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Abstract

We present results on the PETS 2009 dataset using
surveillance systems based on holistic properties of the
video. In particular, we evaluate a crowd counting sys-
tem, based on regression of holistic (global) features, on the
PETS 2009 dataset. We also present experimental results
on crowd event detection when using the dynamic texture
model to represent holistic motion flow in the video.

1. Introduction

There is currently a great interest in vision technology
for monitoring all types of environments. This could have
many goals, e.g. security, resource management, or adver-
tising. From the technological standpoint, computer vision
solutions typically focus on detecting, tracking, and analyz-
ing individuals in the scene. However, there are many prob-
lems in environment monitoring that can be solved without
explicit tracking of individuals. These are problems where
all the information required to perform the task can be gath-
ered by analyzing the environment holistically: e.g. mon-
itoring of traffic flows, detection of disturbances in public
spaces, detection of speeding on highways, or estimation of
the size of moving crowds. By definition, these tasks are
based on either properties of 1) the “crowd” as a whole,
or 2) an individual’s “deviation” from the crowd. In both
cases, to accomplish the task it should suffice to build good
models for the patterns of crowd behavior. Events could
then be detected as variations in these patterns, and abnor-
mal individual actions could be detected as outliers with
respect to the crowd behavior.

In this work, we demonstrate the efficacy of computer
vision surveillance systems that utilize holistic representa-
tions of the scene on the PETS 2009 database. In particular,
we test a crowd counting system that is based on segmenting
the crowd into sub-parts of interest (e.g. groups of people
moving in different directions) and estimating the number
of people by analyzing holistic properties of each compo-
nent [1]. We also perform event recognition by holistically

modeling the crowd flow in the scene using the dynamic
texture model, and training event classifiers on dynamic tex-
tures [2]. In the remainder of this paper, we review the
crowd counting system from [1] in Section 2, and the dy-
namic texture classifiers from [2] in Section 3. We then dis-
cuss the experimental setup and results on the PETS 2009
dataset in Section 4 and 5.

2. Crowd counting using low-level features

We adopt the crowd counting system proposed in [1],
which is based on regression of low-level features. Con-
sider the example scene shown in Figure 1, where the goal is
to estimate the number of people moving in each direction.
Given a segmentation into the two sub-components of the
crowd, the key insight is that certain low-level global fea-
tures, extracted from the crowd segment, are indeed good
indicators of the number of people in the crowd segment.
Intuitively, one such features, assuming proper normaliza-
tion for the perspective of the scene, is the area of the crowd
segment (i.e., the number of pixels in the segment). In the
ideal case, this relationship should be linear. However, due
to a variety of confounding factors (e.g. occlusions and seg-
mentation errors), this relationship may deviate from lin-
earity. This indicates that additional features are required to
better model the crowd count, along with a suitable regres-
sion function.

The counting system of [1] is outlined in Figure 2. The
video is segmented into crowd regions moving in different
directions, using a mixture of dynamic textures [3]. For
each crowd segment, various features are extracted, while
applying a perspective map to weight each image location
according to its approximate size in the real scene. Finally,
the number of people per segment is estimated from the fea-
ture vector with Gaussian process regression.

2.1. Crowd segmentation

The mixture of dynamic textures [3] is used to segment
the crowds moving in different directions. The video is rep-
resented as a collection of spatio-temporal patches, which
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Figure 1. (left) an example of View 1 from the PETS 2009 dataset, along with the regions-of-interest (R0=blue, R1=red, R2=magenta);
(right) the sidewalk and regions-of-interest projected into the 3-d scene.
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Figure 2. Crowd counting system: the scene is segmented into crowds moving in different directions. Features, which are normalized to
account for perspective, are extracted from each segment, and the number of people in each segment is estimated with Gaussian process
regression.

are modeled as independent samples from a mixture of dy-
namic textures. The mixture model is learned with the
expectation-maximization (EM) algorithm [3]. Video lo-
cations are then scanned sequentially, a patch is extracted
at each location, and assigned to the mixture component of
largest posterior probability. The location is declared to be-
long to the segmentation region associated with that com-
ponent. In this work, we use the 13-57 and 13-59 se-
quences from View 1 to train the segmentation model. The
remaining video was then segmented by computing the pos-
terior assignments as before. More implementation details
are available in [3].

2.2. Perspective normalization

Before extracting features from the crowd segments, it
is important to consider the effects of perspective. Because
objects closer to the camera appear larger, any feature (e.g.
the segment area) extracted from a foreground object will
account for a smaller portion of the object than one ex-
tracted from an object farther away. This makes it impor-
tant to normalize the features for perspective. In this work,
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Figure 3. Perspective map for View 1: a) an example of a virtual
person modeled as a cylinder; b) the perspective map for View 1,
with contours (red) and sidewalk (blue).

we weight each pixel according to a perspective normaliza-
tion map, which applies a pixel weight that is based on the
perceived size of an object at different depths, with larger
weights given to further objects.

The perspective map was constructed by moving a vir-
tual person, approximated as a cylinder with height 1.75m
and radius 0.25m, in the 3d-scene. For each pixel (x, y)
in the 2-d camera view, a cylinder was positioned in the 3-
d scene such that the center of the cylinder projects onto
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(x, y) in the 2-d view (e.g. see Figure 3a). The num-
ber of total pixels used by the filled-in cylinder is de-
noted as c(x, y). The perspective map was then computed
as M(x, y) = c(230, 123)/c(x, y), where the coordinates
(230, 123) correspond to a reference person on the right-
side of the walkway. Figure 3b shows the perspective map
for View 1, with contour lines showing where the weights of
the pixels are {1, · · · , 5}. Finally, M(x, y) is the perspec-
tive map for extracting features based on the area or size
of the object. When the features are based on edges (e.g.
edge histograms), then the weights are the square-roots of
the perspective map,

√
M(x, y).

2.3. Feature extraction

Ideally, features such as segmentation area or number of
edges should vary linearly with the number of people in the
scene [4,5]. However, local non-linearities in the regression
function arise from a variety of factors, including occlu-
sion, segmentation errors, and pedestrian configuration (e.g.
spacing within a segment). To model these non-linearities,
we extract a total of 30 features from each crowd segment.

2.3.1 Segment features

These features capture properties of the segment, such as
shape and size.

• Area – total number of pixels in the segment.
• Perimeter – total number of pixels on the segment

perimeter.
• Perimeter edge orientation – a 6-bin orientation his-

togram of the segment perimeter. The orientation of
each edge pixel is computed by finding the maximum
response to a set of oriented Gaussian filters, with op-
posite orientations (180◦ apart) considered the same.

• Perimeter-area ratio – ratio between the segment
perimeter and area, which measures the complexity of
the segment shape.

• “Blob” count – the number of connected components
with more than 10 pixels in the segment.

2.3.2 Internal edge features

The edges contained in a crowd segment are a strong clue
about the number of people in the segment [4, 6]. A Canny
edge detector [7] is applied to each frame, and the result is
then masked by the crowd segmentation, forming the inter-
nal edge image. The following edge features are computed:

• Total edge pixels – total number of internal edge pixels
contained in the segment.

• Edge orientation – 6-bin histogram of the edge orien-
tations in the segment, generated in the same way as
the perimeter orientation histogram.

• Minkowski dimension - a fractal dimension of the in-
ternal edges, which estimates the degree of “space-
filling” of the edges [8].

2.3.3 Texture features

Texture features are computed using the gray-level co-
occurrence matrix (GLCM), similar to [9]. First, the im-
age is quantized into 8 gray levels (from 256), and the joint
histogram of neighboring pixel values p(i, j|θ) is estimated
for angles θ ∈ {0◦, 45◦, 90◦, 135◦}. The following texture
properties are computed for each θ, resulting in a total of 12
texture features:

• Homogeneity: measures the smoothness of the texture.
• Energy: measures the total sum-squared energy.
• Entropy: measures the randomness of the texture dis-

tribution.

2.4. Gaussian process regression

Feature vectors for each frame are formed by concate-
nating all 30 features, described in Section 2.3, into a single
vector x ∈ R

30. A Gaussian process (GP) [10] is used
to regress feature vectors to the number of people per seg-
ment. The GP defines a distribution over functions, which
is “pinned down” at the training points. The classes of func-
tions that the GP can model is dependent on the kernel func-
tion used. For the task of pedestrian counting, we note that
the dominant trend of many of the features is linear (e.g.
segment area), with local non-linearities. To capture both
trends, we combine the linear and the squared-exponential
(RBF) kernels, i.e.

k(xp, xq) = α1(xT
p xq + 1) + α2e

−‖xp−xq‖2

α3 + α4δ(p, q)

with hyperparameters α = {α1, α2, α3, α4}. The first and
second terms of the kernel are the linear and RBF compo-
nents, while the third term models observation noise. The
hyperparameters are learned by maximizing the marginal
likelihood of the training data.

3. Event Classification with Dynamic Textures

Since most of the information required for the classifica-
tion of crowd events is contained in the interaction between
the many motions that it contains, a holistic representation
can be used to capture the variability of the motion field
without the need for segmenting or tracking individual com-
ponents. We adopt the methodology of [2], where the entire
motion field of each video is modeled as a dynamic texture
(DT) [11]. A dynamic texture is a generative probabilistic
model that treats a video as a sample from a linear dynami-
cal system (LDS),{

yt = Cxt + wt + ȳ
xt = Axt−1 + vt

(1)
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scenario test video region training set training frames
S1.L1 13-57 R0, R1, R2 13-59, 13-59F, 14-03, 14-03F 1308
S1.L1 13-59 R0, R1, R2 13-57, 13-57F, 14-03, 14-03F 1268
S1.L2 14-06 R1, R2 13-57, 13-57F, 13-59, 13-59F, 14-03, 14-03F 1750
S1.L3 14-17 R1 13-57, 13-57F, 13-59, 13-59F, 14-03, 14-03F 1750

Table 1. test videos and training sets for PETS 2009 counting experiments

total right left PETS
scenario video region error MSE bias error MSE bias error MSE bias pred. true error frames
S1.L1 13-57 R0 2.308 8.362 -1.855 0.249 0.339 0.131 2.475 8.955 -2.032 4411 4838 2.46 218

R1 1.697 5.000 -1.615 0.100 0.100 -0.045 1.643 4.720 -1.579 2301 2757 2.28 217
R2 1.072 1.796 -0.258 0.235 0.317 0.217 0.842 1.484 -0.462 1436 1437 0.99 201

S1.L1 13-59 R0 1.647 4.087 -1.025 1.668 4.158 -1.154 0.154 0.154 0.145 3455 3628 1.41 240
R1 0.685 1.116 0.120 0.589 0.871 0.049 0.095 0.095 0.087 1636 1539 0.69 217
R2 1.282 2.577 -1.000 1.291 2.436 -1.025 0.066 0.066 -0.058 1313 1473 1.23 228

S1.L2 14-06 R1 4.328 44.159 -4.219 4.338 44.159 -4.219 0.005 0.005 0.005 1727 2462 5.89 131
R2 3.139 26.035 -2.891 3.144 26.219 -2.915 0.020 0.020 0.020 1078 1629 4.48 132

S1.L3 14-17 R1 0.604 1.220 0.385 0.604 1.198 0.407 0.000 0.000 0.000 518 481 0.98 50
Table 2. Crowd Counting Results on PETS 2009: (left) per-frame average results; (right) results using PETS ground-truth.

where yt ∈ R
m encodes the vectorized video frame at time

t, and xt ∈ R
n is a hidden state variable (n < m) that

represents the dynamics of the video over time. The matrix
C ∈ R

m×n is the observation matrix, that projects from
the hidden state space to the observations, A ∈ R

n×n is
the transition matrix that controls the evolution of the hid-
den state (and hence, the motion of the video) over time,
and ȳ is the video mean. Finally, wt and vt are normally
distributed noise terms with zero mean and covariance ma-
trices R ∈ rIm and Q ∈ R

n×n, respectively. When the
DT parameters are learned as in [11], the observation ma-
trix contains the principal components of the video, and x t

are the corresponding time-varying PCA coefficients.
An event classifier is trained as follows. Given a set of

training video clips and the corresponding classes, a dy-
namic texture is learned for each video clip. For the nearest-
neighbor classifier, we use the Kullback-Leibler (KL) di-
vergence [2] or the Martin distance [12] to find the closest
dynamic texture to that of the test clip. An SVM classifier
is also trained using the KL kernel [14], which is a kernel
function for probability distributions that is analogous to the
RBF kernel for real vectors.

4. Counting Experiments on PETS 2009

In this section we present the experimental results on the
PETS 2009 dataset using the counting system of Section 2.

4.1. Data and Setup

The counting experiments use View 1 from the 13-57,
13-59, 14-03, 14-06, and 14-17 videos from the
PETS 2009 dataset. An example frame of video is shown in
Figure 1, along with the three regions of interests (R0, R1,
and R2). The ground-truth count was obtained by annotat-
ing the number of left-moving and right-moving people by
hand in every 5th frame. The count in the remaining frames

were obtained using linear interpolation.
A counting regression function was learned for each of

the test videos and regions using the training set listed
in Table 1. A regression function was learned for right-
moving and left-moving people classes. Because of the
small amount of training data, we augment the training set
by flipping the classes of each of the training videos (this is
denoted as a video with an F suffix). The counts for the left-
and right-moving people classes were obtained by rounding
the regression predictions to the nearest non-negative inte-
ger. The total count was obtained by summing the left and
right counts. We report the absolute error, mean-squared er-
ror, and error bias between the ground-truth count and the
estimates, averaged over the frames of each test video.

4.2. Counting Results

A summary of the counting results, with respect to our
hand-annotated ground-truth, for the total, left-moving, and
right-moving count predicitions are given in Table 2 (left).
For the 13-57, 13-59, and 14-17 videos, the count error
is reasonable (2.3, 1.6 and 0.6). However, the error is much
larger for the 14-06 video (4.3 error). This is because the
14-06 video contains a very dense crowd, which is not
represented in the training set. Hence, the system underes-
timates the counts for this video. Table 2 (right) presents
the overall predicted counts, true count, and per-frame er-
ror rate using the PETS ground-truth data. The error rates
are similar to those using our ground-truth data, with differ-
ences due to the number of frames evaluated and the method
of hand-annotation.

A plot of the counts over time for the various regions
(R0, R1, and R2) and classes (total, right, and left) are
shown in Figures 4 and 5. Again, in general, the count esti-
mates follow the ground-truth counts, except for the 14-06
video. Several example frames of each video are shown in
Figures 6, 7, and 8. The region-of-interest and crowd esti-
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mates are displayed in each frame. In addition, the crowd
segmentation and ROI are projected into the 3-d scene, to
obtain an occupancy map of the sidewalk, which appears
below each example frame.

5. Event Recognition on PETS 2009

In this section, we report results on crowd event recogni-
tion on the PETS 2009 dataset.

5.1. Data and Setup

Videos from the PETS 2009 dataset were collected and
the frames were annotated with one of 6 classes: walking,
running, merging, splitting, evacuation, and dispersion (see
Table 3). Each video was downsampled by 8 and split into
chunks of 20 frames each. A dynamic texture was learned
for each chunk, and the distance matrices for the Martin dis-
tance (MD), state-space KL divergence (SKL), and image-
space KL divergence (IKL) were computed. The dataset
was then split into training (75%) and test (25%) sets, and
a nearest-neighbor (NN) or support vector machine (SVM)
was learned for each of the 6 classes (e.g. walking vs. not-
walking). We report the error for each classifier on the test
set, averaged over the 4 splits of the data. The experiment
was repeated for each view (Views 1, 2, 3, and 4), and for
all four views combined.

5.2. Recognition Results

The event classification results are presented in Table 4,
for the different classes and views. The average error rate
is also shown for each view. Overall, the MD-NN classifier
has the lowest average error rate for 3 out of 4 of the views.

Finally, to obtain a probability score for classification,
we combine the MD-NN and SKL-NN classifier decisions
for the 4 views using a voting scheme (8 votes total). If the
probability is greater than 0.5 (more than 4 votes), then the
event is detected. Figure 9 shows several examples of event
detection on video 14-33. In the beginning of the video,
people walk towards the center of the frame, and the “walk-
ing” and “merging” events are detected. Next, the people
form a group in the center of the frame, and no events are
detected since the people are not moving. Finally, when the
people run away from the center, the “running”, “evacua-
tion”, and “dispersion” events are detected.

6. Conclusions

In this paper, we have presented results on the PETS
2009 dataset using surveillance systems based on holistic
properties of the video. In particular, experimental results
indicate that crowd counting using low-level global features
is indeed accurate and viable. We have also presented crowd
event detection results, which indicates crowd events, such

as evacuation, dispersion, and running, can be detected us-
ing a global representation of motion flow in the video.

class set:video[frames]
walking S0:12-34[all]; S0:13-06[0-42]; S0:13-19[82-218];

S0:13-19[320-end]; S0:13-38[0-48]; S0:14-03[all];
S0:14-06[all]; S1.L1:13-57[all]; S1.L1:13-59[all];
S2.L3:14-41[all]; S3:12-43[all]; S3:14-13[all];
S3:14-37[all]; S3:14-46[all]; S3:14-52[all];
S3:14-16[0-30,108-162]; S3:14-31[0-42,48-130];
S3:14-33[265-310];

running S3:14-16[36-end]; S3:14-33[328-377];
evacuation S3:14-16[36-102,180-end];
dispersion S3:14-27[96-144,270-318]; S3:14-33[328-377];
merging S3:14-33[0-180];
splitting S3:14-31[48-130]

Table 3. Videos used for crowd event detection

MD SKL IKL
view NN NN SVM NN SVM

w
al

ki
ng

001 0.05 0.02 0.06 0.11 0.10
002 0.12 0.08 0.13 0.05 0.04
003 0.06 0.05 0.11 0.24 0.13
004 0.12 0.11 0.17 0.28 0.20
all 0.13 0.14 0.17 0.34 0.13

ru
nn

in
g

001 0.03 0.03 0.09 0.03 0.03
002 0.06 0.09 0.20 0.03 0.06
003 0.00 0.00 0.06 0.03 0.03
004 0.09 0.06 0.19 0.10 0.10
all 0.15 0.16 0.16 0.12 0.15

ev
ac

ua
tio

n 001 0.10 0.10 0.07 0.10 0.06
002 0.13 0.15 0.07 0.07 0.07
003 0.10 0.10 0.07 0.03 0.07
004 0.09 0.09 0.06 0.07 0.07
all 0.12 0.12 0.08 0.06 0.06

di
sp

er
si

on

001 0.15 0.15 0.34 0.42 0.31
002 0.21 0.21 0.21 0.37 0.26
003 0.29 0.29 0.34 0.27 0.10
004 0.05 0.05 0.28 0.36 0.32
all 0.22 0.25 0.30 0.25 0.20

m
er

gi
ng

001 0.37 0.31 0.39 0.39 0.45
002 0.39 0.37 0.45 0.45 0.27
003 0.33 0.45 0.18 0.52 0.45
004 0.12 0.60 0.33 0.54 0.37
all 0.44 0.44 0.42 0.44 0.32

sp
lit

tin
g

001 0.33 0.33 0.27 0.27 0.27
002 0.06 0.06 0.27 0.25 0.33
003 0.00 0.06 0.20 0.39 0.27
004 0.27 0.27 0.35 0.39 0.27
all 0.30 0.30 0.28 0.23 0.26

av
er

ag
e

001 0.17 0.16 0.20 0.22 0.20
002 0.16 0.16 0.22 0.20 0.17
003 0.13 0.16 0.16 0.25 0.18
004 0.12 0.20 0.23 0.29 0.22
all 0.23 0.24 0.24 0.24 0.19

Table 4. Error rates for classifying the 6 crowd events in PETS
2009
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Figure 4. Count over time for the 13-57: a) total count for R0, R1, and R2; b,c,d) right and left count for regions R0, R1, and R2; Count
over time for the 13-59 video: e) total count for R0, R1, and R2; f,g,h) right and left counts for regions R0, R1, and R2.
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Figure 5. Count over time for the 14-06 video: a) total count for R1 and R2; b,c) right and left counts for regions R1, and R2; Count over
time for the 14-17 video: d) total count for R1; e) right and left counts for region R1.
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Figure 6. (top) Example frames for 13-57, with the segmentation, regions-of-interests, and count estimates. (bottom) the occupancy maps
for each frame.
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Figure 7. (top) Example frames for 14-06, with the segmentation, regions-of-interests, and count estimates. (bottom) the occupancy maps
for each frame.
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Figure 8. (top) Example frames for 14-17, with the segmentation, regions-of-interests, and count estimates. (bottom) the occupancy maps
for each frame.

Figure 9. Examples of event recognition on 14-33. Green text indicates that the class was detected. Detection probabilities are given in
parenthesis.
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