
MOTION VECTOR REFINEMENT FOR FRUC USING SALIENCY AND SEGMENTATION

Natan Jacobson, Yen-Lin Lee, Vijay Mahadevan, Nuno Vasconcelos, Truong Q. Nguyen

ECE Department, University of California, San Diego
La Jolla, CA 92093-0407

E-mail: {njacobso,yel004,vmahadev}@ucsd.edu, {nuno,nguyent}@ece.ucsd.edu

ABSTRACT

Motion-Compensated Frame Interpolation (MCFI) is a tech-
nique used extensively for increasing the temporal frequency
of a video sequence. In order to obtain a high quality interpo-
lation, the motion field between frames must be well-estimated.
However, many current techniques for determining the motion
are prone to errors in occlusion regions, as well as regions with
repetitive structure. An algorithm is proposed for improving
both the objective and subjective quality of MCFI by refining
the motion vector field. A Discriminant Saliency classifier is
employed to determine regions of the motion field which are
most important to a human observer. These regions are refined
using a multi-stage motion vector refinement which promotes
candidates based on their likelihood given a local neighborhood.
For regions which fall below the saliency threshold, frame seg-
mentation is used to locate regions of homogeneous color and
texture via Normalized Cuts. Motion vectors are promoted such
that each homogeneous region has a consistent motion. Ex-
perimental results demonstrate an improvement over previous
methods in both objective and subjective picture quality.

Keywords— Frame Rate Up-Conversion (FRUC), Discrim-
inant Saliency, Motion Segmentation, Motion Refinement, Mo-
tion Compensated Frame Interpolation (MCFI).

1. INTRODUCTION

Frame Rate Up-Conversion is an area of significant research
with many important applications. In mobile video, bandwidth
restrictions make it infeasible to transmit at high frame rates.
Instead the focus is on increasing spatial video quality while re-
ducing the number of frames transmitted. FRUC is employed at
the receiver to recreate a smooth video. Typically, mobile video
is transmitted at 15Hz and up-converted by a factor of two to
30Hz by the FRUC engine. Another important application is
motion blur reduction for Liquid Crystal Display (LCD) televi-
sions. This is necessary because of the sample-and-hold nature
of LCD displays, which causes noticeable motion blur at low
frame rates. LCD displays recently released to the market are
capable of displaying at 120Hz and 240Hz, thus significantly
reducing the noticeable effect of motion blur. In order to take
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advantage of these high frame rates, FRUC is required to up-
convert source material to the required rate.

FRUC is composed of two portions: Motion Estimation
(ME) and Motion Compensated Frame Interpolation (MCFI).
A block-based ME algorithm partitions each frame into uniform
blocks (generally 8x8 pixels) and determining the relative trans-
lation between each block in successive video frames. The re-
sult of the ME step is a motion field for the entire frame. Next,
the MCFI engine creates an intermediate frame by interpolating
along the motion field direction. Interpolation is performed bi-
directionally to avoid any holes in the resultant frame. Given a
motion vector (vx, vy) from the motion estimator, a block in the
interpolated frame ft is calculated as follows from the current
frame ft+1 and reference frame ft−1:

ft (x, y) = 0.5ft−1

(
x+
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2
, y +

vy
2

)
+0.5ft+1

(
x− vx

2
, y − vy

2

)
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Because FRUC is performed on a block basis, there are several
issues which we aim to resolve. One limitation of a block-based
method is that objects in the scene generally do not conform to
block boundaries. Therefore, a single block may contain mul-
tiple objects with conflicting motion. Another limitation is that
the motion vector which minimizes predicted block error may
not produce the most consistent motion field. This can occur be-
cause of changes in luminance between frames or due to repet-
itive structures. Finally, FRUC can suffer from a ghosting ar-
tifact which is caused by large motions being assigned outside
of object boundaries. These shortcomings are addressed in the
presented work.

A novel method for FRUC is proposed, aimed at improv-
ing both objective and subjective quality compared with previ-
ous methods. Saliency detection is employed in order to deter-
mine which regions of the scene are visually important to a hu-
man observer, thereby requiring very accurate motion vectors.
Conversely, motion-vector smoothness and consistency are en-
forced for non-salient regions using a fast frame segmentation.
While these methods are computationally intensive, they pro-
vide necessary information in order to increase perceptual qual-
ity of salient scene regions.
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2. DISCRIMINANT SALIENCY

Human observers typically focus their visual attention on small
regions of the video frame that appear interesting. By subject-
ing only these attended regions to post-processing such as mo-
tion vector refinement, the quality of FRUC can be improved
while keeping computational complexity manageable. The au-
tomatic selection of the regions of interest as perceived by the
human visual system (HVS) has been well studied in the context
of bottom-up saliency, and has been applied to improve video
compression [1]. However, these techniques have been devel-
oped for static images and are not suitable for motion based
region of interest identification. Therefore, in this work, we
use the recently proposed discriminant center-surround model
for motion saliency [2] to automatically identify salient moving
objects.

Discriminant center-surround saliency is a biologically plau-
sible algorithm that has been shown to replicate the psy-
chophysics of saliency mechanisms in the HVS. It can directly
be applied to motion saliency simply by using appropriate mo-
tion models such as optical flow or dynamic textures [3]. In this
work, a dynamic texture model is used to determine the motion-
based feature response.

Dynamic texture data is obtained by determining an Autore-
gressive Moving Average (ARMA) model for a small piece of
spatiotemporal data. This data is a three-dimensional volume
with two spatial dimensions and one time dimension. The vol-
ume of data represents an observed sequence {y (t)} seen as
the output of a dynamic texture {I (t)} with added noise n (t).
Using this notation, the dynamic texture coefficients can be de-
termined using the following process:{

x (t) =
∑k

i=1 Aix (t− i) +Bv (t)
y (t) = ϕ (x (t)) + n (t)

(2)

where ϕ is a spatial filter, I (t) = ϕ (x (t)), v (t) is selected IID
from an unknown distribution, and n (t) is selected IID from a
given distribution pn (·).

Discriminant saliency is defined with respect to two classes
of stimuli and a feature Y: the class of visual stimuli in the
center (with label C = 1), and class of visual stimuli in the
background or surround (with label C = 0). The saliency of
location l of the video, denoted S(l), is the extent to which the
feature Y can discriminate between center and surround at l.
This is quantified by the mutual information between features,
Y, and class label, C,

S(l) = Il(Y;C) =

1∑
c=0

∫
pY,C(l)(y, c) log

pY,C(l)(y, c)

pY(y)pC(l)(c)
dy (3)

A large S(l) implies that center and surround have a large dis-
parity of feature responses, i.e. large local feature contrast in-
dicating that the location is salient. By selecting an appropriate
feature Y that encodes both spatial and temporal characteristics
of the video (e.g. dynamic textures, optical flow) we can ob-
tain regions that are spatiotemporally salient. Figure 1 shows
the saliency map for the “Speedway” sequence obtained by us-
ing dynamic textures. The map shows that the regions predicted

(a)

(b)

Fig. 1. Discriminant Saliency map using dynamic texture
model, (a) input frame from speedway sequence, (b) saliency
map. Larger pixel intensity (closer to white) represents higher
saliency value.

to have high saliency (e.g the car) are indeed the regions that
appear visually salient to a human observer.

3. SEGMENTATION

The goal of a segmentation algorithm is to partition each frame
into distinct objects. Significant progress has been made on this
research topic, although the problem itself is fundamentally ill-
posed. For the scope of this paper, the segmentation algorithm
provided in [4] is used, which is based on Normalized Cuts as
well as Probability of Boundary (pB) for detection of edges us-
ing color and texture. Normalized Cuts treats the image as a
connected graph with each pixel being represented by a single
node. The algorithm then iteratively cuts the graph so that dis-
sociation between regions is high, while dissociation within re-
gions remains small. As is common in the literature, this seg-
mentation scheme will be used to oversegment the image. Each
frame is segmented into a predetermined number of regions de-
termined by the image size. For consistency, this has been fixed
at 200 regions for CIF sequences and 400 regions for HD720p
sequences.

With the frame oversegmented, the next step is to merge re-
gions with similar characteristics. Regions with similar color
and texture are merged on the assumption that they belong to
the same object. This process is repeated until a small num-
ber of regions exist. The merge operation terminates when no
two nodes can be located with a sufficiently small dissimilar-
ity. Color information is obtained directly in the RGB color
space. It is important to use color rather than relying on lumi-
nance information alone, since a boundary between two objects
may be isoluminant while varying in chrominance. Texture is



also computed as this proves to be a useful cue for merging seg-
mentations. The texture measure is computed as the variance of
the AC coefficients of the Discrete Cosine Transform (DCT) of
each 8x8 block.

The superpixel merge procedure is posed as a problem over
the graph G = (V,E). Here, {v1, . . . , vn} ∈ V is the set of all
superpixel regions, and the edges {ei,j} ∈ E for i, j ∈ [1, n]
contain a dissimilarity measure between each pair of nodes.
Eij = 0 if nodes vi, vj ∈ V are non-adjacent. We use an in-
dicator function bi,j to represent node adjacency. bi,j = 1 if
vi, vj ∈ V are adjacent and bi,j = 0 otherwise.

Ei,j = bi,j

(
λmax

{
IRGB
i − IRGB

j

}
+ (1− λ) |Ti − Tj |) (4)

IRGB
i =

1

| {vi} |

∑
j∈vi

R (j) ,
∑
j∈vi

G (j) ,
∑
j∈vi

B (j)

T

(5)

where IRGB
i is the average intensity over the RGB color planes

and Ti is the average texture measure for superpixel region vi.
The tuning parameter λ allows the user to emphasize either
color or texture for the merging process. For all experiments
conducted in this paper, the parameter is set to λ = 0.5. The
merge procedure requires iteratively locating the pair of nodes
vi, vj ∈ V such that Ei,j is minimized. These nodes are then
merged, and the process continues.

4. PROPOSED ALGORITHM

The proposed FRUC architecture improves MV accuracy for
salient regions while enforcing smoothness of the MV field for
non-salient regions. In this way, both objective and subjective
video quality will be increased. The proposed architecture is
detailed in Algorithm 1.

Algorithm 1 Proposed MV Consistency and Refinement
input: frame data, oversegmented and merged region map
R1, . . . , Rn, saliency map S, saliency threshold τ
for region Ri ∈ {R1, . . . , Rn} do

if 1
|j∈Ri|

∑
j∈Ri

S (j) < τ then
enforce region consistency for Ri as discussed in Sec-
tion 4.2

else
for all blocks contained in region Ri do

perform MVR as described in Section 4.3
end for

end if
end for
output: refined MV field

4.1. Saliency Map Generation

The saliency map is generated according to [2] with a dynamic
texture model used for the feature Y. A spatial window size

Fig. 2. Region consistency: the upper left portion demonstrates
a frame which has been segmented into n = 6 regions. An MV
histogram is constructed for region R3 and the m = 4 most
commonly occurring motions are selected for CS (R3)

of 8x8 pixels, and a temporal window size of 11 frames is em-
ployed for the spatiotemporal volume. The saliency map is nor-
malized to have a maximum value of 1 pertaining to the most
salient points, and a minimum value of 0 for non-salient points.
The average saliency value for each region is calculated and
compared with a threshold τ to determine whether region con-
sistency or MVR is employed.

4.2. Region Consistency

The result of the frame oversegmentation and merging pro-
cess is a segmentation with n distinct regions {R1, . . . , Rn}
where R1 ∪ . . . ∪ Rn = I . In order to promote natural mo-
tion, we restrict the candidate set of available motions to those
which are statistically most likely. A MV histogram is com-
puted for each region Ri consisting of the motions assigned to
all blocks B ∈ Ri. From this histogram, the m most com-
monly occurring motions are promoted as a candidate set. This
process is demonstrated in Fig. 2. The parameter m was ex-
perimentally determined to be ideal at m = 2 across all se-
quences tested. Denote the candidate set for region Ri as:
CS (Ri) = {mv1, . . . ,mvm}. For each candidate mvj in the
candidate set, the Total Error TE (mvj , Ri) is calculated over
region Ri to determine which candidate best explains the total
motion of the region. Denote the x and y-components of can-
didate mvj as vjx and vjy , respectively. For reference frame
ft−1 and current frame ft, TE is computed as:

TE (mvj , Ri) =
∑

M∈Ri

∑
x,y∈M

|ft−1

(
x+

vjx
2

, y +
vjy
2

)
−ft

(
x− vjx

2
, y − vjy

2

)
| (6)

where M is a block contained in region Ri with upper-left pixel
index (i, j). Block ownership is determined by which region
owns a majority of the block’s pixels. Ties are broken arbitrar-
ily. Penalties are applied to these candidates based on the total
distortion produced by the candidate for the region Ri. In case
of non-integer offsets ( vjx2 ,

vjy
2 /∈ Z), bilinear interpolation is



Fig. 3. MVR for center block (gray) with m = 3. The top
three most commonly occurring motions in the neighborhood
are considered as the first three candidates. The original MV
for the center block is the fourth candidate.

used to determine TE. For candidate mvj ∈ CS (Ri):

p (mvj) =
TE (mvj , Ri)∑
k ̸=j TE (mvk, Ri)

(7)

With the penalties determined over the candidate set, we are
now able to promote MV consistency for each superpixel re-
gion. The Region Consistent MV (mvrc) for a block B ∈ Ri

is computed as:

mvrc = min
j:mvj∈CS(Ri)

∑
x,y∈M

|ft−1

(
x+

vjx
2

, y +
vjy
2

)
−ft

(
x− vjx

2
, y − vjy

2

)
|p (mvj) (8)

4.3. Motion Vector Refinement

For scene regions which exceed the saliency threshold τ , Mo-
tion Vector Refinement (MVR) is applied to increase the accu-
racy of the motion field. The refinement is computed without
motion re-estimation [5]. MVR is computed in three stages of
decreasing local neighborhood, which is particularly important
at object boundaries, where the MV field is difficult to deter-
mine. The method is based on the idea of natural motion, this
is the assumption that, for any given area, there are a limited
number of motions which need to be considered. The candidate
selection process is demonstrated in Fig. 3. MVR is computed
in multiple stages in order to improve the accuracy of the mo-
tion field around object boundaries. At each stage, the local
neighborhood of consideration is decreased in order to consider
more relevant MV candidates. In the first stage, enlarged block
matching is considered with a 24x24 pixel measurement win-
dow for each 8x8 block. A MV histogram is created contain-
ing the original block motion and all spatial neighbors within a
neighborhood of ±2 blocks. These 25 MVs are analyzed, and
the m = 3 most commonly occurring motions, as well as the
original block motion, are promoted as a candidate set. As be-
fore, the candidate which produces the smallest error is chosen
as the MV. For stage one, the error is calculated as:

SAD1 (vx, vy) =
∑

x,y∈M1

|ft−1

(
x+

vx
2
, y +

vy
2

)
−ft

(
x− vx

2
, y − vy

2

)
| (9)

using the Sum of Absolute Differences (SAD) error measure
where M1 is defined as in Eq. ( 10 ) for a 24x24 pixel enlarged
measurement window with upper-left pixel located at (i, j). The
second stage proceeds in a similar fashion. The candidate set is
increased to four motion histogram candidates and the original
block motion. An 8x8 block is selected with no enlarged match-
ing to improve the motion accuracy around object boundaries.
The error for stage 2 is computed using block M2.

In the third stage, the resolution of the motion field is in-
creased by a factor of two in each direction. Each block is parti-
tioned into four 4x4 subblocks (quadrants), and refinement pro-
ceeds as in previous stages. The four subblocks are defined by
M3i, i = 1, . . . , 4

M1 = {x, y : x ∈ [i− 8, i+ 15] , y ∈ [j − 8, j + 15]}
M2 = {x, y : x ∈ [i, i+ 7] , y ∈ [j, j + 7]}
M31 = {x, y : x ∈ [i, i+ 3] , y ∈ [j, j + 3]}
M32 = {x, y : x ∈ [i, i+ 3] , y ∈ [j + 4, j + 7]}
M33 = {x, y : x ∈ [i+ 4, i+ 7] , y ∈ [j, j + 3]}
M34 = {x, y : x ∈ [i+ 4, i+ 7] , y ∈ [j + 4, j + 7]} (10)

5. EXPERIMENTAL SETUP

Objective results are calculated using the following experimen-
tal procedure. Each 24 frame per second (fps) video sequence
is temporally reduced by a factor of two to 12fps. The 12fps se-
quence is then up-converted using MCFI via one of the FRUC
algorithms discussed in this paper. The resulting interpolated
frames are compared with the originals to determine the error.

5.1. Objective Results

The proposed algorithm is tested against several competing
methods for FRUC. Among these are: Full Search (FS) with
bidirectional MCFI [6], 3D Recursive Search [7], MSEA
method with bidirectional MCFI [8] and a Multistage Motion
Vector Processing method (MMVP) [9]. The metrics for com-
parison are Peak Signal to Noise Ratio (PSNR) and Structural
Similarity Index (SSIM), which models error as perceived by a
Human observer. Eight sequences have been chosen for com-
parison. Among these are four CIF sequences (352x288) and
four HD720p sequences (1280x720). The CIF sequences are:
coastguard, football, foreman and tennis. These sequences
are prevalent in the video processing literature. The HD se-
quences are: dolphins, limit, planes and speedway. All objec-
tive results for these sequences are tabulated in Table 1. Results
are also provided for salient scene regions. The top 25% of each
saliency map is considered as the mask for calculation of objec-
tive results in the salient region. This is consistent with the goal
of improving the performance of FRUC must in salient regions.

The football sequence is examined in Fig. 4, which presents
many different motions, occlusions and therefore numerous ob-
ject boundaries. For the competing methods, noticeable dis-
tortion occurs around the object boundary of player #41 in the
middle of the frame. This is especially evident in the 3DRS



Table 1. Objective results for CIF and HD720p test sequences. Each cell provides results in PSNR dB (top) and SSIM (bottom)
Sequence 3DRS [7] FS [6] MSEA [8] MMVP [9] Proposed 3DRS FS MSEA MMVP Proposed

CIF Entire frame Salient frame region

coastguard 34.4422 36.9724 37.0120 36.0431 37.5361 32.4071 33.8265 33.8948 33.7229 34.8572
0.8973 0.9444 0.9448 0.9401 0.9505 0.9833 0.9866 0.9868 0.9858 0.9893

football 24.9455 25.7013 25.7035 24.5524 26.0087 23.0517 23.8816 23.9127 22.5563 24.2448
0.7422 0.7602 0.7616 0.6847 0.7885 0.9441 0.9511 0.9513 0.9334 0.9571

foreman 37.6367 38.5156 38.5159 34.6369 38.4558 36.1712 37.5657 37.6198 36.4874 37.6827
0.9413 0.9499 0.9502 0.9416 0.9530 0.9869 0.9904 0.9905 0.9883 0.9911

tennis 31.3513 31.6365 31.5762 28.7834 31.8027 29.7027 30.7389 30.6444 27.3591 31.3106
0.8689 0.8559 0.8575 0.7393 0.8737 0.9667 0.9664 0.9666 0.9430 0.9733

HD720p Entire frame Salient frame region

dolphins 34.0322 35.1030 35.0952 35.1120 34.9936 30.6850 31.8903 31.8539 31.6042 31.9006
0.8585 0.8790 0.8814 0.8835 0.8832 0.9417 0.9504 0.9511 0.9497 0.9537

limit 39.3535 39.2591 39.2382 39.4234 39.5608 37.5492 38.2784 38.5500 38.2704 38.6604
0.9151 0.9156 0.9150 0.9159 0.9209 0.9855 0.9866 0.9871 0.9866 0.9876

planes 34.2114 36.3117 36.2967 36.3942 36.8768 36.6685 37.1436 37.2119 37.1292 38.2912
0.9258 0.9517 0.9510 0.9469 0.9516 0.9940 0.9950 0.9950 0.9944 0.9952

speedway 28.9685 29.3508 29.3658 29.3960 29.3729 25.7847 26.6485 26.6092 26.6632 26.6846
0.8517 0.8673 0.8670 0.8638 0.8687 0.9335 0.9407 0.9404 0.9408 0.9411

interpolation in Fig. 4(b). Here, significant blocking artifacts
can be seen on the arms of player #41, as well as the leg of the
player on the right side of the frame. Interpolation performance
increases for FS and MSEA in Figs. 4(c,d), which can be seen in
the improved boundary of player #41. However, there are still
errors in the leg of the player on the right of the frame. MMVP
in Fig. 4(e) combines block motions with high residuals, thus
changing the appearance of the leg of the player on the right.
The merging of motion vectors creates a consistent motion in
this region, however the motion is too large. The result is du-
plication of the leg appearing as a ghosted copy. Finally, the
proposed interpolation in Fig. 4(f) demonstrates consistent mo-
tion of the player on the right side of the frame. In addition, the
saliency map allows for MVR on player #41, resulting in further
improvement over competing methods.

As FRUC is pertinent both to mobile video and HD con-
tent, the proposed algorithm is tested against several HD720p
sequences. Results for frame 88 of the speedway sequence are
discussed here. MCFI via 3DRS presents a poor interpolation
for the salient car in the foreground of the scene. While FS and
MSEA estimate a superior motion field to 3DRS, foreground
distortion is still visible. MMVP performs extremely well in
this case. Block merging is well suited to correcting artifacts
in the background fence region and in the foregruond car re-
gion. Finally, the proposed algorithm makes use of saliency and
segmentation information to separate the region into a highly
salient foreground region (car) and a non-salient background
(fence and road). The objective performance is slightly lower
than MMVP for the selected frame, but is higher when aver-
aged over the entire video sequence.

5.2. Subjective Results

In addition to objective results, it is crucial to determine the per-
ceptual quality of the proposed algorithm. This is accomplished

by performing double-blind subjective testing on a group of Hu-
man observers. Subjective results are obtained using the stimu-
lus comparison non-categorical judgment method as described
in [10]. A selected group of 20 observers were shown video
clips which had been processed by the proposed method, in ad-
dition to 3DRS, FS and MSEA. In each instance, two video
clips are shown side-by-side with each processed by a differ-
ent method. The observer is presented with a rating scale on
the range [−3, 3], where a score of −3 corresponds with the left
side appearing “much better” than the right side, and 3 corre-
sponding with the right side “much better” than the left side.
Any score between these two values is acceptable with 0 rep-
resenting “no difference” between the two sequences. Findings
are tabulated in Table 2 for the sequences: football, planes,
speedway and tennis across all 20 observers. In this table, the
mean (µ) and standard deviation (σ) are calculated for each se-
quence where a positive score on the mean corresponds to a
perceptual improvement of the proposed method over the com-
peting method. The rejection region (γ) is calculated using the
Student’s T-Test, where a decision is made between the null hy-
pothesis (the proposed algorithm has no positive affect over the
competing method) and the alternative hypothesis. Therefore,
a mean score exceeding the calculated rejection region corre-
sponds to a statistical improvement of the proposed method. It
can be observed from the subjective results that the proposed al-
gorithm demonstrates a significant improvement over the com-
peting methods for both HD sequences. However, no telling
results are obtained for the CIF sequences. While the objective
results are positive for the CIF sequences, the video size is too
small for a significant perceptual improvement.

6. CONCLUSION

There has been significant progress in FRUC research over the
past two decades, fueled by the high adoption rate of LCD



(a) Original (b) 3DRS (27.22dB, 0.7284) (c) FS (27.22dB, 0.7284)

(d) MSEA (27.16dB, 0.7527) (e) MMVP (26.03dB, 0.7004) (f) Proposed (27.67dB, 0.7779)

Fig. 4. Objective results for football sequence frame 74 (PSNR (db), SSIM).

Table 2. Subjective testing results. Proposed method is com-
pared with a competing method in each row. Standard deviation
is given by σ, rejection region γ and mean µ.

Sequence Comp. Method σ γ µ

Football
3DRS 0.50 0.19 2.34

FS 1.02 0.39 0.21
MSEA 0.74 0.29 -0.15

Tennis
3DRS 1.22 0.47 1.51

FS 0.51 0.20 0.21
MSEA 0.86 0.33 0.26

Planes
3DRS 0.55 0.21 2.24

FS 1.26 0.49 1.11
MSEA 0.77 0.30 1.48

Speedway
3DRS 0.30 0.12 2.81

FS 0.99 0.38 0.78
MSEA 1.15 0.44 0.85

television and increasing demand for mobile video. However,
few of these methods are perceptually-based and none consider
saliency information for the purpose of increasing perceived
video quality. The algorithm presented in this work has ad-
dressed these issues and has demonstrated an improvement both
in objective and subjective video quality.
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