum of which is
taken to be the new location of the target.

For GGD features this saliency measure can be com-
puted very efficiently, using the fact that [17]

I(C; Y = y) = s[g(y)] log
s[g(y)]

π1
+ s[−g(y)] log

s[−g(y)]

π0
,

(12)
where s(y) = (1 + e−y)−1 is a sigmoid function, πi =

PC(i) is the prior for class i, and

g(y) =

( |y|
α0

)β0

−
( |y|

α1

)β1

+ T, (13)

with T = log α0β1π1Γ(1/β0)
α1β0π0Γ(1/β1)

. The total confidence measure
for the set of K feature responses y is

ST (y) =

K∑

k=1

Sk(yk). (14)

The computation of this measure is illustrated in Figure 2.
The salient features selected at time t can be seen as

matched filters for the detection of the salient visual at-
tributes of the target, according to the appearance of the
latter at that time. This follows from the fact that Sk is a
set of the form

S =
{
y

∣∣PYk|C(y|1) > PYk|C(y|0)
}

, (15)

and, for GGD features, this reduces to Sk =
{yk ||yk| > tk }, where tk is a threshold that depends on the
parameters of the two GGDs. Hence, only regions of large
magnitude feature response are considered salient. This im-
plies that the features are matched to the visual stimuli con-
sidered salient and pertain to the target class. The location
of largest saliency at time t + 1 is selected as the new po-
sition of the target. Feature selection is then repeated from
target and background windows centered at this location, to
learn the appearance model at time t+1. The resulting fea-
tures are then used for saliency detection at time t + 2 and
the procedure is iterated. The entire tracking algorithm is
summarized in Algorithm 1.



Algorithm 1 Tracking Using Discriminant Saliency
Input: Current target location l, t = 0, initial frame I0 containing M
pixel locations
while Next frame exists do

Set t = t + 1.
Feature Selection: Given a set of DCT features Yk, k ∈
{1, . . . , N},target location l from the null hypothesis, and a target
number of features K.
Obtain target patchW1

l and surround W0
l from It−1.

for k = {1, . . . , N} do
Estimate GGD parameters of PYk|C(y|i), from responses of Yk

to Wi
l , i ∈ {0, 1}, using (8).

Estimate GGD parameters of PYk
(y), from responses of Yk to

W1
l ∪W0

l , using (8).
Compute I(Yk, C), using (6) and (9).

end for
Output: return the K features of largest I(Yk, C).
Target detection in new frame: Given the frame It, a set of K
discriminant features Yk for the target class, and the GGD parameters
of PYk|C(y|i), i ∈ {0, 1}, and PYk

(y).
for k = {1, . . . , K} do

for m = {1, . . . , M} do
Compute the response ym of Yk at location of pixel lm of It,
and PYk|C(ym|i), i ∈ {0, 1}, using (7).
Compute Sk(ym), using (10)

end for
end for
for m = {1, . . . , M} do

Compute total confidence measure ST (ym) at lm with (14).
end for
Output: Set l =argmaxlm

ST (ym).
end while

3. Automatic tracker initialization

Most tracking algorithms assume that the initial target
position l and a bounding box are manually provided [7,3].
This is frequently not practical in real applications, where
manual supervision is expensive or unavailable. While
many ad-hoc initialization strategies, such as background
subtraction, and blob or motion detection, have been pro-
posed [7] most of these have limited scope. For example,
they tend to fail when the background is itself dynamic, as
is the case of many natural scenes [23]. A more principled
approach, based on bootstrapping a weak and generic tar-
get model for automatic initialization, has been proposed by
Toyama and Ying [29]. It, however, requires a target model
to begin with, and some degree of supervision to adapt to
different scenes.

Under the discriminant saliency principle, there is no
fundamental difference between tracker initialization and
the tracking operation itself. The only difference is that,
while the latter is a top-down saliency procedure, the for-
mer is a problem of bottom-up saliency. In fact, it has been
shown that bottom-up discriminant saliency with suitable
models for spatiotemporal stimulus statistics is a state of the
art solution for the problem of (unsupervised) background
subtraction [23].

To compute saliency in the unsupervised or bottom-up

Figure 3. Illustration of automatic target identification for initializing the
tracker. By using spatiotemporal features (e.g.optical flow or dynamic tex-
tures) to represent center and surround windows, (3) is used compute the
saliency of every location l. The saliency measure S(l) is highest for re-
gions containing salient moving objects. By finding the location of highest
motion saliency, the initial position and scale of the target can be estimated.

mode, a classification problem is posed at every location l
of the visual field, between a center window W1

l around
l, and a surround annular window W0

l . The union of the
two windows is denoted the total window, Wl = W0

l ∪
W1

l . Through the inclusion of spatiotemporal features in
the feature space, this classification problem can identify
locations which are most different from their surround, in
terms of both spatial and temporal stimulus statistics. The
regions of highest saliency can then be associated with a
potential target.

The requisite spatiotemporal features can be selected
based on the nature of the scene. For scenes shot with static
cameras, optical flow features can be used [14]. In this
case, the features y used in the saliency formulation (3)
are the magnitude and direction of optical flow vectors.
For more complex backgrounds, following [23], we use
the dynamic texture (DT) model of [11] as the probability
model pY |C(l)(y(τ)|c) for the spatiotemporal stimuli y(τ)
in (3). DT parameters are learned from center, surround,
and total windows, to obtain the densities pY |C(l)(y(τ)|1),
pY |C(l)(y(τ)|0), and pY (y(τ)), respectively. S(l) is fi-
nally computed with (3). This procedure is illustrated in
Figure 3. Further details are available in [23], where the
procedure is shown to have great robustness to complex
background dynamics, and camera motion. In our experi-
ence, the computation of spatiotemporal saliency, from the
initial frames of a video sequence, is a robust automatic
procedure to identify the moving targets of typical interest
for surveillance and monitoring applications. The locations
of these targets are then used to initialize the discriminant
tracker described in Section 2.



4. Experiments and Results

To validate the proposed algorithm, we performed two
types of experiments - the first set comparing the discrimi-
nant saliency tracker (DST) with other tracking approaches
when the target location is known and 2) automatic initial-
ization and tracking on video clips without any prior knowl-
edge.

Comparison to Existing Trackers: We compared the
performance of DST with three other trackers : two dis-
criminant trackers, (the method of Collins et al. [7], and
the ensemble tracker [3]), and the incremental visual tracker
(IVT) [25], a representative of the state of the art in appear-
ance based tracking.

The test clips for tracking were selected from diverse
sources (e.g previous works, standard database, and from
the web). All clips include challenging situations such as
varying illumination, complete object rotation and change
in perspective. For instance, the “motinas toni change ill”
of [22] shows a person turning around 360◦ in extremely
low light (Figure 4(a)), while the “gravel” clip has perspec-
tive distortion induced by the person moving away from
the camera (Figure 5). Since the test clips are grayscale,
we implemented a version of the Collins tracker that uses
DCT features instead of the R,G,B color features proposed
in the original publication [7]. All four algorithms were ini-
tialized with target location and bounding box in the first
frame. The background bounding box was assumed to have
an edge 3 times larger than the corresponding edge of the
target box. Each training image from target or background
was decomposed using a two-level Gaussian pyramid and
8 × 8 DCT features computed at each location (for a total
of N = 64× 2 = 128 features). The number of MMD fea-
tures selected for each frame was set to K = 5. To enforce
temporal coherence, the discriminant features were learned
using the target appearance of the current frame and 2 past
frames, and tracking was performed using the method of
Algorithm 1.

The results of tracking on three of the clips tested are
shown in Figures 4 and 5. For these clips, the qualitative
performance of IVT and the Collins tracker is extremely
poor and they fail to track the target in all three scenes.
The ensemble tracker fails to track the object when it un-
dergoes extreme appearance variation due to illumination
changes or target rotation (e.g.“motinas toni change ill” in
Figure 4(a), “karlsruhe” in Figure 4(b)), while DST tracks
the targets successfully in all the clips. For each clip, a
quantitative estimate of tracking error was also obtained us-
ing groundtruth data. Tracking error was defined as the av-
erage pixel difference, between the groundtruth bounding
box and the bounding box obtained by the tracker. The re-
sults for the three clips are tabulated in Table 1. DST clearly
outperforms all other trackers. The videos (and larger pic-

(a)

(b)

Figure 4. Results of tracking on a)“motinas toni change ill” [22] - the
person is turning around and the illumination changes drastically b) “karl-
sruhe” [1] - the car makes a U-turn. The target locations obtained by the
four methods on four frames are shown : DST - thick red (pale gray when
not in color) box, Collins - thick black box, ensemble - white dashed box,
IVT black dashed box.

Figure 5. Results of tracking on “gravel”. The target locations obtained
by the four methods on six frames are shown : DST - thick red (pale gray
when not in color) box, Collins - thick black box, ensemble - white dashed
box, IVT black dashed box.

tures) of all results are available from the attached supple-
mentary [2].

Results for Automatic Initialization and Tracking: The
result of tracking using automatic initialization for a static
camera scene is shown in Figure 6(a). From the initial
frames of the clip, a motion saliency map is generated us-
ing optical flow features, and the regions of maximal motion
saliency are identified as potential targets. These are input
to the DST algortithm, which then tracks the targets through
the remaining frames.

For scenes with extremely dynamic backgrounds, a dy-
namic texture based motion saliency algorithm is used. Fig-
ure 6(b) shows the motion saliency map obtained using this
procedure for a surfing scene, and a few of the subsequently
tracked frames. These results demonstrate the ability of the
discriminant saliency framework to perform robust target
initialization even for scenes with extremely dynamic back-
grounds. The video results are available in the attached sup-
plement [2].

5. Connections to other discriminant trackers
At an abstract level, the proposed discriminant saliency

tracker is similar to the previously proposed discriminant
trackers [7, 3]. In this section we provide an analysis of
these two trackers, to highlight the connections, and show



Clip Name IVT Collins Ensemble DST
motinas toni change ill × 0.70 × 0.71 × 0.52 X0.15
karlsruhe × 0.29 × 0.34 × 0.56 X0.04
gravel × 0.62 × 0.71 X0.10 X0.03

Table 1. Performance comparison of four tracking algorithms on
three clips. In addition to the average tracking error for each
method, a ’×’ (loses track) or ’ X’ (maintains track) is shown
to indicate tracking continuity as observed visually.

(a)

(b)

Figure 6. Results of automatic initialization and tracking on a) “pedestri-
ans”. The motion saliency map obtained using the bottom-up formulation
with optical flow features is shown on the extreme left. b) “wave”, the
motion saliency map computed using dynamic textures is shown on the
extreme left. Positions of the targets for three frames are shown in red
boxes.

that each stage - center-surround training, feature extrac-
tion, goodness of discrimination to select features and fi-
nally, goodness of fit to identify target locations, is equiva-
lent to the corresponding stage of the proposed tracker.

Discriminant trackers in the literature are effectively
center-surround operations, defining target as the center and
background as the surround. This architecture is a direct
analogue of the discriminant saliency framework. Further,
selecting the best features and detecting the target in the
next frame are also closely related to their counterparts in
the discriminant saliency framework as discussed below.

5.1. Feature Selection and Discriminability

All discriminant trackers include a feature selection pro-
cedure. Features can be considered as a transformation of
the observation space to (a presumably lower dimensional)
feature space Y ,where discriminating the target from the
background is easier than in the original space. The trans-
formation can be linear or non-linear. For instance, Collins
et al. [7] use linear combinations of R, G, B pixel values
as the features. “Ensemble tracking” [3] uses a set of non-
linear features composed of histograms of oriented gradi-
ents [9] along with the R,G,B pixel values. In the proposed
approach, we use DCT features.

In all three methods, the set of features is analyzed in
terms of its discriminability for the classification task - sep-
arating the target from the background. Collins et al. [7] first
compute histograms of filter responses applied to the R,G,B
color channels of both target and background, and construct
a log likelihood ratio between the two class histograms,
considering this as a new non-linear feature. The feature
discriminability is a Fisher discriminant-like variance ratio
that measures how tightly clustered the log-likelihood ratios

are for the two classes. This is equivalent to transforming
the features into a non-linear space and learning a linear
classifier that minimizes the classification error in the fea-
ture space, under the assumption that the new feature has a
Gaussian distribution.

In [3], a set (“ensemble”) of weak hyperplane classifiers
are trained to separate target from background in the feature
space. However, each classifier is obtained after weight-
ing the points by a diagonal matrix of weights. This corre-
sponds to a linear transformation and each re-weighting is
equivalent to creating a new feature. The discriminability in
this case is directly equal to the error rate of classification.

Hence, while the features themselves might be different,
all approaches to discriminant tracking use discriminabil-
ity based on the minimum probability of error criterion to
select the best features, albeit under different assumptions.

5.2. Target Detection as a goodness of fit

The next step involves using the selected features to per-
form target detection in a new frame. In [7], the confidence
measure used to classify points in the next frame is sim-
ply the log-likelihood ratio between the probability of tar-
get and the probability of background as learned from the
current frame. This acts as a matched filter and finds re-
gions that best correspond to the probabilistic description
of the target, while corresponding least to that of the back-
ground. This definition of the confidence measure is similar
to saliency measure of (14).

In ensemble tracking, the selected features are a set of
weak classifiers and the confidence measure for locations in
the new frame is simply a weighted combination of the (nor-
malized) classification margin at that location. The margin
represents the level of belief in the classification result, and
is directly analogous to saliency of (6). 1

In summary, both ensemble tracking and the Collins
tracker, are fundamentally similar to the proposed discrim-
inant tracker. However, the formulation of discriminant
tracking as a center-surround saliency problem has several
merits over other discriminant trackers. This is discussed
below.

5.3. Merits of the Discriminant Saliency Tracker
Over Other Discriminant Methods

The Collins tracker uses a heuristic discriminability mea-
sure similar to a Fisher’s discriminant. While this measure
has been empirically shown to work for color features, it
lacks a generic principled justification. Furthermore, the
distribution of log-likelihood ratios is hard to character-
ize [6]. The assumption of unimodality also does not hold
in general (i.e. for all features), and is especially troubling

1As the weak classifier used is a hyperplane classifier, the probability
of correct classification, and hence the mutual information, are related to
the margin using the error function (erf).



when there is background clutter. This partially accounts
for the results above where, for the DCT features used, the
Collins tracker performed as poorly as the IVT. In addition,
the use of histogram based features is computationally in-
efficient, and the procedure cannot be extended to include
spatiotemporal features, such as dynamic textures for mo-
tion assisted tracking.

In ensemble tracking, the selected weak classifiers are
combined using AdaBoost. This could be a disadvantage,
in the tracking context, for two reasons : a) boosting is com-
putationally expensive, and b) it tends to overfit the limited
training data available. In result, the tracker does not per-
form well when there are large variations of appearance,
such as the rotating objects of Figures 4 and 5. On the other
hand, MMD-based feature selection is computationally ef-
ficient and, as seen from the results above, seems to achieve
a better trade-off between classification accuracy and gen-
eralization. A similar outcome has been reported for image
classification, where a mutual information based feature se-
lection procedure been shown to outperform boosting based
methods [12].

6. Conclusion
In this work, we have shown that discriminant tracking

can be framed as a saliency problem, and solved using bi-
ologically inspired computational principles. The resulting
framework provides a principled unifying methodology to
perform all three tasks involved in tracking: initialization,
feature selection and target detection. Experimental results
show that tracking using the DST is robust and accurate,
outperforming previous state-of-the-art trackers. Being un-
supervised and invariant to egomotion, DST could be used
for applications such as automated surveillance and moni-
toring from moving cameras.
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