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Abstract

A novel framework for anomaly detection in crowded
scenes is presented. Three properties are identified as im-
portant for the design of a localized video representation
suitable for anomaly detection in such scenes: 1) joint mod-
eling of appearance and dynamics of the scene, and the
abilities to detect 2) temporal, and 3) spatial abnormali-
ties. The model for normal crowd behavior is based on mix-
tures of dynamic textures and outliers under this model are
labeled as anomalies. Temporal anomalies are equated to
events of low-probability, while spatial anomalies are han-
dled using discriminant saliency. An experimental evalu-
ation is conducted with a new dataset of crowded scenes,
composed of 100 video sequences and five well defined ab-
normality categories. The proposed representation is shown
to outperform various state of the art anomaly detection
techniques.

1. Introduction
There has recently been interest within computer vision

in the analysis of densely crowded environments. Problems
such as segmenting video into crowd components [3], esti-
mating crowd size [17], determining the goal of individuals
within a crowd [4] have all been subjects of research. Most
of these efforts are motivated by the ubiquity of surveillance
cameras, the challenges of crowd modeling, and the impor-
tance of crowd monitoring for various applications. In many
of these, the goal is not so much to analyze normal crowd
behavior, but to detect deviations from it. These are referred
to as anomalous or abnormal events.

Anomaly detection is an active area of research on its
own. Various approaches have been proposed, for both
crowded and non-crowded scenes. They can be broadly
categorized according to the type of scene representation
adopted. One very popular category is based on trajectory
modeling. It comprises tracking each object in the scene,
and learning models for the resulting object tracks [5, 22,
24]. Both operations are quite difficult on densely crowded

scenes, for which these approaches are not very promising.
Various authors have proposed alternative motion repre-

sentations that avoid tracking. The most popular is dense
optical flow, or some other form of spatio-temporal gradi-
ents [2, 16, 21]. Adam et al. [2] maintain probabilities of
optical flow in local regions, using histograms. Kim and
Grauman [16] model local optical flow patterns with a mix-
ture of probabilistic PCA models, and enforce global con-
sistency using a Markov Random Field (MRF). Mehran et
al. [21] draw inspiration from classical studies of crowd
behavior [13], that characterize crowd behavior using con-
cepts such as social force. These concepts inspire optic flow
measures of interaction within crowds, which are combined
with a latent Dirichlet allocation (LDA) model for anomaly
detection.

All these approaches focus uniquely on motion informa-
tion, ignoring abnormality information due to variations of
object appearance. This makes them impervious to abnor-
malities that do not involve motion outliers, e.g. a truck
that crosses a bridge with weight restrictions. Furthermore,
descriptors such as optical flow, pixel change histograms,
or other traditional background subtraction operations, are
difficult for crowded scenes, where the background is by
definition dynamic, there are lots of clutter, and compli-
cated occlusions. More complete representations, that ac-
count for both appearance and motion, have also been pro-
posed. Boiman and Irani [6] use spatio-temporal patches
and declare regions that cannot be reconstructed using data
from previous frames as abnormal. Spatio-temporal gradi-
ents have been proposed in [18], where their statistics are
modeled with a coupled HMM to detect abnormalities in
densely crowded scenes.

Overall, there is a great diversity of approaches to abnor-
mality detection. In general, it is quite difficult to compare
two different solutions. Different representations of motion
and appearance are combined with different graphical mod-
els for abnormality detection, which are typically tailored
to the type of video analyzed, or a specific scene domain.
Abnormalities are themselves defined in a somewhat sub-
jective form, sometimes according to what the algorithms
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can detect. In some cases, different authors define different
abnormalities on common datasets. Experiments are pre-
sented in datasets of very different characteristics (e.g. a
traffic intersection vs a subway entrance), frequently pro-
prietary, and with widely varying levels of crowd density.

In this work we make various contributions that address
these problems. We concentrate on the issue of represen-
tation, namely how to design localized video representa-
tions that enable anomaly detection in crowded scenes. By
definition, this precludes any form of global statistical in-
ference, using MRFs, LDA, or any such models: while
these can certainly improve performance, they tend to mask
the limitations of the underlying visual representation. We
identify three properties that the representation must have:
1) jointly model appearance and dynamics of crowd pat-
terns, 2) ability to detect temporal, and 3) spatial abnor-
malities. We then propose the use of representations based
on dynamic textures (DTs) [10]. These are joint models of
appearance and dynamics, which have been shown very ef-
fective in modeling complex dynamic scenes.

As is common in the literature, we equate anomalies to
events of low-probability with respect to a model of nor-
mal crowd behavior. We then introduce DT-based models
of normalcy over both space and time. Temporal normalcy
is modeled with a mixture of DTs [9] (MDT) and spatial
normalcy is measured with a discriminant saliency detec-
tor [12] based on MDTs. These models generalize some of
the approaches previously proposed to detect abnormalities
in either time or space, can be easily integrated into a com-
mon solution, and are shown to perform well. The evalu-
ation is based on a new dataset of crowded scenes, which
is made available to the vision community. This dataset
contains video of the walkways of a college campus, and
crowds with naturally varying densities. It contains 100
video sequences, and a set of 5 well defined abnormality
categories. These are not “synthetic”, or “staged”, but ab-
normal events that occur naturally, e.g. bicycle riders that
cross pedestrian walkways. Ground truth is provided for
abnormal events, as well as a protocol to evaluate detection
performance. Finally the proposed abnormality detection
algorithm is tested against previous approaches, establish-
ing a set of benchmarks against which future algorithms can
be compared.

2. Abnormality detection
Abnormality detection is usually formalized as an out-

lier detection problem. Some measurement Y is made, and
a statistical model PY(y) is postulated for the distribution
of Y under normal conditions. Abnormalities are defined as
measurements whose probability is below a certain thresh-
old under this model.

In this work, we consider the problem of abnormality
detection from localized measurements y of crowd video.

These are usually spatio-temporal patches of small dimen-
sion. A model of normal crowd behavior for such mea-
surements must account for two types of normalcy, which
we denote as temporal and spatial. The former reflects the
intuition that normal events are recurrent over time. For ex-
ample, cars in a highway move with a certain orientation
and speed. The fact that there is no traffic at night, should
not lead an anomaly detector to declare a large number of
anomalies when it resumes in the morning. In this sense,
a detector of temporal normalcy can be equated to a back-
ground subtraction algorithm in computer vision [23]. The
model of normal behavior is built (and updated) over time,
and all measurements that it cannot explain are denoted as
temporal abnormalities.

Many events which would not be considered abnormal
per se are abnormal within a crowd. This is because the
crowd places constraints on individual motion, and motion
patterns that would be feasible in isolation have low prob-
ability in the crowd context. For example, while there is
nothing abnormal about an ambulance that rides at 50mph
in a stretch of highway, the same observation within a
highly congested highway indicates an abnormality. Note
that the only indication of abnormality is the difference be-
tween the dynamics of the crowd and the object at the time
of the observation and not the fact that the ambulance is
moving at 50mph. Since the detection of such anomalies
is mostly based on spatial processing, they are denoted as
spatial. Their detection can be equated to the problem of
saliency detection in computer vision [15].

While both background subtraction and saliency detec-
tion are extensively studied topics in vision, the vast ma-
jority of existing algorithms are not applicable to crowded
scenes. In such scenes, where the background (or spatial
surround) is highly dynamic, it is not sufficient to detect
variations of image intensity, or even optical flow. Instead,
the normalcy models must rely on sophisticated joint repre-
sentations of appearance and dynamics. Even models such
as the DT can be ineffective. Because crowded scenes are
typically composed of distinct sub-entities - e.g. vehicles or
groups of people moving in different directions - accurate
detection requires the ability to model multiple components
of different appearance and dynamics. One model that has
been shown successful in this regard is the mixture of DTs
of [9]. This is the representation adopted for all video anal-
ysis in this work. We next review the MDT and describe its
proposed application to the design of the spatial and tempo-
ral components of an abnormality detector.

3. The mixtures of dynamic textures

The MDT [9] treats the observed video sequence yτ
1 =[

y1 · · · yτ

]T as a sample from one of K dynamic tex-
tures. The probability of a sequence yτ

1 under this model is



given by

p(yτ
1) =

K∑

i=1

πip(yτ
1 |z = i) (1)

where p(yτ
1 |z = i) is the class conditional distribution of

the ith dynamic texture and πi its prior probability. The
generative model for the MDT is

xt+1 = Azxt + vt

yt = Czxt + wt.
(2)

where z ∼ multinomial(π1, · · · , πK) indexes mixture
components, from which the observations are drawn. xt

is a hidden state variable, and yt the observed video mea-
surement. For each component, Az, Cz are the transition
and observation matrices respectively, the initial condition
is given by x1 ∼ N (µz, Sz), and the noise processes by
vt ∼ N (0, Qz) and wt ∼ N (0, Rz). The parameters of the
model are learned by maximum likelihood, from a collec-
tion of spatio-temporal video patches. This is done with the
expectation-maximization (EM) algorithm described in [9].

4. Temporal Abnormality Detection
Temporal abnormality detection is inspired by the pop-

ular background subtraction method of [23]. This method
relies on a Gaussian mixture (GMM) at each image loca-
tion, to model the local distribution of image intensities.
Observations of low probability under this GMM are de-
clared foreground. For abnormality detection, the GMM is
replaced by a MDT, and the pixel-wise grid is replaced by
one with a displacement of size 4. Each grid location de-
fines the center of a video cell, from which spatio-temporal
patches are extracted, and a MDT is learned during a train-
ing phase. The cell dimensions are not crucially important,
in this application we use video patches of size 13× 13 and
cells of size 41× 41. The process is illustrated in Figure 1.

After this phase, patches of low probability under the
cell MDT are considered abnormalities. Given a patch yτ

1 ,
the hidden state sequence, xτ

1 under this MDT model is
estimated, and its log-likelihood under the mixture model
pX|Y (xτ

1 |yτ
1) is computed with a Kalman smoothing fil-

ter [9]. The temporal abnormality map at location l is the
negative log-likelihood of the state sequence estimated from
the patch centered at l

Atemporal(l) = − log(pX|Y (xτ
1 |yτ

1 );Θl). (3)

We note that this can be seen as a generalization of the
representation used by Kim and Grauman [16] which rely
on a mixture of PCA models of optic flow. The matrix Cz

of (2) is also a PCA basis for the patches assigned to the zth

mixture component. However, the PCA decomposition is

Figure 1. Learning MDTs for temporal abnormality detection. For
each region of the scene, an MDT is learned during training. At
test time, the negative log-likelihood of the spatiotemporal patch
centered at location l is computed using the MDT whose region
center is closest to l.

applied to patch appearance, not optic flow. The patch mo-
tion is captured by the hidden state sequence xτ

1 , which can
be seen as a trajectory in PCA space. This implies that the
representation is not memoryless as is the case for a mixture
of optic flow. The ability to model appearance and the more
sophisticated representation of dynamics, make the MDT
a much more powerful representation than the mixture of
PCA.

5. Spatial Abnormality Detection

Spatial abnormality detection is inspired by previous
work on saliency detection in computer vision [12, 15].
Saliency is usually defined in a center-surround manner:
salient locations are those with some attribute that makes
them stand-out from their surround. Given an appropri-
ate set of features, saliency provides an objective defini-
tion of spatial anomaly: spatially abnormal locations are
those whose saliency is above some threshold. This ties the
abnormality detection criteria to the criteria used to define
saliency. In this work, we rely on the discriminant saliency
criteria of [12].

Discriminant saliency formulates the saliency problem
as a hypothesis test between two classes: a class of salient
stimuli, and a background class, consisting of stimuli that
are not salient. At each location l in the scene, two windows
are defined: a center windowW1

l , with label C(l) = 1, con-
taining the location, and a surrounding annular windowW0

l ,
with label C(l) = 0, containing background. A set of fea-
tures Y from a predefined feature space Y (e.g. raw pixel
values, Gabor, DCT, wavelet, or SIFT features), are com-
puted for each of the windowsWc

l , c ∈ {0, 1}. Given class-
conditional feature densities pY|C(l)(y|c), the saliency of
location l, S(l), is defined as the extent to which the fea-
ture Y can discriminate between the two classes. This is
quantified by the mutual information (MI) between feature



responses, Y, and class label, C [12]

S(l) =

1∑
c=0

pC(l)(c)KL[pY |C(l)(y|c)||pY (y)] (4)

where, KL (p ‖q ) =
∫
X pY (y) log pY (y)

qY (y)dy is the
Kullback-Leibler (KL) divergence between the probability
distributions pY (y) and qY (y) [19].

For a given feature Y, locations of maximal saliency are
those where the distinction between center and surround can
be made with highest confidence, i.e. the MI above is max-
imal. Discriminant saliency can be combined with many
features [11]. When Y consists of optical flow features,
it is similar to the social force model of [21]. Under this
model, saliency is defined as the difference between the op-
tical flow at a location and the average optical flow in its
neighborhood (see equation (8) of [21]). This is a simplified
form of center-surround saliency, which 1) replaces the MI
between features and class label by a difference to the mean
background response, 2) relies on a coarse representation
of dynamics based uniquely on optic flow, and 3) ignores
appearance features.

Mahadevan and Vasconcelos [20] proposed the use of
DTs with discriminant saliency in the context of back-
ground subtraction [20]. While this method relies on a
more powerful representation of appearance and dynam-
ics than the social force model, it is not sufficient to solve
the anomaly detection problem. In the context of crowded
scenes, abnormality detection requires the analysis of fore-
ground regions, and the ability to account for diverse fore-
grounds. The background subtraction method of [20],
which uses a single DT for both the center and surround
windows, is not adequate for this purpose, producing a large
number of false positives.

5.1. Center Surround Saliency with the MDT

In this work, we the adopt the MDT model of [9] as the
probability distribution pY |C(l)(yτ

1 |c) from which spatio-
temporal patches yτ

1 are drawn. We start from the property
that, under assumptions of Gaussian initial conditions and
noise, spatio-temporal patches yτ

1 drawn from a DT have a
Gaussian probability distribution [8],

pY (yτ
1 ) ∼ N (γ,Φ). (5)

Assuming that the class-conditional distributions of classes
c ∈ {0, 1} (corresponding to center and surround) are mix-
tures of Kc DTs, it follows that

pY |C(l)(yτ
1 |c) =

Kc∑

i=1

pi
Y |C(l)(y

τ
1 |c)

=
Kc∑

i=1

πi
cN (γi

c,Φ
i
c) (6)

for c ∈ {0, 1}. The marginal distribution is given by,

pY (yτ
1 ) =

K∑

i=1

pi
Y (yτ

1) =
K∑

i=1

ωiN (γi,Φi) (7)

Hence, evaluation of the saliency measure of (4) requires
evaluation of the KL divergence between (6) and (7). This
is problematic, because there is no closed form solution for
the KL divergence between two MDTs. However, since
the probability distribution of each MDT component is a
Gaussian, it is possible to rely on common approximations
to the KL divergence between two Gaussian mixtures. In
this work, we adopt the variational approximation proposed
in [14]

KL
(
pY |C ‖pY

) ≈ ∑

i

πi
C log

∑
j πj

Ce
−KL

(
pi

Y |C
∥∥∥p

j
Y |C

)

∑
j ωje

−KL
(

pi
Y |C

∥∥∥p
j
Y

) .(8)

Each term in the exponent of (8) is KL divergence between
two DTs, and can be computed in closed-form [7]. For ex-
ample, the expression for the terms in the denominator is

KL
(
pi

Y |C
∥∥∥pj

Y

)
(9)

= 1

2

[
log

|Φ|∣∣Φi
C

∣∣ + tr
(
Φj−1

Φi
C

)
+

∥∥γi
C − γj

∥∥2

Φj −mτ

]

where m is the number of pixels in each frame, and ||z||A =
zT A−1z. The terms in the numerator are computed simi-
larly. These computations can be performed using efficient
recursions [7].

5.2. Abnormality Detection

The spatial abnormality map is produced by comput-
ing the saliency S(l) at each location l of the input video.
Given a location, center surround saliency requires 1) learn-
ing MDTs from the center and surround regions, and 2)
computing a weighted average of these mixtures to obtain
the marginal distribution. However, learning MDTs at each
scene location is computationally infeasible. To overcome
this problem, we adopt the following approximation. A
batch of frames around the current frame, i.e. the 3D vol-
ume V(l) containing l, is selected and a dense collection of
overlapping spatio-temporal patches extracted from V(l). A
single MDT with Kglobal mixture components, denoted by
(γi

global,Φ
i
global), i ∈ {1 . . .Kglobal} is learned for the en-

tire patch collection. Each patch in the volume is then as-
signed to the mixture component of largest posterior prob-
ability. This produces a segmentation of the volume into
superpixel type regions, as shown in Figure 2.

At each location l, the MDTs for center and surround
classes, as well as the marginal distribution, share the com-
ponents of the global mixture model. Only the mixing pro-



Figure 2. Illustration of spatial abnormality detection using center
surround saliency with MDTs.

portions are recomputed, based on the ratio of pixels as-
signed to each component in the respective windows

pY |C(l)(yτ
1 |c) =

Kglobal∑

i=1

∑
l∈Wc

l
Mil∑

l∈Wc
l
1
N (γi

global,Φi
global) (10)

for c ∈ {0, 1}, where Mil = 1 if l is assigned to mixture
component i and 0 otherwise.

The prior probabilities for center and surround, pC(c),
are set according to the ratio of volumes of the center and
surround windows. S(l) is then computed with (4), using
(8) and (9). Note that the KL divergence terms in (8) only
require the computation of

(
Kglobal

2

)
KL divergences be-

tween the Kglobal mixture components, and these need to be
computed only once per frame. This procedure is repeated
for every frame in the test video. The spatial abnormality
map is then

Asaliency(l) = S(l), (11)

as illustrated in Figure 2.
The overall abnormality map is the sum of the normal-

ized temporal and spatial abnormality maps of (3) and (11)

Atotal(l) = Atemporal(l) +Asaliency(l). (12)

6. The crowd anomaly detection dataset
In addition to abnormality detection algorithms, this

work contributes a dataset for the evaluation of abnormali-
ties in crowded scenes. This dataset was acquired with a sta-
tionary camera mounted at an elevation, overlooking pedes-
trian walkways. The crowd density in the walkways was
variable, ranging from sparse to very crowded. In the nor-
mal setting, the video contains only pedestrians. Abnormal
events are due to either 1) the circulation of non pedestrian
entities in the walkways, or 2) anomalous pedestrian motion
patterns. Commonly occurring anomalies include bikers,
skaters, small carts, and people walking across a walkway
or in the grass that surrounds it. A few instances of people

in wheelchair were also recorded. All abnormalities are nat-
urally occurring, i.e. they were not staged for the purposes
of assembling the dataset.

The data was split into 2 subsets, each corresponding to
a different scene. The first scene (Figure 4), contains groups
of people walking towards and away from the camera, and
some amount of perspective distortion. The second con-
tains scenes with pedestrian movement parallel to the cam-
era plane. The video footage recorded from each scene was
split into various clips of around 200 frames. For each clip,
the groundtruth annotation includes a binary flag per frame,
indicating whether an anomaly is present in that frame. In
addition, a subset of 10 clips is provided with manually gen-
erated pixel-level binary masks, which identify the regions
containing anomalies. This is intended to enable the evalu-
ation of performance with respect to the ability to localize
anomalies. The videos, and groundtruth annotations, are
available online [1], for benchmarking of future anomaly
detection algorithms.

6.1. Evaluation Procedure

Training sets - 34 clips for Peds1, 16 clips for Peds2
- are provided for learning of normalcy models. The test
set (36 test clips for Peds1 and 14 test clips for Peds2)
contains clips in which some of the frames have one or
more anomalies present. The total number of anomalous
frames (≈3400) is somewhat smaller than that of normal
frames (≈5500). The task is to detect whether an anomaly
is present, or not, in each frame of the test set. The evalua-
tion has two components

• Anomaly detection using frame level groundtruth:
Given some abnormality map, a suitable threshold is
used to generate an abnormality mask. If a frame con-
tains at least one abnormal pixel, it is considered a de-
tection. These detections are compared to the frame
level groundtruth annotation of each frame. The pro-
cedure is repeated for multiple thresholds, to deter-
mine an ROC curve. Note that this evaluation does
not verify whether the detection coincides with the ac-
tual location of the anomaly. It is therefore possible
for some portion true positive detections to be “lucky”
co-occurrences of erroneous detections and abnormal
events.

• Anomaly localization using pixel level groundtruth: To
test localization accuracy, detections are compared to
pixel level groundtruth masks, on a subset of ten clips.
The procedure is similar to that described above. If at
least 40% of the truly anomalous pixels are detected,
the frame is considered detected correctly, and counted
as a false positive otherwise. The ROC curve is based
on these detection and false positive rates, for multiple
threshold values.



For the anomaly detection component, the equal error rate
(EER) - percentage of misclassified frames when the false
positive rate is equal to the miss rate - is reported. For the
anomaly localization component, detection rate at equal er-
ror is reported.

7. Experiments and Results
To evaluate the performance of the proposed anomaly

representation, we compared it to three other recently pro-
posed representations - the social force model [21] (denoted
SF), the mixture of optical flow (denoted MPPCA) [16] and
the optical flow monitoring method of [2]. Since code for all
three was not available, the results presented reflect our own
implementations. As this work addresses only the low level
representation (viz. optical flow vs. dynamic textures), the
Latent Dirichlet Allocation modeling of [21] and the MRF
of [16] were omitted. Among the methods chosen for com-
parison, the social force model is a spatial anomaly detec-
tion technique, while the mixture of optical flow approach
is based on temporal anomaly detection. Since the proposed
MDT approach has both components, we also included the
normalized combination of social force and mixture of opti-
cal flow (denoted SF-MPCCA) as a separate method in our
comparisons.

7.1. Quantitative Performance Comparison

The four algorithms were run on all clips of the crowds
dataset. Using a coarse threshold, abnormality maps were
first thresholded to yield candidate locations. The resulting
abnormality masks were passed through a spatio-temporal
averaging filter to reduce noisy abnormal predictions. This
can be seen as a simplified version of using a (computation-
ally expensive) MRF model to enforce smoothness. This
filtered output was subjected to the evaluation procedure of
Section 6.1. The ROC curves for anomaly detection and
anomaly localization are shown in Figure 3, and the EER
values are tabulated in Table 1. Some examples of frames
with anomalies detected by the proposed approach and the
best performing competitor (SF-MPPCA) are shown in Fig-
ure 4. Video clips of the anomaly detections are available
online [1].

8. Discussion
The results show that the MDT-based anomaly detection

outperforms all other approaches. The difference in perfor-
mance is more pronounced in the anomaly localization task,
indicating that the remaining approaches may be enjoying
good detection rates in the anomaly detection task due to
lucky hits. It is clear that, even when spatial and tempo-
ral detection schemes based on optical flow are combined
(SF-MPPCA), they do not perform well. This suggests that
optical flow representations are not powerful enough to de-
tect anomalous occurrences in terms of joint appearance and

Anomaly Detection Experiment: EER
SF [21] MPPCA

[16]
SF-
MPPCA

Adam et
al. [2]

MDT

Ped1 31% 40% 32% 38% 25%
Ped2 42% 30% 36% 42% 25%

Average 37% 35% 34% 40% 25%

Anomaly Localization Experiment: Rate of Detection
Localization 21% 18% 28% 24% 45%

Table 1. Quantitative comparison of performance for the abnor-
mality detection algorithms tested. The first two rows show the
EER over the two datasets Ped1 and Ped2. The average over the
two datasets is shown in the third row. The detection rate at equal
error for the anomaly localization task is shown in the last row.

motion. Furthermore, when there is perspective distortion,
optical flow is unreliable and global comparisons of optical
flow can lead to erroneous results. This is evident from the
results of the social force model, shown in Figure 4 (b) and
(c), where the regions of high optical flow at the near end
of the camera show spurious abnormality detections. The
main shortcoming of the proposed approach is the compu-
tation time. Training the mixtures of dynamic textures for
videos of frame size 160×240 takes around 2hrs, while the
testing time per frame is about 25secs on a standard Pentium
machine with 3GHz CPU and 2GB RAM.
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Figure 3. (a) and (b) Performance of the approaches tested for the anomaly detection task on the Pedestrians dataset.(c) Performance of the
approaches tested on the anomaly localization with pixel level groundtruth on the Pedestrians dataset. Note that on this task, performance
at chance level is not the diagonal from (0, 0) to (1, 1) (it is in fact close to zero)
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Figure 4. Examples of abnormal detections using (i) the MDT approach (ii) using the SF-MPPCA approach which completely misses the
skater in (b), the person running in (c) and the bike in (d).
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