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Abstract

The design of robust classifiers, which can contend with
the noisy and outlier ridden datasets typical of computer vi-
sion, is studied. It is argued that such robustness requires
loss functions that penalize both large positive and negative
margins. The probability elicitation view of classifier design
is adopted, and a set of necessary conditions for the design
of such losses is identified. These conditions are used to de-
rive a novel robust Bayes-consistent loss, denoted Tangent
loss, and an associated boosting algorithm, denoted Tan-
gentBoost. Experiments with data from the computer vision
problems of scene classification, object tracking, and mul-
tiple instance learning show that TangentBoost consistently
outperforms previous boosting algorithms.

1. Introduction

Over the last decade, tremendous advances have been
achieved in computer vision tasks that can be formulated
as classification problems. Examples include object detec-
tion [32] and recognition [30], object tracking [2], image
classification and retrieval [24, 23], among others. Much
of this progress is due to the widespread adoption of clas-
sification techniques, such as the support vector machine
(SVM) [29], boosting [11], or logistic regression [12],
which minimize the expected value of amargin enforcing
loss. Such losses, see Figure 1 for examples, apply a large
penalty to points with largenegative margin(i.e. incor-
rectly classified and far from the boundary), some penalty
to points of smallpositive margin(correctly classified but
close to the boundary), and zero penalty to points of large
positive margin (correctly classified and far from the bound-
ary). The assignment of non-zero loss to correct classifica-
tions close to the boundary is critical to assuring a classifier
of maximal margin. This, in turn, is critical to guarantee
good generalization [29].

While the positive impact of large margin classifiers is
undisputable, they do not overcome all challenges posed
by computer vision. This is due to the prevalence, in

most vision applications, of noise, outliers, ambiguity, lack
of labels, small training sizes, and imbalance of posi-
tive/negative coverage by training sets. For example, patch-
based image classification usually involves much more neg-
ative than positive examples per class, and is inherently out-
lier ridden: an image from thebuildings class invariably
contains patches from thepeople, garden, or car class [17].
Furthermore, patches are inherently ambiguous (e.g. the
same circular shape could correspond to a car wheel or a
boat window) [24], and “noise” is plentiful (in the form of
shadows, occlusions, perspective distortions, etc.). In appli-
cations such as tracking, where a classifier is incrementally
learned from data (as it is being classified), it is impossible
to guarantee that there is no leakage between the sets of pos-
itives and negatives used for training [2, 31, 16, 3]. While
some of these problems can be mitigated by careful human
labeling, human labeled data can itself be error prone. In
large-scale problems, where labeling is expensive, there is
frequently a need to resort to unlabeled datasets, or labelsof
low-quality. In some cases, exact labels cannot even be as-
signed to every sample point, and there is a need to resort to
a multiple instance learning (MIL) formalism, where labels
only exist for bags of points [17, 7, 22, 34, 1].

Different areas of computer vision have taken varied ap-
proaches to dealing with these problems. These include
resorting to MIL algorithms for scene classification [17],
object detection [31], or tracking [3], modeling context to
reduce ambiguity in scene analysis [28], adopting parts-
based models of greater flexibility with respect to occlu-
sions and deformation [10, 9], etc. While such improve-
ments in representation robustness are necessary, they can-
not completely eliminate the ambiguity, noise, and outlier
propensity of tasks such as image classification or tracking.
Hence, there is an equally important need for more robust
classifiers. In this context, an issue of particular concernis
a well known limitation of most current margin-enforcing
losses: theirunbounded growthwith negative margins. In
statistics, this type of loss growth is classically known to
produce inference procedures that are toosensitive to out-
liers [13, 25], a problem that has also been extensively
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studied in computer vision [21, 4, 27]. This research has
shown that, for many vision applications, better results are
obtained with losses of tapered growth. However, most of
these results only apply to regression problems, such as sur-
face fitting or optic flow estimation, and do not generalize
to classification.

Robust classifier design has been studied in machine
learning, namely in the boosting literature. Boosting algo-
rithms, such as AdaBoost [11], have found multiple appli-
cations in vision, e.g. real-time object detection [32], track-
ing [2], and segmentation [33]. Yet, Adaboost is known
to be particularly sensitive to noisy data [6], due to the ex-
ponential growth of its loss. Non-trivial improvements are
due to [12], which introduced losses that growlinearly with
the negative margin. The resulting boosting algorithms, e.g.
LogitBoost, are known to be substantially more outlier re-
sistant than AdaBoost [20]. Central to this contribution was
the establishment, by this work, of a formal connection be-
tween the large margin approaches and classical decision
theory. A number of other attempts to introduce robust clas-
sification losses, e.g. the noisy-OR [31] or sigmoidal non-
linearities [19], lack this property. The resulting classifiers
are not Bayes consistent, i.e. are not guaranteed to converge
to the optimal Bayes decision rule [8] as datasets increase.

The design of Bayes consistent robust classification
losses was most recently studied in [18]. This work es-
tablished a framework for the derivation of novel Bayes
consistent loss functions. It also proposed a new robust
loss, denoted asSavage lossand an associatedSavageBoost
algorithm [18]. This algorithm was shown to outperform
AdaBoost and LogitBoost in outlier ridden classification
problems. While our experience with the algorithms con-
firms this observation, the added robustness of SavagaBoost
does not make a tremendous difference for all vision prob-
lems. We argue that this requires a more subtle constraint on
the loss than simply bounding its growth for large negative
margins: in addition to this, robustness requirespenalizing
large positive margins.

We present a simple classification problem that demon-
strates this point, and show how all existing methods (in-
cluding SavageBoost) fail in this case. We then derive a set
of necessary conditions that any Bayes consistent loss func-
tion must satisfy, in order to guarantee a bounded penalty
for both large negative and positive margins. These condi-
tions are used to derive a novel robust loss, which we denote
by Tangent loss, and an associated boosting algorithm, de-
notedTangentBoost. Experiments involving various com-
puter vision problems, including scene classification, ob-
ject tracking, recognition, and MIL show that the proposed
algorithm consistently outperforms previous boosting algo-
rithms. In fact, for some of these problems, it is shown to
achieve the best results reported to date on the literature.
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Figure 1.Loss functions used for classifier design in alternative to the
non-margin enforcing0−1 loss. Top: classical non-robust losses. Bottom:
robust losses of SavageBoost and TangentBoost.

2. Loss functions for classification

We start by briefly reviewing the theory of Bayes consis-
tent classifier design. See [12, 5, 35, 18] for further details.

2.1. Risk minimization

A classifierh maps a feature vectorx ∈ X to a class
labely ∈ {−1, 1}. This mapping can be written ash(x) =
sign[f(x)] for some functionf : X → R, which is de-
noted as the classifier predictor. Feature vectors and class
labels are drawn from probability distributionsPX(x) and
PY (y) respectively. Given a non-negative loss function
L(x, y), the classifier is optimal if it minimizes the risk
R(f) = EX,Y [L(h(x), y)]. This is equivalent to minimiz-
ing the conditional riskEY |X[L(h(x), y)|X = x] for all
x ∈ X . Classifiers are frequently designed to be optimal
with respect to the zero-one loss

L0/1(f, y) =
1 − sign(yf)

2
=

{

0, if y = sign(f);
1, if y 6= sign(f),

(1)

where we omit the dependence off onx for notational sim-
plicity. The associated conditional risk is

C0/1(η, f) = η
1 − sign(f)

2
+ (1 − η)

1 + sign(f)

2

=

{

1 − η, if f ≥ 0;
η, if f < 0

with η(x) = PY |X(1|x). Optimal predictorsf∗ that min-
imize this risk includef∗ = 2η − 1, f∗ = log η

1−η , or

any other function such thatf∗ ≥ 0 if and only if η ≥ 1
2 .

The associated optimal classifierh∗ = sign[f∗] is the well
known Bayes decision rule (BDR) and has minimum con-



Table 1.Lossφ, predictorf∗

φ
(η), minimum conditional riskC∗

φ
(η) and predictor inverse[f∗

φ
]−1(v) for different machine learning algorithms.

Algorithm φ(v) f∗

φ
(η) C∗

φ
(η) [f∗

φ
]−1(v)

Least squares (1 − v)2 2η − 1 4η(1 − η) 1
2
(v + 1)

SVM max(1 − v, 0) sign(2η − 1) 1 − |2η − 1| NA

Boosting exp(−v) 1
2

log η

1−η
2
√

η(1 − η) e2v

1+e2v

Logistic Regression log(1 + e−v) log η

1−η
-η log η − (1 − η) log(1 − η) ev

1+ev

ditional risk

C∗
0/1(η) = η

(

1

2
−

1

2
sign(2η − 1)

)

+ (2)

(1 − η)

(

1

2
+

1

2
sign(2η − 1)

)

.

A loss which is minimized by the BDR is denoted as
Bayes consistent. A number of Bayes consistent alterna-
tives to the 0-1 loss are commonly used in machine learn-
ing. These include the exponential loss of boosting, the
log loss of logistic regression, and the hinge loss of SVMs,
which are shown in the top of Figure 1. They have the form
Lφ(f, y) = φ(yf), for different functionsφ of the margin
yf . The non-zero penalty assigned to small positive mar-
gins encourages the creation of a margin, a property not
shared by the 0-1 loss. The resultinglarge-marginclassi-
fiers have better generalization than those produced by the
latter [29]. The associated conditional risk

Cφ(η, f) = ηφ(f) + (1 − η)φ(−f) (3)

is minimized by the predictor

f∗
φ(η) = arg min

f
Cφ(η, f) (4)

and has minimumC∗
φ(η) = Cφ(η, f∗

φ). Theφ(v), f∗
φ(η),

andC∗
φ(η) associated with popular algorithms for classifier

design are shown in Table 1. See [35] for their derivations.

2.2. Probability elicitation

Conditional risk minimization is closely related to clas-
sical probability elicitation in statistics [26]. Here, the goal
is to find the probability estimator̂η that maximizes the ex-
pected reward

I(η, η̂) = ηI1(η̂) + (1 − η)I−1(η̂), (5)

whereI1(η̂) is the reward for prediction̂η when eventy = 1
holds andI−1(η̂) the corresponding reward wheny = −1.
The functionsI1(·), I−1(·) must be such that the expected
reward is maximal when̂η = η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (6)

with equality if and only ifη̂ = η. It can be shown [26]
that (6) holds if and only if 1) the maximal reward function

J(η) is strictly convex and 2)

I1(η) = J(η) + (1 − η)J ′(η) (7)

I−1(η) = J(η) − ηJ ′(η). (8)

The connection between risk minimization and probability
elicitation has been studied in [18]. This work has shown
that if 1)J(η) = J(1 − η), and 2) the predictorf is invert-
ible and has symmetryf−1(−v) = 1 − f−1(v), the func-
tions I1(·) andI−1(·) of (7) and (8) satisfy the following
equalities

I1(η) = −φ(f(η)) (9)

I−1(η) = −φ(−f(η)), (10)

for the loss

φ(v) = −J [f−1(v)] − (1 − f−1(v))J ′[f−1(v)]. (11)

In this case, probability elicitation by maximization of (5)
is equivalent to risk minimization with (3), and the mini-
mum conditional risk is related to the maximal expected re-
ward throughC∗

φ(η) = −J(η). This establishes a new path
for the design of learning algorithms. Rather than spec-
ifying a lossφ and minimizingCφ(η, f), so as to obtain
whatever optimal predictorf∗

φ and minimum expected risk
C∗

φ(η) results, it is possible to specifyf∗
φ andC∗

φ(η) and
derive, from (11) withJ(η) = −C∗

φ(η), the underlying loss
φ. The only conditions are thatC∗

φ(η) is strictly concave,
f∗

φ is invertible, and

C∗
φ(η) = C∗

φ(1 − η) (12)

[f∗
φ ]

−1
(−v) = 1 − [f∗

φ ](v). (13)

3. Robust loss functions for computer vision

Computer vision problems frequently deviate from the
canonical classification problem, due to the prevalence
of noise, outliers, ambiguity, and imbalance of posi-
tive/negative training set sizes, in many vision applications.
In this context, the losses shown at the top of Figure 1
are problematic in two ways. The first is their unbounded
growth with negative values of the marginyf . This type
of growth is well known to produce inference procedures
that are too sensitive to outliers [13, 25]. For vision ap-
plications, better results are invariably obtained with loss
functions of tapered growth [21, 4]. The second is the null
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Figure 2.Minimum risk decision boundary for different loss functions.
Top: outlier free problem. Bottom: impact of a single outlier.

penalty assigned to very large positive margins. This creates
an incentive for the classifier to push, as far as possible from
the boundary, the maximum possible number of points. Al-
though less studied than the first problem, we contend that
this can have an equally nefarious effect in terms of sensi-
tivity to outliers.

We illustrate this point in Figure 2. The figure depicts
the linearly separable problem that motivates the design of
large-margin classifiers. The data come from two distribu-
tions that are uniform in the vertical direction and Gaus-
sian, with equal variance and meansµ = ±3, in the hori-
zontal direction. Given these distributions, the BDR is the
vertical linex = 0. Figure-2 (top) shows ten data points
sampled from each class and the decision boundary result-
ing from the minimization of the (empirical) risk associ-
ated with each loss. All losses of Figure 1 produce approx-
imately the same boundary, close to the BDR.

Figure-2 (bottom) shows the impact of adding a single
negative at location(−2, 0). Both the classical losses and
the robust Savage loss move the boundary substantially, to
the vicinity of x = −2.3. This is due to the fact that
this boundary classifies all points correctly, and the exist-
ing losses assign small penalty to correctly classified points.
The result in as unwarranted leverage on the boundary by
the outlier at(−2, 0), compromising the generalization abil-
ity of the classifier. Also shown in the figure is the bound-
ary produced by the loss (the tangent loss) proposed in this
work. This loss, which is derived in the following sec-
tions, penalizesboth large positive and large negative mar-
gins. The penalty assigned to large positive margins dis-
courages solutions where large numbers of points are clas-
sified “too correctly”. The force to classify the outlier cor-
rectly is countered by the force to avoid large numbers of
points far away from the boundary. In result, the boundary
remains close to the BDR (x = −0.303).

3.1. Robust losses

The discussion above suggests that a robust loss for clas-
sifier design should have the following properties:

1. saturate for large margins:φ′(∞) = φ′(−∞) = 0;

2. bounded penalty for large negative margins:
φ(−∞) = k1 < ∞;

3. smaller positive penalty for large positive margins:
0 < φ(∞) = k2 < k1;

4. margin enforcing:φ(0) > 0

where we use the simplified notationφ(∞) =
limv→∞ φ(v). As usual, the loss should be non-negative.

It can be shown, from (11), that

φ′(v) = −[1 − f−1(v)] × J ′′[f−1(v)] × [f−1]′(v) (14)

From the strict convexity ofJ(η), and (13), it follows that
property 1 holds if

[f−1]′(∞) = [f−1]′(−∞) = 0. (15)

This implies that the optimal predictor saturates asv →
±∞. Furthermore, using the fact thatJ(η) = J(1 − η),
J ′(η) = −J ′(1 − η), and (13),

φ(v) − φ(−v) = −J ′[f−1(v)]

(φ(v) − φ(−v))′ = −J ′′[f−1(v)] × [f−1(v)]′.

It follows from (15) that |φ(v) − φ(−v)| is maximum
as |v| → ∞. The conditionk2 < k1 requires that
J ′

[

f−1(∞)
]

> 0. From the convexity and symmetry of
J(η) (J ′(1/2) = 0) this holds whenever

f−1(∞) >
1

2
.

Definingγ(v) = f−1(−v)×J ′[f−1(−v)], k2 > 0 requires
that−J [f−1(∞)] > −γ(∞), or0 < C∗

φ[f−1(∞)]+γ(∞).
Similarly, k1 < ∞ requires thatC∗

φ[f−1(∞)] + γ(−∞) <

∞. Finally, from (13), f−1(0) = 1
2 and, from (11)

and J ′(1/2) = 0, it follows that φ(0) = −J(1/2) =
C∗

φ(1/2) > 0. In summary, the four properties are satis-
fied if

[f−1]′(∞) = [f−1]′(−∞) = 0 (16)

f−1(∞) >
1

2
= f−1(0) (17)

C∗
φ(1/2) > 0 (18)

C∗
φ[f−1(∞)] + γ(∞) > 0 (19)

C∗
φ[f−1(∞)] + γ(−∞) < ∞ (20)



3.2. The Tangent loss

In this section we seek to design a loss with the four
properties discussed above, through the selection of a pre-
dictor f∗

φ(η) and minimum riskC∗
φ(η) that comply with

conditions (16)-(20). We start by noting that some of these
conditions hold for any sensible choice of these functions.
For example, (17) and (18) are met by all methods of Ta-
ble 1. On the other hand, (16) disqualifies the predictor of
least squares, but leaves the sigmoidal predictors of boost-
ing and logistic regression as potential solutions. This sug-
gests that conditions (19) and (20) are the most stringent. In
fact, they fail to hold for all methods of Table 1.

Consider any of the sigmoidal predictors. Since
f−1(∞) = 1, for any of theC∗

φ in the table,C∗
φ[f−1(∞)] =

0. This simplifies (19) and (20) into

γ(∞) = −f−1(−∞) × [C∗
φ]′[f−1(−∞)] > 0 (21)

γ(−∞) = −f−1(∞) × [C∗
φ]′[f−1(∞)] < ∞. (22)

Sincef−1(−∞) = 0, (21) requires[C∗
φ]′(0) = −∞. In

fact, because the sigmoid converges to0 exponentiallyfast,
(21) requires the derivative of[C∗

φ](η) to decay to−∞ (as
η → 0) at a (faster) exponential rate. This is not easy to
guarantee, and does certainly not hold for any of the risks of
Table 1. In summary, it appears that none of the predictors
in the table is suitable for robust loss design. What is needed
is a predictor such thatf−1(v) saturates at±∞, so as to
satisfy (16), but at aslower than exponentialrate.

One possibility is the tangent

f(η) = tan(η − 0.5) (23)

f−1(v) = .5 + arctan(v). (24)

It has the symmetry of (13), aquadratic decay rate
([f−1]′(v) = (1 + x2)−1) and is compatible for combi-
nation with the minimal conditional risk of least squares,
C∗

φ(η) = 4η(1 − η), resulting in

C∗
φ[f−1(∞)] + γ(∞) = (1 − π)2 > 0

C∗
φ[f−1(∞)] + γ(−∞) = (1 + π)2 < ∞.

It can be easily verified that conditions (16)-(18) also hold.
Using (11) it is possible to derive theφ function, which we
denote byTangent loss,

φ(v) = (2 arctan(v) − 1)2. (25)

Figure-1 (bottom) shows that the Tangent loss is similar
to the Savage loss in the sense that it is non convex, and
bounded for large negative margins. It, however, also penal-
izes points of largepositivemargin. This penalty is, once
again, bounded and of smaller value than that assigned to
large negative margins. Overall, the tangent loss is margin

enforcing, and encourages all points to be classified cor-
rectly. However, it discourages situations where a large
number of points are classified “too correctly”. We will see,
in Section 5, that this leads to superior performance for a
number of vision problems.

4. The TangentBoost algorithm

In this section we derive a boosting algorithm based on
the Tangent loss. This consists of minimizing the empirical
risk

R =
∑

i

φ(yf(x)) (26)

by gradient descent on the space of linear combinations of
weak learners. The fact that this is a sum of squared val-
ues, suggests performing the minimization with the Gauss
algorithm. For a general sum of squares problem

S(x) =

N
∑

i=1

r2
i (x) (27)

this has update step

xn+1 = xn +
−r(x)

∂r
∂x

(28)

As in the case of LogitBoost [12], it is more convenient to
work with the intermediate probability estimatesη(xi) than
the pointsxi. For the Tangent loss

r(η) = 2 arctan(yf(η)) − 1 (29)

the optimal solution is

f∗ = arg min
f

N
∑

i=1

(2 arctan(yf(η(xi))) − 1)2. (30)

The Gauss update is

f(η)n+1 = f(η)n + ∆f(η) = f(η)n −
r(η)
∂r
∂η

(31)

= f(η)n −
2 arctan(yf(η)) − 1

2y
1+f(η)2

= f(η)n −
(2 arctan yf(η) − 1)(1 + f(η)2)

2y
.

Using the known form of the optimal predictorf(η) =
tan(η − 0.5) and its inverseη = arctan(f(η)) + 0.5 we
redefine the above updates as follows. Fory = 1,

z(η)1 = −
(2 arctan(f(η)) − 1)(1 + f(η)2)

2

= −(η − 1)(1 + tan2(η − 0.5)) (32)



Algorithm 1 TangentBoost
Input: Training setD = {(x1, y1), . . . , (xn, yn)}, wherey ∈
{1,−1} is the class label of examplex, and numberM of weak
learners in the final decision rule.
Initialization: Set uniformly distributed probabilities
η(1)(xi) = 1

2
∀xi andf̂ (1)(x) = 0.

for m = {1, . . . , M} do
compute the working responsesz

(m)
i as in (32) and (33) and

weightsw(m)
i = η(m)(xi)(1 − η(m)(xi)) .

for k = {1, . . . , K} do
compute the solution to the least squares problem,

aφk
=

〈1〉
w
· 〈φk(xi)zi〉w − 〈φk(xi)〉w · 〈zi〉w
〈1〉

w
· 〈φ2

k(xi)〉w − 〈φk(xi)〉
2
w

bφk
=

〈

φk(xi)
2
〉

w
· 〈zi〉w − 〈φk(xi)〉w · 〈φk(xi)zi〉w

〈1〉
w
· 〈φ2

k(xi)〉w − 〈φk(xi)〉
2
w

where we have defined

〈q(xi)〉w
.
=

∑

i

w
(m)
i q(xi).

end for
select the direction of minimal regression error according to
k∗ = arg mink

∑

i
w

(m)
i (zi − aφk

φk(xi) − bφk
)2 .

setf̂ (m+1)(xi) = f̂ (m)(xi) + (aφk
φk(xi) + bφk

).
updateη(m+1)(xi) = arctan(f̂ (m+1)(xi)) + 0.5.

end for
Output: decision ruleh(x) = sgn[f̂ (M)(x)].

and fory = −1 as

z(η)−1 = −
(−2 arctan(f(η)) − 1)(1 + f(η)2)

−2

= −η(1 + tan2(η − 0.5)) (33)

The linear regression model can now be used to approxi-
matez(η), as is done in logistic regression. This leads to
the TangentBoost algorithm described in Algorithm 1.

5. Experiments

In this section we describe several experiments designed
to test the performance of TangentBoost in classification
problems involving outliers and noisy data.

We start with a simple classification problem, which
provides some insight on the benefits of the Tangent loss.
This problem involves the Letter-1 dataset, from the UCI
database. It addresses the classification of the highly con-
fusable letter ”O” from the other letters of the alphabet, re-
sulting in an unbalanced problem with many outliers. Fig-
ure 3 shows the histogram of the positive margins on the test
set (a very similar histogram exists on the train set), for clas-
sifiers learned with TangentBoost and Adaboost. Note that
the TangentBoost margins are below0.7 and much smaller
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Figure 3.Histogram of positive test margins for the TangentBoost (top)
and AdaBoost (bottom) algorithms on the Letter-1 dataset.

Table 2.Classification error of each boosting method on Letter-1.

Dataset Ada Real Savage Logit Tangent
LETT.1 3621 2681 647 616 602

than those of AdaBoost (largest margin greater than2.5).
On the other hand, the number of classification errors on
the test set is602 for TangentBoost and3621 for AdaBoost.
This shows that larger margins do not necessarily lead to
better classification when there are outliers. In its effort
to push points away from the boundary, AdaBoost sacri-
fices classification performance. On the other hand, Tan-
gentBoost has a much cleaner margin distribution, with no
points of positive margin smaller than.25.

It should be noted that, while this problem is serious
for AdaBoost, it affects most boosting algorithms in cur-
rent use. Table-2 presents the error rates achieved by some
of these, after1000 iterations of training. Adaboost and
Realboost, which employ the exponential loss, have dispro-
portionately high error. The bounded Savage loss and the
linearly increasing loss of logistic regression produce a dra-
matic improvement. Finally, TangentBoost has the best per-
formance. The benefits of employing a bounded loss func-
tion (Savage and Tangent) or a gradually sloping loss (lo-
gistic) are evident.

5.1. The MUSK dataset

Various authors have formulated outlier ridden vision
problems, such as image classification [17], object detec-
tion [31], and tracking [3], as MIL problems. Unfortu-
nately, these formulations are not directly comparable, and
some of the datasets used are not in the public domain.
An alternative is the MUSK [7] dataset, which is the stan-
dard benchmark for the broader MIL research community
[7, 22, 34, 17, 7, 1]. It is a good dataset to evaluate outlier
robustness, since it is naturally contaminated with misclas-
sified data points. We learned classifiers with AdaBoost,
RealBoost, LogitBoost, SavageBoost, and TangentBoost on
the MUSK2 dataset, using the training and testing protocol
of [7]: 10-fold cross validation, with the10 dataset parti-
tions defined by [7]. The test error achieved by each classi-



Table 3.MIL accuracy on the MUSK2 dataset.

Boosting Alg. Real Ada Logit Savage Tangent
MUSK2 67.25 82.69 84.07 85.19 85.39

MIL Alg. MI-NN[22] mi-SVM[1] DD [17] MI-SVM [1] EMDD [34] IAPR [7]
MUSK2 82.5 83.6 84 84.3 84.9 89.2

fier is reported in Table-3, which also includes results from
various MIL algorithms not based on boosting. Note that
although SavageBoost and TangentBoost do not fit the tra-
ditional MIL definition (don’t operate on bags of points),
they outperform this broad selection of state-of-the-art MIL
procedures. The only exception is IAPR [7] which is an
algorithm specifically designed for the MUSK dataset.

5.2. Results on scene classification

We next considered the vision problem of scene classi-
fication on the15-class dataset of [14]. Here, label noise
occurs naturally, as each picture can be attributed to mul-
tiple scene categories (e.g. an image containing patches of
both highway and buildings). State-of-the-art results on this
dataset were recently reported in [23, 24]. These methods
represent images as points on a semantic space, where each
feature is the probability of the image belonging to one of
the15 classes. The two methods differ in the computation
of these probabilities, one using Gaussian mixtures [23] and
the other mixtures of Dirichlet distributions [24]. The prob-
ability vectors are fed to an SVM classifier, which we re-
placed by one learned with TangentBoost.

Table-4 compares results to different methods reported
in the literature. TangentBoost(A), learned from Gaus-
sian mixture probabilities, achieved thehighest accuracy
reported for this dataset in the literature, with 76.28%.
Note that this is2% better than the accuracy achieved with
Adaboost under the same setting. This gain can only be
attributed to the increased robustness of TangentBoost to
outliers and noise. Also reported are the results of Tan-
gentBoost(B), where we have combined the Gaussian and
Dirichelet mixture probabilities, by simply concatenating
the 15 class features of both into a30 dimensional vector.
This further increased performance to76.74% accuracy. It
is also interesting to note that the greatest improvements in
accuracy are achieved for the classes where [23] performs
worst. These are classes that 1) are easily confusable with
other classes in the dataset, and 2) contain many outliers.
For example, the classification of scenes of ”street”, ”high-
way”, and ”tall building” improves in accuracy by21%,
12%, and10%. Similarly, the easily confused classes of
”mountain”, ”open country”, ”forest”, and ”coast” have rel-
ative increase in accuracy of14%, 7%, 6%, and6% . Fi-
nally, ”bedroom” displays a20% increase in accuracy.

Table 4.Classification accuracy for15 scene categories.

Method Dimensions Accuracy%
TangentBoost(B) 30 76.74

TangentBoost(A) 15 76.28

AdaBoost 15 74.79

Rasiwasia et al. [24] 15 72.5
Rasiwasia et al. [23] 15 72.2

Liu et al. [15] 20 63.32
Liu et al. [15] 200 75.16

Lazebnik et al. [14] 200 72.2

5.3. Results on object tracking

Discriminant tracking has recently been shown to be a
very effective solution to the object tracking problem [2].It
is also a prime domain for testing the effectiveness of clas-
sifiers in the presence of noise and outliers. This arises from
the fact that the positive and negative training sets are col-
lected from windows centered at the location of the current
detection. In challenging scenes, object boundaries are not
necessarily well defined, and the target object can be sub-
ject to occlusion, shadows, and others sources of “noise”.
These cause drift, since a poor localization of the target will
contaminate the training data with outliers, i.e. background
features labeled as target and vice-versa.

The original ensemble tracker of [2] was based on Ad-
aBoost. It has however been noted that, in the tracking con-
text, AdaBoost is quite susceptible to the outlier problem,
and various approaches have recently been shown to outper-
form it [16, 3]. We consider here the discriminant saliency
tracker (DST) of [16], which maps the video frames into
a feature space where the target issalientcompared to the
background. Tracking is implemented with a weak clas-
sifier, which simply sums the saliency maps produced by
each feature. Here, we investigate the use of boosting to
combine these saliency maps in a discriminant manner. We
implemented both AdaBoost and TangentBoost to achieve
this combination. The results of the boosted tracker, for 2
noisy clips used in [16], are shown in Table-5. The error
rates are measured as defined in [16]. It can be seen that the
tracker based on AdaBoost has substantially larger error, in
fact losing the target at some point in these sequences. On
the other hand, TangentBoost produces a tracker that does
not loose the target, and has an overall low error rate. Two
representative frames of the process are shown in Figure 4.



Table 5.Tracking error rates on two noisy sequences.

Clip AdaBoost TangentBoost
athlete 0.89 0.29

gravel 0.70 0.04

Figure 4.Frames comparing the performance of TangentBoost with Ad-
aBoost in conjunction with a discriminant saliency tracker.Red box: Tan-
gentBoost, blue box: AdaBoost.
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