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Abstract

The problem of controlling the margin of a classifier is studied. A detailed an-
alytical study is presented on how properties of the classification risk, such as
its optimal link and minimum risk functions, are related to the shape of the loss,
and its margin enforcing properties. It is shown that for a class of risks, denoted
canonical risks, asymptotic Bayes consistency is compatible with simple analyti-
cal relationships between these functions. These enable a precise characterization
of the loss for a popular class of link functions. It is shown that, when the risk is
in canonical form and the link is inverse sigmoidal, the margin properties of the
loss are determined by a single parameter. Novel families ofBayes consistent loss
functions, of variable margin, are derived. These familiesare then used to design
boosting style algorithms with explicit control of the classification margin. The
new algorithms generalize well established approaches, such as LogitBoost. Ex-
perimental results show that the proposed variable margin losses outperform the
fixed margin counterparts used by existing algorithms. Finally, it is shown that
best performance can be achieved by cross-validating the margin parameter.

1 Introduction

Optimal classifiers minimize the expected value of a loss function, or risk. Losses commonly used
in machine learning are upper-bounds on the zero-one classification loss of classical Bayes decision
theory. When the resulting classifier converges asymptotically to the Bayes decision rule, as training
samples increase, the loss is said to be Bayes consistent. Examples of such losses include the hinge
loss, used in SVM design, the exponential loss, used by boosting algorithms such as AdaBoost,
or the logistic loss, used in both classical logistic regression and more recent methods, such as
LogitBoost. Unlike the zero-one loss, these losses assign apenalty to examples correctly classified
but close to the boundary. This guarantees a classification margin, and improved generalization
when learning from finite datasets [1]. Although the connections between large-margin classification
and classical decision theory have been known since [2], theset of Bayes consistent large-margin
losses has remained small. Most recently, the design of suchlosses has been studied in [3]. By
establishing connections to the classical literature in probability elicitation [4], this work introduced
a generic framework for the derivation of Bayes consistent losses. The main idea is that there are
three quantities that matter in risk minimization: the lossfunctionφ, a corresponding optimal link
functionf∗

φ , which maps posterior class probabilities to classifier predictions, and a minimum risk
C∗

φ, associated with the optimal link.

While the standard approach to classifier design is to define a lossφ, and then optimize it to obtain
f∗

φ andC∗
φ, [3] showed that there is an alternative: to specifyf∗

φ andC∗
φ, and analytically derive the

lossφ. The advantage is that this makes it possible to manipulate the properties of the loss, while
guaranteeingthat it is Bayes consistent. The practical relevance of thisapproach is illustrated in [3],
where a Bayes consistentrobustloss is derived, for application in problems involving outliers. This
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loss is then used to design a robust boosting algorithm, denoted SavageBoost. SavageBoost has been,
more recently, shown to outperform most other boosting algorithms in computer vision problems,
where outliers are prevalent [5]. The main limitation of theframework of [3] is that it is not totally
constructive. It turns out that many pairs (C∗

φ,f∗
φ) are compatible with any Bayes consistent lossφ.

Furthermore, while there is a closed form relationship betweenφ and (C∗
φ,f∗

φ), this relationship is
far from simple. This makes it difficult to understand how theproperties of the loss are influenced
by the properties of eitherC∗

φ or f∗
φ . In practice, the design has to resort to trial and error, by 1)

testing combinations of the latter and, 2) verifying whether the loss has the desired properties. This
is feasible when the goal is to enforce a broad loss property,e.g. that a robust loss should be bounded
for negative margins [3], but impractical when the goal is toexercise a finer degree of control.

In this work, we consider one such problem: how to control thesize of the margin enforced by the
loss. We start by showing that, while many pairs (C∗

φ,f∗
φ) are compatible with a givenφ, one of these

pairs establishes a very tight connection between the optimal link and the minimum risk: thatf∗
φ is

the derivative ofC∗
φ. We refer to the risk function associated with such a pair as acanonical risk,

and show that it leads to an equally tight connection betweenthe pair (C∗
φ,f∗

φ) and the lossφ. For
a canonical risk, all three functions can be obtained from each other with one-to-one mappings of
trivial analytical tractability. This enables a detailed analytical study of howC∗

φ or f∗
φ affectφ. We

consider the case where the inverse off∗
φ is a sigmoidal function, i.e.f∗

φ is inverse-sigmoidal, and
show that this strongly constrains the loss. Namely, the latter becomes 1) convex, 2) monotonically
decreasing, 3) linear for large negative margins, and 4) constant for large positive margins. This
implies that, for a canonical risk, the choice of a particular link in the inverse-sigmoidal family
only impacts the behavior ofφ around the origin, i.e. the size of the margin enforced by theloss.
This quantity is then shown to depend only on the slope of the sigmoidal inverse-link at the origin.
Since this property can be controlled by a single parameter,the latter becomes a margin-tunning
parameter, i.e. a parameter that determines the margin of the optimal classifier. This is exploited to
design parametric families of loss functions that allowexplicit controlof the classification margin.
These losses are applied to the design of novel boosting algorithms of tunable margin. Finally,
it is shown that the requirements of 1) a canonical risk, and 2) an inverse-sigmoidal link are not
unduly restrictive for classifier design. In fact, approaches like logistic regression or LogitBoost
are special cases of the proposed framework. A number of experiments are conducted to study the
effect of margin-control on the classification accuracy. Itis shown that the proposed variable-margin
losses outperform the fixed-margin counterparts used by existing algorithms. Finally, it is shown that
cross-validation of the margin parameter leads to classifiers with the best performance on all datasets
tested.

2 Loss functions for classification

We start by briefly reviewing the theory of Bayes consistent classifier design. See [2, 6, 7, 3] for
further details. A classifierh maps a feature vectorx ∈ X to a class labely ∈ {−1, 1}. This
mapping can be written ash(x) = sign[p(x)] for some functionp : X → R, which is denoted
as the classifier predictor. Feature vectors and class labels are drawn from probability distributions
PX(x) andPY (y) respectively. Given a non-negative loss functionL(x, y), the classifier is optimal
if it minimizes the riskR(f) = EX,Y [L(h(x), y)]. This is equivalent to minimizing the conditional
risk EY |X[L(h(x), y)|X = x] for all x ∈ X . It is useful to expressp(x) as a composition of
two functions,p(x) = f(η(x)), whereη(x) = PY |X(1|x), andf : [0, 1] → R is a link function.
Classifiers are frequently designed to be optimal with respect to the zero-one loss

L0/1(f, y) =
1 − sign(yf)

2
=

{

0, if y = sign(f);
1, if y 6= sign(f),

(1)

where we omit the dependence onx for notational simplicity. The associated conditional risk is

C0/1(η, f) = η
1 − sign(f)

2
+ (1 − η)

1 + sign(f)

2
=

{

1 − η, if f ≥ 0;
η, if f < 0.

(2)

The risk is minimized if






f(x) > 0 if η(x) > 1
2

f(x) = 0 if η(x) = 1
2

f(x) < 0 if η(x) < 1
2

(3)

2



Table 1: Lossφ, optimal link f∗

φ(η), optimal inverse link[f∗

φ ]−1(v) , and minimum conditional riskC∗

φ(η)
for popular learning algorithms.

Algorithm φ(v) f∗
φ(η) [f∗

φ ]−1(v) C∗
φ(η)

SVM max(1 − v, 0) sign(2η − 1) NA 1 − |2η − 1|

Boosting exp(−v) 1
2 log η

1−η
e2v

1+e2v
2
√

η(1 − η)

Logistic Regression log(1 + e−v) log η
1−η

ev

1+ev
-η log η − (1 − η) log(1 − η)

Examples of optimal link functions includef∗ = 2η − 1 andf∗ = log η
1−η . The associated optimal

classifierh∗ = sign[f∗] is the well known Bayes decision rule (BDR), and the associated minimum
conditional (zero-one) risk is

C∗
0/1(η) = η

(

1

2
−

1

2
sign(2η − 1)

)

+ (1 − η)

(

1

2
+

1

2
sign(2η − 1)

)

. (4)

A loss which is minimized by the BDR is Bayes consistent. A number of Bayes consistent alter-
natives to the 0-1 loss are commonly used. These include the exponential loss of boosting, the log
loss of logistic regression, and the hinge loss of SVMs. Theyhave the formLφ(f, y) = φ(yf), for
different functionsφ. These functions assign a non-zero penalty to small positive yf , encouraging
the creation of a margin, a property not shared by the 0-1 loss. The resultinglarge-marginclassifiers
have better generalization than those produced by the latter [1]. The associated conditional risk

Cφ(η, f) = ηφ(f) + (1 − η)φ(−f). (5)

is minimized by the link
f∗

φ(η) = arg min
f

Cφ(η, f) (6)

leading to the minimum conditional risk functionC∗
φ(η) = Cφ(η, f∗

φ). Table 1 lists the loss, optimal
link, and minimum risk of some of the most popular classifier design methods.

Conditional risk minimization is closely related to classical probability elicitation in statistics [4].
Here, the goal is to find the probability estimatorη̂ that maximizes the expected reward

I(η, η̂) = ηI1(η̂) + (1 − η)I−1(η̂), (7)

whereI1(η̂) is the reward for prediction̂η when eventy = 1 holds andI−1(η̂) the corresponding
reward wheny = −1. The functionsI1(·), I−1(·) should be such that the expected reward is
maximal when̂η = η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (8)

with equality if and only ifη̂ = η. The conditions under which this holds are as follows.

Theorem 1. [4] Let I(η, η̂) and J(η) be as defined in (7) and (8). Then 1)J(η) is convex and
2) (8) holds if and only if

I1(η) = J(η) + (1 − η)J ′(η) (9)

I−1(η) = J(η) − ηJ ′(η). (10)

Hence, starting from any convexJ(η), it is possible to deriveI1(·), I−1(·) so that (8) holds. This
enables the following connection to risk minimization.

Theorem 2. [3] Let J(η) be as defined in (8) andf a continuous function. If the following proper-
ties hold

1. J(η) = J(1 − η),

2. f is invertible with symmetry

f−1(−v) = 1 − f−1(v), (11)
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then the functionsI1(·) andI−1(·) derived with (9) and (10) satisfy the following equalities

I1(η) = −φ(f(η)) (12)

I−1(η) = −φ(−f(η)), (13)

with
φ(v) = −J [f−1(v)] − (1 − f−1(v))J ′[f−1(v)]. (14)

Under the conditions of the theorem,I(η, η̂) = −Cφ(η, f). This establishes a new path for classifier
design [3]. Rather than specifying a lossφ and minimizingCφ(η, f), so as to obtain whatever
optimal link f∗

φ and minimum expected riskC∗
φ(η) results, it is possible to specifyf∗

φ andC∗
φ(η)

and derive, from (14) withJ(η) = −C∗
φ(η), the underlying lossφ. The main advantage is the ability

to control directly the quantities that matter for classification, namely the predictor and risk of the
optimal classifier.The only conditions are thatC∗

φ(η) = C∗
φ(1 − η) and (11) holds forf∗

φ .

3 Canonical risk minimization

In general, givenJ(η) = −C∗
φ(η), there are multiple pairs(φ, f∗

φ) that satisfy (14). Hence, speci-
fication of either the minimum risk or optimal link does not completely characterize the loss. This
makes it difficult to control some important properties of the latter, such as the margin. In this work,
we consider an important special case, where such control ispossible. We start with a lemma that
relates the symmetry conditions, onJ(η) andf∗

φ(η), of Theorem 2.

Lemma 3. Let J(η) be a strictly convex and differentiable function such thatJ(η) = J(1 − η).
ThenJ ′(η) is invertible and

[J ′]−1(−v) = 1 − [J ′]−1(v). (15)

Hence, under the conditions of Theorem 2, the derivative ofJ(η) has thesamesymmetry asf∗
φ(η).

Since this symmetry is the only constraint onf∗
φ , the former can be used as the latter. Whenever this

holds, the risk is said to be in canonical form, and(f∗, J) are denoted a canonical pair [6] .

Definition 1. LetJ(η) be as defined in (8), andC∗
φ(η) = −J(η) a minimum risk. If the optimal link

associated withC∗
φ(η) is

f∗
φ(η) = J ′(η) (16)

the riskCφ(η, f) is said to be in canonical form.f∗
φ(η) is denoted a canonical link andφ(v), the

loss given by (14), a canonical loss.

Note that (16) does not hold for all risks. For example, the risk of boosting is derived from the
convex, differentiable, and symmetricJ(η) = −2

√

η(1 − η). Since this has derivative

J ′(η) =
2η − 1

√

η(1 − η)
6=

1

2
log

η

1 − η
= f∗

φ(η), (17)

the risk is not in canonical form. What follows from (16) is that it is possibleto derive a canonical
risk for any maximal rewardJ(η), including that of boosting (J(η) = −2

√

η(1 − η)). This is
discussed in detail in Section 5.

While canonical risks can be easily designed by specifying eitherJ(η) or f∗
φ(η), and then using (14)

and (16), it is much less clear how to directly specify a lossφ(v) for which (14) holds with a
canonical pair(f∗, J). The following result solves this problem.

Theorem 4. LetCφ(η, f) be the canonical risk derived from a convex and symmetricJ(η). Then

φ′(v) = −[J ′]−1(−v) = [f∗
φ ]−1(v) − 1. (18)
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Figure 1:Left: canonical losses compatible with an IS optimal link. Right: Average classification rank as a
function of margin parameter, on the UCI data.

This theorem has various interesting consequences. First,it establishes an easy-to-verify necessary
condition for the canonical form. For example, logistic regression has[f∗

φ ]−1(v) = 1
1+e−v

and

φ′(v) = − e−v

1+e−v
= [f∗

φ ]−1(v) − 1, while boosting has[f∗
φ ]−1(v) = 1

1+e−2v
andφ′(v) = −e−v 6=

[f∗
φ ]−1(v) − 1. This (plus the symmetry ofJ andf∗

φ) shows that the former is in canonical form
but the latter is not. Second, it makes it clear that, up to additive constants, the three components
(φ, C∗

φ, andf∗
φ) of a canonical risk are related by one-to-one relationships. Hence, it is possible to

control the properties of thethreecomponents of the risk by manipulating asinglefunction (which
can be any of the three). Finally, it enables a very detailed characterization of the losses compatible
with most optimal links of Table 1.

4 Inverse-sigmoidal links

Inspection of Table 1 suggests that the classifiers producedby boosting, logistic regression, and vari-
ants have sigmoidal inverse links[f∗

φ ]−1. Due to this, we refer to the linksf∗
φ asinverse-sigmoidal

(IS). When this is the case, (18) provides a very detailed characterization of the lossφ. In particular,
it can be trivially shown that, lettingf (n) be thenth order derivative off , that the following hold

lim
v→−∞

[f∗
φ ]−1(v) = 0 ⇔ lim

v→−∞
φ(1)(v) = −1 (19)

lim
v→∞

[f∗
φ ]−1(v) = 1 ⇔ lim

v→∞
φ(1)(v) = 0 (20)

lim
v→±∞

([f∗
φ ]−1)(n)(v) = 0, n ≥ 1 ⇔ lim

v→±∞
φ(n+1)(v) = 0, n ≥ 1 (21)

[f∗
φ ]

−1
(v) ∈ (0, 1) ⇔ φ(v) monotonically decreasing (22)

[f∗
φ ]

−1
(v) monotonically increasing ⇔ φ(v) convex (23)

[f∗
φ ]

−1
(0) = .5 ⇔ φ(1)(0) = −.5. (24)

It follows that, as illustrated in Figure 1, the lossφ(v) is convex, monotonically decreasing, linear
(with slope−1) for large negativev, constant for large positivev, and has slope−.5 at the origin.
The set of losses compatible with an IS link is, thus, strongly constrained. The only degrees of
freedom are in the behavior of the function around the origin. This is not surprising, since the only
degrees of freedom of the sigmoid itself are in its behavior within this region.
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Figure 2:canonical link (left) and loss (right) for various values ofa. (Top) logistic, (bottom) boosting.

What is interesting is that these are the degrees of freedom that control the margin characteristics
of the lossφ. Hence, by controlling the behavior of the IS link around theorigin, it is possible to
control the margin of the optimal classifier. In particular,the margin is a decreasing function of the
curvature of the loss at the origin,φ(2)(0). Since, from (18),φ(2)(0) = ([f∗

φ ]−1)(1)(0), the margin
can be controlled by varying the slope of[f∗

φ ]−1 at the origin.

5 Variable margin loss functions

The results above enable the derivation of families of canonical losses with controllable margin. In
Section 3, we have seen that the boosting loss is not canonical, but there is a canonical loss for the
minimum risk of boosting. We consider a parametric extension of this risk,

J(η; a) =
−2

a

√

η(1 − η), a > 0. (25)

From (16), the canonical optimal link is

f∗
φ(η; a) =

2η − 1

a
√

η(1 − η)
(26)

and it can be shown that

[f∗
φ ]

−1
(v; a) =

1

2
+

av

2
√

4 + (av)2
(27)

is an IS link, i.e. satisfies (19)-(24). Using (18), the corresponding canonical loss is

φ(v; a) =
1

2a
(
√

4 + (av)2 − av). (28)

Because it shares the minimum risk of boosting, we refer to this loss as thecanonical boosting loss.
It is plotted in Figure 2, along with the inverse link, for various values ofa. Note that the inverse
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Table 2:Margin parameter valuea of rank1 for each of the ten UCI datasets.

UCI dataset# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Canonical Log 0.4 0.5 0.6 0.3 0.1 2 0.5 0.1 0.2 0.2

Canonical Boost 0.9 6 2 2 0.4 3 0.2 4 0.2 0.9

link is indeed sigmoidal, and that the margin is determined by a. Sinceφ(2)(0; a) = a
4 , the margin

increases with decreasinga.

It is also possible to derive variable margin extensions of existing canonical losses. For example,
consider the parametric extension of the minimum risk of logistic regression

J(η; a) =
1

a
η log(η) +

1

a
(1 − η) log(1 − η). (29)

From (16),

[f∗
φ ](v; a) =

1

a
log

η

1 − η
[f∗

φ ]
−1

(v; a) =
eav

1 + eav
. (30)

This is again a sigmoidal inverse link and, from (18),

φ(v; a) =
1

a
[log(1 + eav) − av] . (31)

We denote this loss thecanonical logistic loss. It is plotted in Figure 2, along with the corresponding
inverse link for variousa. Sinceφ(2)(0; a) = a

4 , the margin again increases with decreasinga.

Note that, in (28) and (31), margin control is not achieved bysimply rescaling the domain of the loss
function. e.g. just replacinglog(1 + e−v) by log(1 + e−av) in the case of logistic regression. This
would have no impact in classification accuracy, since it would just amount to a change of scale of the
original feature space. While this type of re-scaling occursin both families of loss functions above
(which are both functions ofav), it is localized around the origin, and only influences the margin
properties of the loss. As can be seen seen in Figure 2 all lossfunctions are identical away from the
origin. Hence, varyinga is conceptually similar to varying the bandwidth of an SVM kernel. This
suggests that the margin parametera could be cross-validated to achieve best performance.

6 Experiments

A number of easily reproducible experiments were conductedto study the effect of variable mar-
gin losses on the accuracy of the resulting classifiers. Ten binary UCI data sets were considered:
(#1)sonar, (#2)breast cancer prognostic, (#3)breast cancer diagnostic, (#4)original Wisconsin breast
cancer, (#5)Cleveland heart disease, (#6)tic-tac-toe, (#7)echo-cardiogram, (#8)Haberman’s survival
(#9)Pima-diabetes and (#10)liver disorder. The data was split into five folds, four used for train-
ing and one for testing. This produced five training-test pairs per dataset. The GradientBoost
algorithm [8], with histogram-based weak learners, was then used to design boosted classifiers
which minimize the canonical logistic and boosting losses,for various margin parameters. Gra-
dientBoost was adopted because it can be easily combined with the different losses, guaranteeing
that, other than the loss, every aspect of classifier design is constant. This makes the compari-
son as fair as possible.50 boosting iterations were applied to each training set, for19 values of
a ∈ {0.1, 0.2, ..., 0.9, 1, 2, ..., 10}. The classification accuracy was then computed per dataset,by
averaging over its five train/test pairs.

Since existing algorithms can be seen as derived from special cases of the proposed losses, witha =
1, it is natural to inquire whether other values of the margin parameter will achieve best performance.
To explore this question we show, in Figure-1, the average rank of the classifier designed with each
loss and margin parametera. To produce the plot, a classifier was trained on each dataset, for all
19 values ofa. The results were then ranked, with rank1 (19) being assigned to thea parameter of
smallest (largest) error. The ranks achieved with eacha were then averaged over the ten datasets, as
suggested in [9]. For the canonical logistic loss, the best values ofa is in the range0.2 ≤ a ≤ 0.3.
Note that the average rank for this range (between5 and6), is better than that (close to7) achieved
with the logistic loss of LogitBoost [2] (a = 1). In fact, as can be seen from Table 2, the canonical
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Table 3:Classification error for each loss function and UCI dataset.

UCI dataset# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Canonical Log 11.2 11.4 8 5.6 12.4 11.8 7 18.8 38.2 27

LogitBoost (a = 1) 11.6 12.4 10 6.6 13.4 48.6 6.8 21.2 39.6 28.4

Canonical Boost 12.6 11.6 21 18.6 17.6 7.2 6 21.8 37.6 28.6
Canonical Boost,a = 1 13.2 12.4 21 18.6 18.6 50.8 7.2 21.2 39.4 28.2

AdaBoost 11.4 11.4 9.4 6.4 14 28 6.6 21.8 41.2 28.2

Table 4:Classification error for each loss function and UCI dataset.

UCI dataset# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Canonical Log,a = 0.2 13.2 15 8.4 5 11.2 56.2 6.8 24 39.8 25.8

Canonical Boost,a = 0.2 12.6 14.8 17.2 18.6 12 56.8 6.8 23.2 38.4 26.4

LogitBoost(a = 1) 12.4 15.4 8.6 5.6 11.4 46 7.2 25 40.4 26.4
AdaBoost 11.4 15.2 9.2 6 11.4 21.6 7.4 23.2 42.8 26.6

logistic loss witha = 1 did not achieve rank1 on any dataset, whereas canonical logistic losses with
0.2 ≤ a ≤ 0.3 were top ranked on3 datasets (and with0.1 ≤ a ≤ 0.4 on 6). For the canonical
boosting loss, there is also a range (0.8 ≤ a ≤ 2) that produces best results. We note that thea
values of the two losses are not directly comparable. This can be seen from Figure-2 wherea = 0.4
produces a loss of much larger margin for canonical boosting. Furthermore, the canonical boosting
loss has a heavier tail and approaches zero more slowly than the canonical logistic loss.

Although certain ranges of margin parameters seem to produce best results for both canonical loss
functions, the optimal parameter value is likely to be dataset dependent. This is confirmed by Table 2
which presents the parameter value of rank1 for each of the ten datasets. Improved performance
should thus be possible by cross-validating the margin parametera. Table 3 presents the 5-fold
cross validation test error (# of misclassified points) obtained for each UCI dataset and canonical
loss. The table also shows the results of AdaBoost, LogitBoost (canonical logistic,a = 1), and
canonical boosting loss witha = 1. Cross validating the margin results in better performancefor
9 out of 10 (8 out 10) datasets for the canonical logistic (boosting) loss, whencompared to the
fixed margin (a = 1) counterparts. When compared to the existing algorithms, atleast one of the
margin-tunned classifiers is better than both Logit and AdaBoost for each dataset.

Under certain experimental conditions, cross validation might not be possible or computationally
feasible. Even in this case, it may be better to use a value ofa other than the standarda = 1. Table-4
presents results for the case where the margin parameter is fixed ata = 0.2 for both canonical loss
functions. In this case, canonical logistic and canonical boosting outperformbothLogitBoost and
AdaBoost in7 and5 of the ten datasets, respectively. The converse, i.e. LogitBoost and AdaBoost
outperforming both canonical losses only happens in2 and3 datasets, respectively.

7 Conclusion

The probability elicitation approach to loss function design, introduced in [3], enables the derivation
of new Bayes consistent loss functions. Yet, because the procedure is not fully constructive, this
requires trial and error. In general, it is difficult to anticipate the properties, and shape, of a loss
function that results from combining a certain minimal riskwith a certain link function. In this
work, we have addressed this problem for the class of canonical risks. We have shown that the
associated canonical loss functions lend themselves to analysis, due to a simple connection between
the associated minimum conditional risk and optimal link functions. This analysis was shown to
enable a precise characterization of 1) the relationships between loss, optimal link, and minimum
risk, and 2) the properties of the loss whenever the optimal link is in the family of inverse sigmoid
functions. These properties were then exploited to design parametric families of loss functions
with explicit margin control. Experiments with boosting algorithms derived from these variable
margin losses have shown better performance than those of classical algorithms, such as AdaBoost
or LogitBoost.
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A Proof of Lemma 3

Proof. From the strict convexity ofJ(η) it follows that J ′(η) has positive derivative for allη .
Hence,J ′(η) is invertible. From the symmetry ofJ(η),

J ′(η) = −J ′(1 − η)

and, for anyv such thatη = [J ′]−1(v),

v = −J ′(1 − [J ′]−1(v))

[J ′]
−1

(−v) = 1 − [J ′]−1(v).

B Proof of Theorem 4

Proof. Given thatCφ(η, f) is a canonical risk and (16), the loss function of (14) can be simplified
to

φ(v) = −J [f−1(v)] − (1 − f−1(v))J ′[f−1(v)]

= −J{[J ′]−1(v)} − (1 − [J ′]−1(v))J ′{[J ′]−1(v)}

= −J{[J ′]−1(v)} − (1 − [J ′]−1(v))v.

The proof follows from taking derivatives on both sides,

φ′(v) = −J ′{[J ′]−1(v)}{[J ′]−1}′(v) − (1 − [J ′]−1(v)) + {[J ′]−1}′(v)v

= −v{[J ′]−1}′(v) − (1 − [J ′]−1(v)) + {[J ′]−1}′(v)v

= −(1 − [J ′]−1(v))

= −[J ′]−1(−v),

where we have also used (15). Furthermore, using (16),

φ′(v) = −(1 − [J ′]−1(v)) (32)

= −(1 − [f∗]−1(v)) (33)

= [f∗]−1(v) − 1. (34)
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