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Abstract

A general formulation of “Bayesian Adaptation” for
generative and discriminative classification in the topic
model framework is proposed. A generic topic-independent
Gaussian mixture model, known as the background GMM,
is learned using all available training data and adapted to
the individual topics. In the generative framework, a Gaus-
sian variant of the spatial pyramid model is used with a
Bayes classifier. For the discriminative case, a novel pre-
dictive histogram representation for an image is presented.
This builds upon the adapted topic model structure, us-
ing the individual class dictionaries and Bayesian weight-
ing. The resulting histogram representation is evaluated
for classification using a Support Vector Machine (SVM). A
comparative evaluation of the proposed image models with
the standard ones in the image classification literature is
provided on three benchmark datasets.

1. Introduction
Over the last decade, a substantial amount of computer

vision research has been devoted to problems such as object
recognition or image classification. One representation that
has consistently achieved good performance is the so called
bag of visual features (BoF), where images are represented
as orderless collections of spatially localized features. This
representation has been used to design two major types of
image classifiers, which we denote by generative and dis-
criminative. Both of these approaches rely on a mid-level
generative representation, which summarizes the distribu-
tion of BoF extracted from the images. Under the gen-
erative classification strategy, this mid-level representation
is a topic model, and image classification is based on the
posterior probabilities of images under the models learned
from the different classes [24, 10, 2, 22]. Under the dis-
criminative strategy, the mid-level representation is the so
called bag of visual words (BoW) model. This model rep-
resents an image by the histogram of occurrences of repre-
sentative points, which are derived from the BoF represen-

tation [6, 10]. A support vector machine (SVM) is then used
for image classification [6]. More recently, BoW has been
shown to benefit from a weak encoding of spatial informa-
tion, through the introduction of a spatial pyramid struc-
ture [17]. The globally orderless image representation is
replaced by a collection of locally orderless bags of visual
words, aggregated at different levels of spatial resolution.

Extensive experimental evaluation has shown that the
success of either the generative or discriminant strategies
is, in significant part, determined by the mid-level repre-
sentation. Under the discriminative strategy, the lexicon of
visual words was initially learned with the k-means algo-
rithm. More recently, alternative techniques have been pro-
posed to either learn the visual lexicon, or obtain a discrim-
inative representation of the visual data from it. Some vari-
ations include the use of alternative clustering algorithms,
e.g. kernel-based clustering with histogram intersection
kernels (HIK) [26], methods replacing the hard quantization
of k-means with soft weighting mechanisms [14], the use of
sparse codes [27, 4] instead of histograms, or the replace-
ment of the spatial averaging implemented by histograms
with non-linear pooling operators [27, 4].

On the generative front, most emphasis has been given to
the design of generative models learnable from weakly la-
beled data. Several researchers have investigated extensions
of unsupervised modeling techniques from text classifica-
tion such as latent Dirichlet allocation [1] and probabilis-
tic latent semantic analysis [15], into supervised models for
visual classification [10, 11]. Alternatively, topic distribu-
tions can be learned with supervision, modeling each topic
with a Gaussian mixture model (GMM) [5], a Dirichelet
mixture [22], or a kernel density estimate [2]. These ap-
proaches have been shown successful in problems such as
image annotation, where class labels tend to be very noisy.

It could be argued that many of the enhancements pro-
posed in the literature are attempts to fix the problems orig-
inated by a poorly learned mid-level representation. The
problem is not so much that the techniques used are inher-
ently poor, but that the available training data is not suffi-
cient to guarantee probability estimates that generalize well.
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Typically, the space is large (e.g. 128 dimensional for the
ubiquitous SIFT descriptor [20]) and the number of train-
ing images per class, or topic, is small (usually in the hun-
dreds). The class specific models, therefore, lack general-
ization. The BoW model, which is learnt over the entire cor-
pus, achieves the needed generalization but sacrifices class
discrimination ability in the process [2].

The problem of simultaneously achieving class speci-
ficity and generalization, has been extensively studied in
speech processing. One of the most successful approaches
is model adaptation. The idea is to learn a global or back-
ground model, with good generalization, from the entire
corpus, and then adapt it to each image class, to guaran-
tee good discrimination. The dominant approach, referred
to as Bayesian model adaptation [25, 23], is to use the pa-
rameters of the global model to design a prior distribution
on the model parameter space. Adaptation is then imple-
mented with Bayesian inference techniques, which com-
bine this prior with the data available per class, to obtain
a class-adapted model, which can either be the model of
maximum a posteriori probability (MAP) parameters, or the
full Bayesian predictive distribution [8]. The process is il-
lustrated in Figure 1.

While Bayesian model adaptation has received some at-
tention in the vision literature, some of the previous efforts
have discussed generative classification strategy. [28] ad-
dressed image adaptation, i.e. the adaptation of a back-
ground model to each image, so as to obtain a Gaus-
sian Super-Vector representation, which comprises of the
adapted model parameters and a Gaussian posterior map for
the image. In [9], class adaptation was used to learn cate-
gory models with very few examples for object detection.

In this work, we present a more general formulation of
Bayesian adaptation, which targets class adaptation and is
applicable to both the generative and discriminative strate-
gies for the problem of image classification. In both cases, a
global GMM is first adapted to each class, using a Bayesian
extension of the EM algorithm [23]. For generative clas-
sification, this is combined with the generative equiva-
lent of spatial pyramid coding, allowing adaptation to both
class and spatial pyramid cell. For discrimintive classi-
fication, it is used to produce a novel representation, an
histogram-based predictive distribution, denoted the predic-
tive histogram. This consists of learning histograms from
class-adapted GMMs, and combining them with a Bayesian
weighting mechanism. Classification is then performed
with an SVM, as is usually the case. Extensive experi-
mental results are provided to support the the efficacy of
the proposed Bayesian adaptation approach. It is shown
that adapted GMMs outperform both standard GMMs and
standard BoW as a mid-level representation. Classification
performance is then investigated for the proposed genera-
tive and discriminative classifiers. These are shown to out-

perform all previous methods of comparable classification
complexity.

2. Mid-level Representations
We start with a brief review of the generative topic mod-

els and the bag-of-words representation currently popular
in vision. Both are based on modeling images as bags of
features.

2.1. Bagoffeatures

In recent computer vision, an image I is frequently
represented as a bag of low-level visual features I =
{x1, . . . , xM}. These are modeled as independent and iden-
tically distributed observations from a random variable X ,
defined on some feature space χ. A corpus is a collection of
images D = {I1, . . . , ID} annotated with respect to a vo-
cabulary L = {l1, . . . , lN} of N topics. The dth image, Id
is annotated with a label vector cd ∈ {0, 1}N , whose ith en-
try, cdi, is an indicator variable for the ith topic. In this work
we consider the scenario where cdi = 1 for only one value
of i, i.e. images are annotated with a single topic, which can
also be seen as classes. Topics are assumed to be indepen-
dently drawn from a random variable T ∈ {1, . . . , N}.

2.2. Generative topic models

Under the generative classification framework [5, 10],
images are assigned to topics with the Bayes decision rule

t∗ = argmax
t

PT |X(t|I) (1)

= argmax
t

∏
xj∈I

PX|T (xj |t) (2)

where we have assumed a uniform prior over topics,
PT (t) = 1/N, ∀t. This is a common assumption in the lit-
erature. The topic-conditional distributions PX|T (x|t) are
learned from the set Dt of features extracted from all im-
ages labeled with the topic t. Various approaches have been
proposed for this purpose [10, 5, 12, 6, 2].

In this work, we adopt the popular representation of these
distributions as Gaussian mixture models (GMMs). Under
these models, X can be sampled from a number of Gaussian
clusters, according to the state of a hidden variable K

PX|Θ(x|θ) =
K∑

k=1

PK(k)PX|K(x|k) (3)

=
K∑

k=1

wkG(x;µk,Σk) (4)

where
∑

k wk = 1,

G(x, µ,Σ) = 1

(2π)
d
2 |Σ| 12

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
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is a Gaussian distribution of mean µ and covariance Σ, and
Θ = {(w1, µ1,Σ1), . . . , (wK , µK ,ΣK)} is the set of GMM
parameters. These are learned so as to maximize the likeli-
hood of the features extracted from images of the topic

θ∗t = argmax
θ

PX|Θ(Dt|θ), (5)

using the expectation-maximization (EM) algorithm [7].
This algorithm iterates between the following steps

E Step:

nk =

n∑
i=1

PK|X(k|xi); (6)

EK|X(x) =
1

nk

n∑
i=1

PK|X(k|xi)xi (7)

EK|X(x2) =
1

nk

n∑
i=1

PK|X(k|xi)x
2
i (8)

M Step:

ŵt
k = nk/n (9)

µ̂t
k = EK|X(x) (10)

(σ̂2)tk = EK|X(x2)− (µ̂t
k)

2 (11)

The E step computes the statistics nk, EK|X(x) and
EK|X(x2), based on the data and the model parameters,
while the M step updates the parameters based on the statis-
tics. It can be shown that these iterations converge to the
ML estimate θ∗. The topic-conditional distributions are set
to the GMMs of parameters estimated from the associated
training data, i.e. PX|T (x|t) = PX|Θ(x|θ∗t ).

2.3. Discriminant classifiers

An alternative classification approach is based on the
popular “bag-of-words” image representation. A codebook
C = {c1, c2, . . . , cK} is first learned from the entire cor-
pus D. This is frequently done with clustering techniques,
such as k-means. The resulting codebook is a simplified
GMM, whose mixture components have identical weights,
wk = 1/K, ∀k and covariances Σk = Σ, ∀k. It is also
possible to use a full GMM, similar to that of the previous
section, but now learned from the entire corpus, i.e. a GMM
of parameters

θ∗ = argmax
θ

PX|Θ(D|θ). (12)

The visual features extracted from each image are then
mapped to the closest entries in the codebook. This is equiv-
alent to mapping each visual descriptor to the mixture com-
ponent of maximum posterior probability. Given a feature

xi ∈ I, the closest codeword k∗i is

k∗i = argmax
k

PK|X(k|xi) (13)

= argmax
k

PK(k)PX|K(xi|k) (14)

= argmax
k

wkG(xi, µk,Σk). (15)

This mapping is usually referred to as hard quantization.
It has been shown that soft quantization schemes are likely
to produce more discriminative image representations [14].
For GMMs, soft quantization corresponds to assigning fea-
tures partially to each of the GMM clusters, according to
their posterior probabilities

vi =
[
PK|X(1|xi), PK|X(2|xi), . . . , PK|X(K|xi)

]
(16)

where vi is the vector of soft-counts associated with fea-
ture xi. Hard quantization (15) is the limit case where vi

is a vector of all zeros and one ‘1’ at position k∗i . The
counts/soft-weights of each codeword, contributed by all
features in the image, are then pooled into a histogram

H (I) = F(v1, . . . , vn) (17)

which is the final image representation. The standard av-
erage pooling operator aggregates word counts into bins of
H (I) and normalizes

Fav(v1, . . . , vn) =
1

n

∑
i

vi

H (I), thus, represents a histogram for the image I. Apart
from the average pooling operator, other operators have also
been proposed. For example, [27] has shown that a max
operator can sometimes produce better results.

Fmax(v1, . . . , vn) =
[
max

i
(vi1), . . . ,max

i
(viK)

]
The histogram H (I), is fed to a support vector machine

(SVM) with a suitable kernel, for the final image classifica-
tion.

3. Improved representations based on
Bayesian model adaptation

In this section, we discuss, in brief the theory of
Bayesian model adaptation. Extensions to both the gener-
ative and discriminative approaches of the previous section
are then proposed, based on model adaptation.

3.1. Bayesian model adaptation

Model adaptation, is a popular modeling approach in the
speech and speaker recognition literatures [25], [23]. In the
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Figure 1. Schematic demonstrating the process of Bayesian model
adaptation. The background model gradually adapts to the incom-
ing topic specific data giving rise to the three topic models(top
left). A generic model(top right) is not discriminant enough while
the non adapted topic models(bottom) are too sensitive to outlier
data.

vision context, it can be seen as means to increase the gener-
alization ability of the topic models PX|T (x|t) of the gen-
erative approach. Rather than learning a model per topic,
a background model is first learned from the entire corpus
D. This model is identical to that used by the discrimina-
tive approaches, i.e. that of (12), and is learned as discussed
in Section 2.3. It is, however, not used as the basis for a
histogram-based image representation. Instead, it provides
prior knowledge about the parameters, which is combined
with the data available per topic to learn individual topic
models. This is a form of regularization, which guarantees
improved generalization.

Given the set of parameters Θ =
{(wb

1, µ
b
1,Σ

b
1), . . . , (w

b
K , µb

K ,Σb
K)} of the background

GMM, the prior PΘ(θ) for the training of topic model t
is composed of a Dirichlet distribution for the weights
wt

i , a Gaussian for the means µt
i, and a Normal Wishart

distribution for the covariances Σt
i [13],

(wt
1, . . . , w

t
K) ∼ Dir(Pwb

1, . . . , Pwb
K) (18)

µt
k ∼ N (µb

k,Σ
b
k/r), k = 1, . . . ,K (19)

Σt
k ∼ Wp(Rk, h), k = 1, . . . ,K. (20)

Here, P is a pseudocount for the Dirichlet distribution, r
a smoothing parameter for the means, Rk a d × d positive
definite symmetric matrix, and h a number of degrees of
freedom for parameter Σt

K . The individual model for class
t is obtained by maximizing the a-posteriori probability of
the GMM parameters given the training data Dt available
for the class and this prior,

θ∗t = argmax
θ

PX|θ(Dt|θ)PΘ(θ). (21)

As in section 2.2, this optimization is solved by an EM algo-
rithm, which iterates between the following steps (see [23],

[13] for details),
E Step:

nk =

n∑
i=1

PK|X(k|xi); (22)

EK|X(x) =
1

nk

n∑
i=1

PK|X(k|xi)xi (23)

EK|X(x2) =
1

nk

n∑
i=1

PK|X(k|xi)x
2
i (24)

M Step:

ŵt
k = αk

w(nk/n) + (1− αk
w)w

b
k (25)

µ̂t
k = αk

mEK|X(x) + (1− αk
m)µb

k (26)

(σ̂2)tk = αk
vEK|X(x2) + (1− αk

v)((σ
b
k)

2 + (µb
k)

2)− µ̂k
2

(27)
where

αk
w = n/(n+ P ) (28)

αk
m = nk/(nk + r) (29)
αk
v = nk/(nk + r) (30)

We favor the update equations from [23] to the actual update
equation [13]. The ratios αk

p are relevance weights for the
update of parameter p. They affect the extent of the adapta-
tion, by controlling the influence of the background model
on the parameter updates. If the Dirichlet pseudo-count P
is large relative to the amount of training data n, the prior
weights dominate (25). Similarly, if αk

m and αk
v are small,

the statistics EK|X(x), EK|X(x2) from the topic data have
small influence on the parameter estimates. The schematic
in Fig. 1 demonstrates the process of Bayesian adaptation
of the background by the topic data.

3.2. Adapted models for generative classification

The extension of Bayesian classification to Bayes
adapted models is quite straightforward. The adapted topic
models are simply used in the Bayes decision rule of (1).

3.3. Adapted models for discriminant classification

The availability of topic-adapted GMMs also enables
a Bayesian treatment of the histogram-based represen-
tation. This builds on the fact that an image I has
a different histogram under the GMM adapted to each
topic T = t, and can thus be represented by N his-
tograms {H 1(I), . . . ,HN (I)}. Each of these is a non-
parametric representation of the topic-conditional distribu-
tion PX|T (x|t). Under Bayesian inference, these models
are combined into the predictive distribution

PX′|X(x|I) =
T∑

t=1

PX′|T (x|t)PT |X(t|I) (31)
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where X ′ is the random variable from which future obser-
vations are made, and X that from which the training ob-
servations in I have been drawn. Under the histogram rep-
resentation this is written as

H (I) =

T∑
t=1

PT |X(t|I)H t(I), (32)

where the topic posterior probabilities PT |X(t|I) are ob-
tained from the adapted GMMs, i.e. those used in (1) for
generative classification. As is usual in Bayesian infer-
ence, this predictive distribution is an average of all models,
weighted by how much the observed data (the image I) sup-
ports each of them [8]. The proposed extension of the dis-
criminant classifier combined the histogram of (32), which
we denote by predictive histogram, with an SVM classifier.

3.4. Spatial pyramid extensions

Various authors have shown that there is an advantage to
augmenting the bag-of-features representation with a coarse
coding of spatial feature location. In this work we rely
on the popular spatial pyramid representation of [17]. A
generic background GMM is adapted for each topic per spa-
tial bin of the pyramidal structure. This produces a collec-
tion of models PX|L,T (x|l, t), where L is an index over the
cells of the spatial pyramid. Given an image I, a bag of
features Il, l = 1, . . . , L is extracted from each cell. Un-
der the generative classification approach, these cell log-
likelihoods are averaged to get the image log likelihood.

logPX|T (I|t) =
1

L

∑
l

logPX|T,L(Il|t, l). (33)

Under the discriminant classification approach, the his-
tograms (32) corresponding to each cell Il are concatenated
to obtain a single vector from a set of local bags.

4. Experimental Evaluation
A number of experiments were performed to evaluate

the classification performance of the proposed Bayesian
extensions to generative and discriminative classification.
These experiments are based on standard datasets, namely
15 Scenes[17, 10], Label Me [21] and UIUC Sports [18]
so as to enable comparison with the state-of-the-art in im-
age classification. In all cases, classification was based on
the 128 dimensional SIFT descriptor of [20], sampled on a
dense grid of spacing 8 on gray scale images.

4.1. Bayesian midlevel representation

The first set of experiments was designed to evaluate
the effectiveness of the proposed representations, based on
Bayesian adaptation, as mid-level image representations for
image classification. For this, we compared class-adapted

Table 1. Evaluation of mid-level representations.
Dataset Model Accuracy

15 Scenes
AGMM 83.2
GMM 81.4
BoW 79.3

Label Me
AGMM 86.4
GMM 85.7
BoW 85.6

8 Sports
AGMM 82.5
GMM 80.4
BoW 80.4

GMMs, here denoted as adapted GMMs (AGMM), to stan-
dard GMMs and the BoW representation.

In all experiments, the background GMM of (12) was
learnt from all training images, with the EM algorithm of
Section 2.2. This model was then adapted to each of the
classes, using the specific training sets and the EM algo-
rithm of Section 3.1, resulting in one AGMM per class. Im-
ages were finally classified using the Bayes decision rule
of (1). Classification performance is compared to those of
two standard methods. The first is the equivalent classifier
without model adaptation [5], where a GMM was learned
per class, using the EM algorithm of Section 2.2 and the im-
ages were classified with the Bayes decision rule (1). The
second used an SVM with the BoW model [6]. In this case,
the Gaussian means of the learnt background GMM were
used as codewords for image quantization. The histogram
of the resulting visual words was then fed to an SVM clas-
sifier, using an histogram intersection kernel. It is worth
emphasizing that the experiments of this section do not rely
on spatial information.

The average (per-class) classification accuracy of the
three methods is presented in Table 1, for 15 Scenes, La-
bel Me, and Sports. The table supports a few conclusions.
First, AGMM has superior performance than GMM and the
BoW approach. Second, although popular, the BoW repre-
sentation is not very effective. The use of a single global
model seems to eliminate much of the discriminant infor-
mation needed for accurate image classification. Third,
the available amounts of training data are not sufficient to
guarantee a GMM of sufficient generalization power, when
learning is performed from each class individually. For all
three datasets, model adaptation produces non-trivial gains
in classification rate.

4.2. AGMMSP Classification

We next considered the advantages, for generative clas-
sification, of combining model adaptation and encoding of
spatial information. As discussed in Section 3.4, a spatial
pyramid classifier was designed by adapting the background
GMM to different spatial bins for each topic. This classi-
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Table 2. Impact of spatial information coding on generative clas-
sification with AGMMs.

Dataset AGMM AGMM-SP
15 Scenes 83.2 84.4
Label Me 86.4 87.4
8 Sports 82.5 82.9

fier is denoted AGMM-SP, for adapted GMM with spatial
pyramid. Table 2 presents a comparison of the classifica-
tion accuracy of AGMM-SP, with three spatial levels, and
that of AGMM (no spatial resolution). As previously found
by many authors, the use of spatial information improves
classification performance. We note, however, that in this
case the gains of spatial encoding are not very large. This
is probably due to the fact that the AGMM representation
already combines generalization and class-specificity.

4.3. Image classification

The previous experiments establish AGMM as an inter-
esting mid-level representation for image classification. We
next performed an evaluation of image classifiers developed
from this representation. For generative classification, we
used the AGMM-SP classifier of the previous section. For
discriminant classification, we used a classifier based on the
histogram representation of Section 3.3 and an SVM with
a spatial pyramid. The latter is denoted the PH-SVM-SP
classifier, for predictive histogram SVM with spatial pyra-
mid. Codeword lengths were set to 1024. This representa-
tion is similar to that of BoW. We experimented with his-
togram intersection and linear kernel SVMs, and attempted
both average and max pooling strategies. On 15 Scenes and
Label Me, we found that the combination of linear kernel
and max pooling, proposed by [27], achieved the best re-
sults. On UIUC sports, the best results were obtained with
an histogram intersection kernel and average pooling.

Tables 3 and 4, compare the classification accuracy of the
proposed generative and discriminant classifiers to those of
various recently proposed methods. Since not all previous
methods have been applied to the three datasets, the accu-
racies of some of them are only reported for some of the
datasets. In particular, Table 3 reports to UIUC Sports and
15 Scenes, and Table 4 to Label Me. A number of con-
clusions are possible. First, the PH-SVM-SP classifier out-
performs that based on AGMM-SP. Second, both methods
achieve the best results reported in the literature on Sports
and Label Me. It should be noted that, on Sports, one of
the closest competitors [26] uses an histogram intersection
kernel to learn the dictionary of visterms. In the implemen-
tation of [26], this is combined with specialized features,
such as CENTRIST or sPACT. For fairness, we compare to
their implementation based on SIFT (denoted HIK-CBK in
the table). With a single scale SIFT descriptor, we achieve

Table 3. Classification accuracy of various methods on 15 scenes
and Sports. HIK-CBK indicates the implementation of [26] using
SIFT. Accuracy in [14] was obtained from graph.

Method 15 Scenes Sports
PH-SVM-SP 85.4 84.4
AGMM-SP 84.4 82.9

Boureau et al. [4](Maco-SIFT) 85.6 -
Zhou et al. [28](HG) 85.2 -

Boureau et al. [4](Sp-SIFT) 84.1 -
SPMK [17] 81.2 -
ScSPM [27] 80.5 -

Kernel Codebook [14] 77 -
Wu et al. [26](HIK-CBK) 78.54 81.17

Fei-Fei [18] - 73.4

Table 4. Classification accuracy of various methods on Label Me.
Note that [3] reports higher performance, but using color-SIFT de-
scriptors.

Method Accuracy
PH-SVM-SP 88.3
AGMM-SP 87.4

HDP-HMT [16] 84.5
“gist” [21] 83.7
pLSA [3] 82.5

Contextual Ancestry [19] 82

an accuracy of 83.5% with PH-SVM-SP and 82.9% with
AGMM-SP. If we sample SIFT descriptors at 5 scales as
in [26], the performance of PH-SVM-SP increases to 84.4%
as shown in Table 3.

Finally, on 15 Scenes, the performance of PH-SVM-SP
and AGMM-SP is comparable to the current state-of-the-
art. In [4] a discriminative dictionary is obtained, using an
extension of the sparse coding method of [27]. Their result
is slightly better, but while using macro-features. We have
not pursued this type of extensions, although it could be in-
corporated easily in our approach. A comparison, therefore,
to the best results using SIFT features and sparse coding
(denoted Sp-SIFT) [4], which the proposed PH-SVM-SP
considerably outperforms, is more fair. Furthermore, sparse
coding requires the solution of an optimization problem to
derive mid-level representations, and is substantially more
complex than the schemes investigated in this work.

5. Conclusion
Many conclusions are possible from the results. We have

shown that model adapted GMMs are superior in perfor-
mance to ML-GMMs and globally orderless Bag-of-words
models. This supports the previous claims that hard quan-
tization in the feature space results in a loss of discrimina-
tive power [2]. The improvement over non adapted GMMs
shows that a Bayesian approach to learning topic models
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provides the needed generalization beyond the training set.
We have extended the idea of incorporating local spatial
information, introduced in [17], to the Bayesian Classifi-
cation framework and observed an improved performance
with AGMMs. A novel predictive histogram representation
that builds upon Bayesian inference of topic AGMMs was
introduced and was shown to achieve even better classifi-
cation performance. Both the proposed methods are shown
to be competent with the previously published results in the
literature.
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