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Abstract

Poisson regression models the noisy output of a count-
ing function as a Poisson random variable, with a log-mean
parameter that is a linear function of the input vector. In
this work, we analyze Poisson regression in a Bayesian set-
ting, by introducing a prior distribution on the weights of
the linear function. Since exact inference is analytically un-
obtainable, we derive a closed-form approximation to the
predictive distribution of the model. We show that the pre-
dictive distribution can be kernelized, enabling the repre-
sentation of non-linear log-mean functions. We also derive
an approximate marginal likelihood that can be optimized
to learn the hyperparameters of the kernel. We then relate
the proposed approximate Bayesian Poisson regression to
Gaussian processes. Finally, we present experimental re-
sults using Bayesian Poisson regression for crowd counting
from low-level features.

1. Introduction

Recent work [1, 2] on crowd counting using low-level
feature regression has shown promise in computer vision.
One advantage with these methods is that they bypass in-
termediate processing stages, such as people detection or
tracking, that may be susceptible to problems when the
crowd is dense. In [1], the scene is segmented into crowds
moving in different directions and various low-level fea-
tures are extracted from each crowd segment (e.g. informa-
tion on the shape, edges and texture of the segment). The
crowd count in each segment is then estimated with a Gaus-
sian process (GP) regression function that maps feature vec-
tors to the crowd size. Experiments in [1] indicate that the
counting algorithm is capable of producing accurate counts,
for a wide range of crowd densities.

One problem with the system of [1] is that it uses GP re-
gression, which models continuous real-valued functions,
to predict discrete counting numbers. Because of this
mismatch, regression may not be taking full advantage of
Bayesian inference. For example, rounding of the real-
valued predictions is not handled in a principled way, e.g.

by reducing the confidence when the prediction is far from
an integer. In addition, the confidence levels are currently
measured in standard-deviations, which provides little intu-
ition on the reliability of the estimates. A confidence mea-
sure based on posterior probabilities seems more intuitive
for counting numbers. Finally, negative outputs of the GP
must be truncated to zero, and it is unclear how this affects
the optimality of the predictive distribution.

One common method of regression for counting num-
bers is Poisson regression [3], which models the noisy out-
put of a counting function as a Poisson random variable,
with a log-mean parameter that is a linear function of the
input vector. This is analogous to standard linear regres-
sion, except that the mean is modeled as the exponential
of a linear function to ensure non-negative values, and that
the noise model is Poisson because the outputs are count-
ing numbers. One way of extending Poisson regression to
the Bayesian setting is to adopt a hierarchical model, where
the log-mean function is modeled with a standard Gaus-
sian process [4, 5, 6]. These solutions, however, have two
disadvantages. First, because of the lack of conjugacy be-
tween the Poisson and the GP, [4, 5, 6] must approximate
inference with Markov-chain Monte Carlo (MCMC), which
limits these algorithms to small datasets. Second, the hier-
archical model contains two redundant noise sources: 1)
the Poisson-distributed observation noise, and 2) the Gaus-
sian noise of the GP in the log-mean function. These two
noise terms model essentially the same thing: the noise in
observing the count. A more parsimonious representation
would include only the observation noise, while modeling
the mean as a deterministic function.

In this work, we analyze the standard Poisson regression
model in a Bayesian setting, by adding a Gaussian prior
on the weights of the linear log-mean function. Since ex-
act inference is analytically unobtainable, approximate in-
ference is still necessary. However, in contrast to previous
work [4, 5, 6], we propose a closed-form approximation to
Bayesian inference. The contributions of this paper, with
respect to Bayesian Poisson regression (BPR), are five-fold:
1) we derive a closed-form approximation to the predictive
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distribution for BPR; 2) we kernelize the predictive distri-
bution, enabling the representation of non-linear log-mean
functions via kernel functions; 3) we derive an approxi-
mate marginal likelihood function for optimizing the hyper-
parameters of the kernel function with Type-II maximum
likelihood; 4) we show that the proposed approximation to
BPR is related to a Gaussian process with a special non-
i.i.d. noise term; 5) finally, we present experimental results
that show improvement in crowd counting accuracy when
using the proposed model.

The remainder of this paper is organized as follows. In
Sections 2 and 3, we briefly review Gaussian processes and
Poisson regression. In Section 4, we present the Bayesian
framework for Poisson regression, derive a closed-form ap-
proximation for the predictive distribution and marginal
likelihood, and kernelize the regression model. Finally,
in Section 5, we present experimental results on Bayesian
Poisson regression for crowd counting.

2. Gaussian process regression

Gaussian process (GP) regression [7] is a Bayesian treat-
ment for predicting a function value f(x) from the input
vector x ∈ R

d. Consider the case when f(x) is linear, from
which we observe a noisy target y, i.e.

f(x) = xT w, y = f(x) + ε, (1)

where w ∈ R
d is the weight vector of the linear model,

and the observation noise is Gaussian, ε ∼ N (0, σ2
n). The

Bayesian model assumes a prior distribution on the weight
vectors, w ∼ N (0, Σp), where Σp is the covariance matrix
of the weight prior.

2.1. Bayesian prediction

Let X = [x1, · · ·xN ] be the matrix of observed input
vectors xi, and y = [y1 · · · yN ]T be the vector of ob-
served outputs yi. Bayesian inference on (1) is based on the
posterior distribution of the weights w, conditioned on the
observed data {X,y}, and is computed with Bayes’ rule,

p(w|X,y) =
p(y|X,w)p(w)∫
p(y|X,w)p(w)dw

. (2)

Since the data-likelihood and weight prior are both Gaus-
sian, (2) is also Gaussian [7],

p(w|X,y) = G(w| 1
σ2

n

A−1Xy, A−1), (3)

where G(x|µ, Σ) = (2π)−
d
2 |Σ|− 1

2 exp(− 1
2 ‖x − µ‖2

Σ)
is the equation of a multivariate Gaussian distribution,
‖x‖2

Σ = xT Σ−1x, and A = 1
σ2

n
XXT + Σ−1

p . Finally,
given a novel input vector x∗, the predictive distribution

of f∗ = f(x∗) is obtained by averaging over all possible
model parameterizations, with respect to the posterior dis-
tribution of w [7],

p(f∗|x∗, X,y) =
∫

p(f∗|x∗,w)p(w|X,y)dw (4)

= G(f∗| 1
σ2

n

xT
∗ A−1Xy,xT

∗ A−1x∗). (5)

2.2. Kernelized regression

The predictive distribution in (5) can be rewritten to only
depend on the inner products between the inputs x i. Hence,
the “kernel trick” can be applied to obtain a kernel version
of the Bayesian linear regression. Consider the model

f(x) = φ(x)T w, (6)

where φ(x) is a high-dimensional feature transformation of
x from dimension d to D, i.e. φ : R

d → R
D , and w ∈

R
D. Substituting into (5) and applying the matrix inversion

lemma, the predictive distribution can be rewritten in terms
of the kernel function k(x,x′) = φ(x)T Σpφ(x′) [7]

p(f∗|x∗, X,y) = G(f∗|µ∗, Σ∗), (7)

where the predictive mean and covariance are

µ∗ = kT
∗ (K + σ2

nI)−1y, (8)

Σ∗ = k(x∗,x∗) − kT
∗ (K + σ2

nI)−1k∗, (9)

and K is the kernel matrix with entries Kij = k(xi,xj),
and k∗ = [k(x∗,x1) · · · k(x∗,xN )]T . Hence, non-linear
regression is achieved by adopting different positive definite
kernel functions. For example, using a linear kernel,

kl(x,x′) = θ2
1(x

T x′ + 1) + θ2
2, (10)

results in standard Bayesian linear regression, while em-
ploying a squared-exponential (RBF) kernel,

kr(x,x′) = θ2
1e

− 1
θ2
2
‖x−x′‖2

+ θ2
3 , (11)

yields Bayesian regression for locally smooth, infinitely dif-
ferentiable, functions. Finally, a compound kernel, such as
the RBF-RBF kernel,

krr(x,x′) = θ2
1e

− 1
θ2
2
‖x−x′‖2

+ θ2
3e

− 1
θ2
4
‖x−x′‖2

+ θ2
5, (12)

which contains two RBF functions with different length
scales, can simultaneously model both global non-linear
trends and local deviations from the trend.

The hyperparameters θ of the kernel function k(x,x ′)
can be learned with Type-II maximum likelihood. The



marginal likelihood of the training data {x i, yi}N
i=1 is max-

imized with respect to the hyperparameters ([7], Chapter 5)

p(y|X, θ) =
∫

p(y|w, X, θ)p(w|θ)dw (13)

= −1
2
yT K−1

y y − 1
2

log |Ky| − N

2
log 2π, (14)

where Ky = K + σ2
nI . More details are available in [7].

3. Regression for counting numbers

While the GP provides a Bayesian framework for re-
gressing to real-valued outputs, it is not clear how to use
the GP when the outputs are counting numbers, i.e. non-
negative integers, y ∈ Z+ = {0, 1, 2, · · · }. A typical ap-
proach to regression for counting functions models the out-
put as a Poisson random variable, where the mean param-
eter is a function of the input variable. In this section, we
review two standard regression methods for counting num-
bers, Poisson regression and negative binomial regression.

3.1. Poisson regression

Poisson regression [3] models the noisy output y as a
Poisson distribution, where the log-mean parameter is a lin-
ear function of the input vector x ∈ R

d, i.e.

λ(x) = xT β, µ(x) = eλ(x), y ∼ Poisson(µ(x)), (15)

where λ(x) is the log-mean function, µ(x) is the mean
function, y ∈ Z+, and β ∈ R

d is the weight vector.
The likelihood of an output y given an input vector x is

p(y|x, β) = e−µ(x)µ(x)y

y! . The mean and the variance of
the predictive distribution are equal, i.e. E[y] = var(y) =
µ(x), and mode(y) = �µ(x)�.

Given a matrix of input vectors X = [x1 · · ·xN ] and
a vector of outputs y = [y1 · · · yN ]T , the weight vec-
tor β can be learned by maximizing the data likelihood,
log p(y|X, β), which is a concave in β. Poisson regres-
sion is an example of a generalized linear model [8], which
is a general regression framework when the underlying co-
variates are linear. Generalized kernel machines, and the
resulting kernel Poisson regression, were proposed in [9].

3.2. Negative binomial regression

A Poisson random variable is equidispersed, i.e. the vari-
ance is equal to the mean. However, in many cases, the ac-
tual random variable is overdispersed, with variance greater
than the mean, due to additional factors that are not ac-
counted for by the input x or the model itself. Poisson
regression is ill-suited to model overdispersion because it
will bias the mean towards the variance, in order to keep the
equidispersion property. One popular regression model for

overdispersion replaces the Poisson noise with a negative
binomial [3],

µ(x) = exp(xT β), y ∼ NegBin(µ(x), α), (16)

where α is the scale parameter of the negative binomial.
The likelihood of y given an input vector x is

p(y|x, β, α) =
Γ(y + α−1)

Γ(y + 1)Γ(α−1)
(p)α−1

(1 − p)y, (17)

where p = α−1

α−1+µ(x) , and Γ(·) is the gamma function. Note
that the negative binomial reduces to a Poisson distribution
when α = 0. The mean, variance, and mode of y are

E[y] = µ(x), (18)

var(y) = µ(x)(1 + αµ(x)), (19)

mode(y) =
{ �(1 − α)µ(x)�, α < 1

0, α ≥ 1 . (20)

Hence, for α > 0, the negative binomial has variance larger
than that of an equivalent Poisson with mean µ(x). Similar
to Poisson regression, the parameters {α, β} of the negative
binomial model can be estimated by maximizing the data
log-likelihood (see [3] for more details).

4. Bayesian Poisson regression

Although both Poisson and negative binomial regression
provide methods for regressing a counting function, they do
not do so in a Bayesian setting, i.e. by integrating over the
posterior distribution of the weight vector β. In this sec-
tion, we present a Bayesian regression model for counting
functions. We adopt the standard Poisson regression model,

λ(x) = xT β, µ(x) = eλ(x), y ∼ Poisson(µ(x)), (21)

and introduce a Gaussian prior on the weight vector, β ∼
N (0, Σp). The posterior distribution of β, given the training
data {X,y}, is computed with Bayes’ rule

p(β|X,y) =
p(y|X, β)p(β)∫
p(y|X, β)p(β)dβ

. (22)

However, a closed-form expression of (22) is analytically
unobtainable because of the lack of conjugacy between the
Poisson likelihood and the Gaussian prior. Instead, we will
adopt the approximate posterior distribution of [10]. We
will then derive a closed-form expression for the predictive
distribution and marginal likelihood, using this approximate
posterior distribution, and kernelize both quantities.

4.1. Log-gamma approximation

The approximate posterior distribution of [10] is based
on approximating the log-gamma distribution with a
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Figure 1. Gaussian approximation of the log-gamma distribution
for different values of y. The plot is normalized so that the distri-
butions are zero-mean and unit variance.

Gaussian. Consider a Gamma random variable µ ∼
Gamma(a, b), with distribution

p(µ|a, b) =
1

Γ(a)ba
µa−1e−

µ
b . (23)

The transformed random variable λ = log µ has a log-
gamma distribution. It is well known that, for large a, the
log-gamma distribution is approximately Gaussian [11, 12],

λ = log µ ∼ N (log a + log b, a−1). (24)

Setting b = 1 and a = y ∈ Z+, (23) becomes

p(µ|y, 1) =
1

Γ(y)
µy−1e−µ. (25)

The distribution of λ is obtained with the change of variable
formula, leading to the following approximation,

p(λ|y, 1) = p(µ = eλ|y, 1)
∂

∂λ
eλ (26)

=
1

(y − 1)!
eλye−eλ ≈ G(λ| log y, y−1). (27)

Figure 1 plots the Gaussian approximation of the log-
gamma distribution for different values of y. As y increases,
the log-gamma converges to the Gaussian approximation.

4.2. Approximate posterior distribution

We now present the approximation to the posterior dis-
tribution p(β|X,y). The output y is Poisson, and hence the
data-likelihood is

p(y|X, β) =
N∏

i=1

1
yi!

µ(xi)yie−µ(xi) (28)

=
N∏

i=1

1
yi(yi − 1)!

eλ(xi)yie−eλ(xi)
. (29)

Using (27), this can be approximated as [10]

p(y|X, β) ≈
N∏

i=1

1
yi

G(λ(xi)| log yi, y
−1
i ) (30)

=
|Σy|

1
2

(2π)
N
2

e
− 1

2‖XT β−t‖2

Σy , (31)

where Σy = diag([ 1
y1

· · · 1
yN

]), and t = log(y) is the
element-wise logarithm of y. Substituting into (22),

log p(β|X,y) ∝ log p(y|X, β) + log p(β) (32)

≈ −1
2

∥∥XT β − t
∥∥2

Σy
− 1

2
‖β‖2

Σp
, (33)

where we have dropped terms that are not a function of β.
Expanding the norm term and completing the square, the
posterior distribution is approximately Gaussian,

p(β|X,y) ≈ G(β|µ̂β , Σ̂β), (34)

with mean and variance

µ̂β = (XΣ−1
y XT + Σ−1

p )−1XΣ−1
y t, (35)

Σ̂β = (XΣ−1
y XT + Σ−1

p )−1. (36)

This approximate posterior distribution was originally de-
rived in [10]. In the remainder of this section, we extend
[10], by deriving an approximation to the predictive distri-
bution and marginal likelihood for Bayesian Poisson regres-
sion, and apply the kernel trick to both quantities.

4.3. Bayesian prediction

Given a novel input x∗, the predictive distribution of the
output y∗ is obtained by averaging over all possible param-
eters, with respect to the posterior distribution of β,

p(y∗|x∗, X,y) =
∫

p(y∗|x∗, β)p(β|X,y)dβ. (37)

Let us define an intermediate random variable λ∗ = xT
∗ β.

Note that λ∗ is a linear transformation of β, and that the pos-
terior distribution of β is approximately Gaussian. Hence,
the distribution of λ∗ is also approximately Gaussian,

p(λ∗|x∗, X,y) = G(λ∗|µ̂λ, σ̂2
λ) (38)

where

µ̂λ = xT
∗ (XΣ−1

y XT + Σ−1
p )−1XΣ−1

y t, (39)

σ̂2
λ = xT

∗ (XΣ−1
y XT + Σ−1

p )−1x∗. (40)

Finally, we can obtain the predictive distribution by inte-
grating over λ∗,

p(y∗|x∗, X,y) =
∫

p(y∗|λ∗)p(λ∗|x∗, X,y)dλ∗ (41)

where p(y∗|λ∗) = e−(eλ∗ )(eλ∗)y∗/y∗! is a Poisson distribu-
tion. The integral in (41) does not have an analytic solution,
and thus an approximation is necessary.
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Figure 2. Examples of Bayesian Poisson regression using (a) the linear kernel, and (c) the RBF kernel. The mean parameter eµ̂λ and the
mode are plotted on top of the negative binomial predictive distribution. The corresponding log-mean functions are plotted in (b) and (d).

4.4. Closed-form approximate prediction

To obtain a closed-form approximation to the predictive
distribution in (41), we note that we can define a random
variable µ∗ = exp(λ∗), and hence λ∗ = log µ∗. Since λ∗
is approximately Gaussian, we can use (24) to approximate
λ∗ as a log-gamma random variable, or equivalently µ ∗ as
a gamma random variable, µ∗ ∼ Gamma(â, b̂), where

â = σ−2
λ , b̂ = σ2

λeµ̂λ . (42)

We can now rewrite the predictive distribution of (41) as the
integral over µ∗,

p(y∗|x∗, X,y) =
∫ ∞

0

p(y∗|µ∗)p(µ∗|x∗, X,y)dµ∗, (43)

where p(y∗|µ∗) = e−µ∗µy∗∗ /y∗! is a Poisson distribution,
and p(µ∗|x∗, X,y) is a gamma distribution. The gamma
is the conjugate prior of the Poisson, and thus the integral
in (43) can be solved analytically, resulting in a negative
binomial distribution [3]

p(y∗|x∗, X,y) =
Γ(â + y∗)

Γ(y∗ + 1)Γ(â)
(p̂)â(1 − p̂)y∗ , (44)

where p̂ = 1
1+b̂

= σ̂−2
λ

σ̂−2
λ +exp(µ̂λ)

. Hence, the predictive dis-

tribution of y∗ can be approximated as a negative binomial,

y∗|x∗, X,y ∼ NegBin(eµ̂λ , σ̂2
λ) (45)

with mean and scale parameter computed with (39, 40).

4.5. Kernelized regression

Similar to GP regression, we can extend BPR to repre-
sent non-linear log-mean functions using the kernel trick.
Given a high-dimensional feature transformation φ(x), the
log-mean function is

λ(x) = φ(x)T β. (46)

Rewriting (39, 40) in terms of φ(x) and applying the matrix
inversion lemma, the parameters of the λ∗ distribution can
be computed using a kernel function,

µ̂λ = kT
∗ (K + Σy)−1t, (47)

σ̂2
λ = k(x∗,x∗) − kT

∗ (K + Σy)−1k∗, (48)

where k(·, ·), K , and k∗ are defined as in Section 2.2. After
computing (47, 48), the predictive distribution is still (45).

The hyperparameters θ of the kernel k(x,x ′) can be
learned, in a manner similar to the GP, by maximizing the
marginal likelihood p(y|X, θ). Using the log-gamma ap-
proximation in (31), p(y|X, θ) is approximated with

log p(y|X, θ) ∝ −1
2

log |K + Σy| − 1
2
tT (K + Σy)−1t. (49)

Figure 2 presents two examples of learning a BPR function,
by maximizing the marginal likelihood. Two different ker-
nels were used, the linear kernel and RBF kernel, and the
predictive distributions are shown in Figures 2a and 2c, re-
spectively. The corresponding log-mean functions are plot-
ted in Figures 2b and 2d. While the linear kernel can only
model an exponential trend in the data, the RBF kernel is
capable of adapting to the local deviations in the function.

4.6. Relationship with Gaussian processes

We now relate the proposed approximate Bayesian Pois-
son regression to Gaussian processes. The equations for the
parameters of the approximate λ∗ distribution, µ̂λ and σ̂2

λ in
(47, 48), are almost identical to those of the GP predictive
distribution, µ∗ and Σ∗ in (8, 9). There are two main differ-
ences. First, while the GP noise term in (9) is i.i.d. (σ2

nI),
the noise term of BPR in (48) is dependent on the output
values (Σy = diag[ 1

y1
· · · 1

yN
]). This is a consequence of

assuming a Poisson noise model. Second, the predictive
mean µ̂λ in (47) is computed using the log-counts t, rather
than the counts y, as with the GP in (8).

Hence, we have the following interpretation of approxi-
mate Bayesian prediction for Poisson regression: given ob-
served data {X,y} and novel input x∗, the approximation
models the predictive distribution of the log-mean λ∗ as
a Gaussian process with non-i.i.d. observation noise with
covariance Σy = diag([ 1

y1
· · · 1

yN
]), learned from the data

{X, logy}. Given the distribution of λ∗, the predictive dis-
tribution for y∗ is a negative binomial with mean eµ̂λ and
scale parameter σ̂2

λ. Note that the variance of λ∗ plays a
role as the scale parameter of the negative binomial. Hence,
increased uncertainty in estimating λ∗ with a GP leads to
increased uncertainty in the y∗ prediction.



The approximation to the BPR marginal likelihood in
(49) differs from that of the GP in (14) in a similar manner
as above, and hence we have a similar interpretation. In
summary, we have shown that the proposed approximation
to BPR is based on assuming a GP prior on the log-mean
parameter of the Poisson output distribution. The GP prior
uses a special noise term, which approximates the uncer-
tainty that arises from the Poisson noise model. This is in
contrast to other methods [4, 5, 6] that assume the standard
i.i.d Gaussian noise in the GP prior.

5. Crowd Counting Experiments

In this section, we present experimental results on crowd
counting using the proposed Bayesian Poisson regression.
We use the crowd video database introduced in [1], which
contains 4000 frames of video of a pedestrian walkway with
a large number of moving people. The database is annotated
with two crowd motion classes, “away” from or “towards”
the camera, and the goal is to count the number of people
in each motion class. The database was split into a training
set of 1200 frames for learning the regression function, and
a test set of 2800 frames.

5.1. Experimental Setup

We use the crowd counting system from [1] to com-
pare different regression functions. The crowd was seg-
mented into the two motion classes, using the mixture of
dynamic textures [13]. A feature vector, composed of the
29 perspective-normalized features described in [1], was ex-
tracted from each crowd segment in each video frame. The
feature vectors were normalized so that each dimension had
zero mean and unit variance, based on the statistics from
the training frames. A Bayesian Poisson regression func-
tion was learned, from the training frames, using the linear
kernel in (10), and the RBF-RBF kernel in (12), which we
denote “BPR-l” and “BPR-rr”, respectively. For compari-
son, a GP regression function was also trained using the lin-
ear and RBF-RBF kernels (GPR-l and GPR-rr). A standard
linear least-squares regression function and Poisson regres-
sion function were also learned.

For BPR, the count estimate is the mode of the predictive
distribution. For the GP, the count estimate is obtained by
rounding the predictive mean to the nearest non-negative
integer. The quality of the count estimates are evaluated
with the mean-squared error, MSE = 1

M

∑M
i=1(ĉi − ci)2,

and absolute error, err = 1
M

∑M
i=1 |ĉi − ci|, between the

count estimate ĉi and the ground-truth counts c i, averaged
over the M test frames.

5.2. Experimental Results

Table 1 presents the counting error rates for the vari-
ous regression functions. For Poisson regression, the MSE

Table 1. Comparison of regression functions for crowd counting.
MSE err

Method away towards away towards

Poisson 3.1518 3.1179 1.3975 1.3750
BPR-l 3.0814 2.0936 1.3700 1.1686
BPR-rr 2.4675 2.0246 1.2154 1.1375

linear 3.3493 2.8718 1.4521 1.3304
GPR-l 3.2786 2.6929 1.4371 1.2800
GPR-rr 3.1725 2.0896 1.4561 1.1011
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Figure 3. Error rate for training sets of different sizes for the (left)
“away” crowd, and (right) “towards” crowd.

improves when using the Bayesian framework, decreasing
from 3.152/3.118 (away/towards) to 3.081/2.094 for lin-
ear BPR. The MSE further decreases to 2.468/2.025 when
non-linear trends in the log-mean function are modeled
with the RBF-RBF kernel (BPR-rr). Comparing the two
Bayesian regression models with linear kernels, BPR-l out-
performs GPR-l on both classes (MSE of 3.081/2.094 vs.
3.279/2.693). In the non-linear case, BPR-rr has a signifi-
cantly lower MSE than GPR-rr on the “away” class (2.468
vs. 3.173), but shows only a slight improvement on the “to-
wards” class (2.025 vs. 2.090). This indicates that BPR is
improving the cases where GPR tends to have larger error.

We also measured the test error while varying the size of
the training set, by picking a subset of the original training
set. Figure 3 plots the MSE versus the training size. Over-
all, the Bayesian methods (BPR and GPR) are more robust
when the training set is small, compared with standard lin-
ear or Poisson regression. This indicates that, in practice, a
system could be trained with fewer examples, thus reducing
the number of images that need to be annotated by hand.

Figure 4 plots the BPR-rr predictions and the true counts
for the “away” and “towards” crowds. The predictions track
the true counts in most of the test frames, with some errors
occuring due to outliers in the video (e.g. bicycles and skate-
boarders). Finally, Figure 5 presents the original image,
segmentation, and crowd estimates for several test frames.

6. Conclusions

In this paper, we have proposed an approximation to
Bayesian Poisson regression for modeling counting func-
tions. We derived a closed-form approximation to the pre-
dictive distribution of the model, and show that the model
can be kernelized, enabling the representation of non-linear
log-mean functions. We also propose an approximation to
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Figure 4. Crowd counting results over both the training and test sets for: (top) “away” crowd, and (bottom) “toward” crowd. The gray bars
show the one standard-deviations error bars of the predictive distribution.
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Figure 5. Crowd counting examples: The red and green segments are the “away” and “towards” crowds. The estimated crowd count for
each segment is in the top-left, with the (standard-deviation of the Bayesian prediction) and the [ground-truth]. The ROI is also highlighted.

the marginal likelihood, for learning the kernel hyperparam-
eters via type-II maximum likelihood. The proposed ap-
proximation is related to a Gaussian process with a special
non-i.i.d. noise term that approximates the Poisson output
noise. Finally, we apply BPR to feature-based crowd count-
ing, and improve on the results obtained with GPR.
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