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Abstract

The problem of multi-class boosting is considered. A newniavork, based on
multi-dimensional codewords and predictors is introducétie optimal set of

codewords is derived, and a margin enforcing loss propoBeel resulting risk is

minimized by gradient descent on a multidimensional fuorel space. Two algo-
rithms are proposed: 1) CD-MCBoost, based on coordinateetesupdates one
predictor component at a time, 2) GD-MCBoost, based on gradiescent, up-
dates all components jointly. The algorithms differ in theak learners that they
support but are both shown to be 1) Bayes consistent, 2) margbrcing, and

3) convergent to the global minimum of the risk. They alsaucedto AdaBoost

when there are only two classes. Experiments show that bethads outperform

previous multiclass boosting approaches on a number ofelsta

1 Introduction

Boosting is a popular approach to classifier design in macleiarning. It is a simple and effective
procedure to combine many weak learners into a strong fiexsslowever, most existing boosting
methods were designed primarily for binary classification.many cases, the extension id-
ary problems (ofM > 2) is not straightforward. Nevertheless, the design of nuléss boosting
algorithms has been investigated since the introductidkdaBoost in [8].

Two main approaches have been attempted. The first is toegtisanulticlass problem to a col-
lection of binary sub-problems. Methods in this class idelthe popular “one vs all” approach, or
methods such as “all pairs”, ECOC [4, 2], AdaBoost-M2 [7],a8bost-MR [18] and AdaBoost-
MH [18, 9]. The binary reduction can have various problemsluding 1) increased complexity, 2)
lack of guarantees of an optimal joint predictor, 3) relion data representations, such as adding
one extra dimension that includes class numbers to eaclpdete[18, 9], that may not necessarily
enable effective binary discrimination, or 4) using binboosting scores that do not represent true
class probabilities [15]. The second approach is to boost/aary classifier directly, using multi-
class weak learners, such as trees. Methods of this typede@daBoost-M1[7], SAMME[12] and
AdaBoost-Cost [16]. These methods require strong weakdégamwhich substantially increase com-
plexity and have high potential for overfitting. This is peutarly problematic because, although
there is a unified view of these methods under the game thetanpretation of boosting [16], none
of them has been shown to maximize the multiclass margin.rally¢he problem of optimal and
efficient M -ary boosting is still not as well understood as its binaryrderpart.

In this work, we introduce a new formulation of multi-classosting, based on 1) an alternative
definition of the margin foi/ -ary problems, 2) a new loss function, 3) an optimal set okeantds,
and 4) the statistical view of boosting, which leads to a earnptimization problem in a multidi-
mensional functional space. We propose two algorithms ligbis optimization: CD-MCBoost,
which is a functional coordinate descent procedure, and\@IBoost, which implements functional
gradient descent. The two algorithms differ in terms of tinategy used to update the multidimen-
sional predictor. CD-MCBoost supports any type of weakrees, updating one component of
the predictor per boosting iteration, GD-MCBoost requiragticlass weak learners but updates all



components simultaneously. Both methods directly optirttie predictor of the multiclass problem
and are shown to be 1) Bayes consistent, 2) margin enforaimdy3) convergent to the global min-
imum of the classification risk. They also reduce to AdaBdosbinary problems. Experiments
show that they outperform comparable prior methods on a euwfdatasets.

2 Multiclass boosting

We start by reviewing the fundamental ideas behind the iclalssse of boosting for the design of
binary classifiers, and then extend these ideas to the multicl&gsgse

2.1 Binary classification

A binary classifier,F'(z), is a mapping from examples € X to class labelgy € {—1,1}. The
optimal classifier, in the minimum probability of error senis Bayes decision rule

F(r) = argmingc 13 Py x (y]7). 1)

This can be hard to implement, due to the difficulty of estingathe probabilities?y-| x (y|x). This
difficulty is avoided by large margin methods, such as bagstivhich implement the classifier as

F(x) = sign[f*(z)] )
wheref*(z) : X — R is the continuous valued predictor
J* (@) = argmin R(f) ®)
that minimizes the classification risk
R(f) = Exy{Lly, f(z)]} 4)
associated with a loss functiafy., .]. In practice, the optimal predictor is learned from a sample

D = {(x;,y;)}, of training examples, and (4) is approximated by the emglirisk
R(f) =~ ) Llyi. f(x:)]. (5)
=1

The lossL]., .] is said to be Bayes consistent if (1) and (2) are equivalantlgfge margin methods,
such as boosting, the loss is also a function of the classdicanarginy f (), i.e.

Lly, f(2)] = o(yf(x)) (6)

for some non-negative functiof(.). This dependence on the margjif(z) guarantees that the
classifier has good generalization when the training sansptmall [19]. Boosting learns the
optimal predictorf*(z) : X — R as the solution of

ming,y R(f
{ st f((l’))é span(H). )

whereH = {h1(x),...h,(x)} is a set of weak learners;(x) : X — R, and the optimization is
carried out by gradient descent in the functional spaee (# ) of linear combinations af; (x) [14].

2.2 Multiclass setting

To extend the above formulation to the multiclass settirgynate that the definition of the classifica-
tion labels ast1 plays a significant role in the formulation of the binary caSee of the difficulties
of the multiclass extension is that these labels do not havmmediate extension to the multiclass
setting. To address this problem, we return to the classettihg, where the class labels ol &ary
problem take values in the sét, ..., M}. Each clas$ is then mapped into a distinct class label
y*, which can be thought of ascmdewordthat identifies the class.

In the binary case, these codewords are definegt as 1 andy? = —1. It is possible to derive
an alternative form for the expressions of the margin ansstfier /'(«) that depends explicitly on
codewords. For this, we note that (2) can be written as

F(z) = argmaxy* f* () ®)



and the margin can be expressed as

. f fk=1 _ l( 1f— 2f) ifk=1 71
yf{ —f ifk=2 { %(32]0_:;1‘” if k=2 *i(ykf*qlzg(ylf) (©)]

The interesting property of these forms is that they arectlir@xtensible to thé/-ary classification
case. For this, we assume that the codewgfdand the predictoy () are multi-dimensional, i.e.
y*, f(x) € RYfor some dimensiod which we will discuss in greater detail in the following seat
The margin off (x) with respect to clask is then defined as

. 1
M(f(@),y*) = 5l< f@),y* > —max < f(2).y' >] (10)
and the classifier as
F(z) = argmax;, < f(2),y" >, (11)
where< .,. > is the standard dot-product. Note that this is equivalent to
F(zx) = k 12
(2) argke{Tng}M(f(af%y ), (12)

and thusF'(z) is the class of largest margin for the predicfor ). This definition is closely related to
previous notions of multiclass margin. For example, it galiees that of [11], where the codewords
y* are restricted to the binary vectors in the canonical basR? and is a special case of that in
[2], where the dot products f(z),y* > are replaced by a generic function ffr, andk. Given a
training sampleD = {(z;,v;)}",, the optimal predictof* (x) minimizes the risk

Ru(f) = Exy{Luly, f(2)]} ~ _Z Latlyi, ()]} (13)

whereL,,[.,.] is @ multiclass loss function. A natural extension of (6) &ds a loss of the form

Luly, f(@)] = o(M(f(2),y))- (14)

To avoid the nonlinearity of thewax operator in (10), we rely on

M
Luly, f()] =) L (15)
k=1

which is shown, in Appendix A, to upper boumd- e~/ (@).%) |t follows that the minimization of
the risk of (13) encourages predictors of large mariff* (z;), v;), Vi. ForM = 2, Ly, f(z)]
reduces to

Loly, f(z)] = 1 4 e~ ¥/ @) (16)
and the risk minimization problem is identical to that of Aiest [8]. In appendices B and C it
is shown thatR,, (f) is convex and Bayes consistent, in the sense thét(if) is the minimizer of
(13), then

< f*(@),yF >=log Py|x(y*[x) + ¢ Vk (17)
and (11) implements the Bayes decision rule
F(z) = arg manPy‘X(ylﬂx). (18)

2.3 Optimal set of codewords

From (15), the choice of codewordé has an impact in the optimal predictg¥ (x), which is
determined by the projections f*(z),y* >. To maximize the margins of (10), the difference
between these projections should be as large as possibéecdmplish this we search for the set of
M distinct unit codeword®’ = {y*,...,y™} € R? that are as dissimilar as possible

maxg 1 [mingz; |y —y7||’]
si |ltll=1 Vk=1.M. (19)
y* e R? Yk =1.M.
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Figure 1:Optimal codewords for/ = 2,3, 4.

To solve this problem,we start by noting that, for< M, the smallest distance of (19) can be
increased by simply increasing since this leads to a larger space. On the other hand, dihce
pointsy!, ...y lie in an, at most)M — 1 dimensional subspace Bf, e.g. any three points belong
to a plane, there is no benefit in increasihigeyondM — 1. On the contrary, as shown in Appendix
D, if d > M — 1 there exits a vectar € R? with equal projection on all codewords,

<ytv>=<ylv> Vij=1,.,M. (20)

Since the addition of to the predictoyf (z) does not change the classification rule of (11), this makes
the optimal predictor underdetermined. To avoid this peoblwe setl = M — 1. In this case, as
shown in Appendix E, the vertices ofid — 1 dimensionategular simpleX centered at the origin [3]
are solutions of (19). Figure 1 presents the set of optimdéwaords when/ = 2,3, 4. Note that

in the binary case this set consists of the traditional caddsy; < {+1,—1}. In general, there is

no closed form solution for the vertices of a regular simméx/ vectors. However, these can be
derived from those of a regular simplex &f — 1 vectors, and a recursive solution is possible [3].

3 Risk minimization

We have so far defined a proper margin loss functionibiary classification and identified an
optimal codebook. In this section, we derive two boostirgpethms for the minimization of the
classification risk of (13). These algorithms are both basethe GradientBoost framework [14].
The first is a functional coordinate descent algorithm, Wwhipdates a single component of the
predictor per boosting iteration. The second is a functignadient descent algorithm that updates
all components simultaneously.

3.1 Coordinate descent

In the first method, each componefit(x) of the optimal predictoy* (x) = [f (), ..fi;_1(x)], is
the linear combination of weak learners that solves themdpétion problem

{minf1($)7~-7f1w1(7«') R([fl(x)vvfM—l(I)]) (1)
s.t fi(z) € span(H) Vj=1.M — 1.

where = {hi(x),..hp(x)} is a set of weak learnergy;(z) : X — R. These can be
stumps, regression trees, or member of any other suitabieinfiamily. We denote by (z) =
[fi(x),..., f4;,_, (z)] the predictor available afterboosting iterations. At iteration+ 1 a single
componentf; (z) of f(z) is updated with a step in the direction of the scalar funetigrthat most
decreases the risk[f{, ..., fj + g, ..., fi; ;] For this, we consider the functional derivative of
RLf(a:)] along the direction of the functional: X — R, at pointf(z) = f*(z), with respect to the
4" componentf;(x) of f(z) [10],

OR[f" + egl;]
Oe ’

e=0

SR[f"5,9] = (22)

A regular M — 1 dimensional simplex is the convex hull 8f normal vectors which have equal pair-wise
distances.



wherel; € R?is a vector whosg!" element is one and the remainder zero, ifé.+ egl; =

[ff, .., ; teg, .f4,_1]. Using the risk of (13), it is shown in Appendix F that
—6R[f%55.9) = > glziwl, (23)
i=1
with
¥ 1 1 t M 1 t k
w? — 5e*§<f (xi),y:> Z< 1,y — yk > ez <fl(@)y"> (24)
k=1

The direction of greatest risk decrease is the weak learner

n

g;(x) = arg &%29(%)%, (25)

and the optimal step size along this direction

o = arg min RIS (x) + g (1)1 0

The classifier is thus updated as
=1 @) + ajgi ()1 = [ff o, f] + 0595, fri] (27)
This procedure is summarized in Algorithm 1-left and ded@®-MCBoost. It starts witlf°(z) =

0 € R? and updates the predictor components sequentially. Natesimce (13) is a convex function
of f(x), it converges to the global minimum of the risk.

3.2 Gradient descent

Alternatively, (13) can be minimized by learning a lineandmnation of multiclass weak learners.
In this case, the optimization problem is

s.t f(x) € span(H),
whereH = {hy(z),..., h,(x)} is a set of multiclass weak learnefg(z) : X — R -1 such as
decision trees. Note that to fit tree classifiers in this didinitheir output (usually a class number)
should be translated into a class codeword. As beforglef) € RM~! be the predictor available
aftert boosting iterations. At iteration-+ 1 a step is given along the directigiiz) € H of largest
decrease of the risR[f(x)]. For this, we consider the directional functional derivatf R[f (z)]
along the direction of the functional: X — RM~1, at pointf(z) = f*(x).

OR[f! + €g]

SR[f; = . 29
RIf';g e |, (29)
As shown in Appendix G,
—6R[f%9] = D <glw),wi > (30)
=1
wherew; € RM~1
1 . M by ok
w; = ief%<f/(mi),yl> ;(yz N yk)e%<f/(a:i),y > (31)
The direction of greatest risk decrease is the weak learner
n
g*(x) :argngcz <g(xi)>wi >, (32)
9EH i
and the optimal step size along this direction
o = arg mi]% R[f'(z) + ag*(z))]. (33)
[e3S

The predictor is updated t§ ! (z) = f(z)+a*g*(z). This procedure is summarised in Algorithm
1-right, and denoted GD-MCBoost. Since (13) is convex, iiveoges to the global minimum of the
risk.



Algorithm 1 CD-MCBoost and GD-MCBoost

Input: Number of classes/, set of codeword® = {y',...,y™}, number of iterationsv and
datasetS = {(z1,v1), ..., (Tn, yn) }, Wherez; are examples angl € ) are their class codewords.
Initialization: sett = 0, andf* =0 ¢ RM~1!

CD-MCBoost GD-MCBoost
while t < N do
forj=1toM — 1do )
Computew? with (24) while t < N'do
Find g (x), o using (25) and (26) Computew; with (31)
Updatef(z) = fi(z) + a’g*(x) Find g*(x), o* using (32) and (33)
J J 373 Updatef*™*(z) = f(z) + a*g*(z)
Updatef; ™ (z) = fi(z) Vk#j t=t+1
t=t+1 end while
end for
end while

Output: decision rule:F(z) = argmaxy < fV(z),y* >

4 Comparison to previous methods

Multi-dimensional predictors and codewords have been imgticitly, [7, 18, 16, 6], or explicitly,
[12, 9], in all previous multiclass boosting methods.

“one vs all”, “all pairs” and “ECOC” [2]: as shown in [2], these methods can be interpreted
as assigning a codewoid to each class, wherg® € {+1,0, —1}l and! = M for “one vs all”,

l= W for “all pairs” and! is variable for “ECOC”", depending on the error correctiodeoln

all these methods, binary classifiers are learned indepélgder each of the codeword components.
This does not guarantee an optimal joint predictor. Thesbads are similar to CD-MCBoost in the

sense that the predictor components are updated indilydaiadéach boosting iteration. However,

in CD-MCBoost, the codewords are not restricted4el, 0, —1} and the predictor components are
learned jointly.

AdaBoost-MH [18, 9]: This method converts th&/-ary classification problem into a binary one,
learned from a\/ times larger training set, where each exampigs augmented with a featugethat
identifies a class. Examples such thédtelongs to clasg receive binary label, while the remaining
receive the label-1 [9]. In this way, the binary classifier learns if the multistalabely is correct

for z or not. AdaBoost-MH uses weak learnérs: X x {1,..., M} — R and the decision rule
F(x) = hi(z,j 34
(2) =arg _max zt: o, ) (34)

wheret is the iteration number. This is equivalent to the decisigle of (11) if f(x) is an M-
dimensional predictor with** componentf;(z) = 3", h;(z, 7), and the label codewords are de-
fined asy’ = 1;. This method is comparable to CD-MCBoost in the sense thtds not require
multiclass weak learners. However, there are no guarattteethe weak learners in common use
are able to discriminate the complex classes of the augmhéitary problem.

AdaBoost-M1 [7] and AdaBoost-Cost [16]: These methods use multiclass weak learrigrs
X — {1,2,..M} and a classification rule of the form

F(x) = argje{rlﬁléaﬁ\’{} Z latht(x), (35)
tlhe(z)=3

wheret is the boosting iteration and; the coefficient of weak learnér,(x). This is equivalent
to the decision rule of (11) iff(z) is an M-dimensional predictor with** componentf;(z) =
2the ()= Qthe(2) and label codewordg’ = 1. These methods are comparable to GD-MCBoost,
in the sense that they update the predictor componentstsineausly. However, they have not been
shown to be Bayes consistent, and it is not clear that theybeaimterpreted as maximizing the
multiclass margin.
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Figure 2:Classifier predictions of CD-MCBoost, on the test set, after0, 10, 100 boosting iterations.

SAMME [12]: This method explicitly use8/-dimensional predictors with codewords

M1, -1 -1 -1 -1 -1
’y] = . = 1

M
M—1 SR Y Rl v £yl I (36)

and decision rule -

F(z) = argje{rf};%M} fi(x). 37)
Since, as discussed in Section 2.3, the optimal detectootisimque when the predictor i&/-
dimensional, this algorithm includes the additional comist Z;‘il fj(z) = 0 and solves a con-
strained optimization problem [12, 9]. It is comparable tB-GICBoost in the sense that it up-
dates the predictor components simultaneously, but ugel#s functionL sy are[y®, f(z)] =

e~ <v".f()> Using (36), the minimization of this loss is equivalent taximizing

1
M (f(x).y*) =< f(2),y" >= fu(x) = 57— D Fi(@), (38)
J#k
which is not a proper margin sinc&t’(f(x),y*) > 0 does not imply correct classification i.e.

fu(x) > fj(x) Vj # k. Hence, SAMME does not guarantee a large margin solutiorihfer
multiclass problem.

When compared to all these methods, MCBoost has the advasitagenbining 1) a Bayes consis-
tent and margin enforcing loss function, 2) an optimal setaafewords, 3) the ability to boost any
type of weak learner, 4) guaranteed convergence to thelgtobanum of (21), for CD-MCBoost, or
(28), for GD-MCBoost, and 5) equivalence to the classicaBalost algorithm for binary problems.
It is worth emphasizing thatiCBoost can boost any type of weak learners of non-zerotored
derivative i.e. non-zero (23) for CD-MCBoost and (30) for GD-MCBoo#&this is independent
of the type of weak learner output, and unlike previous rolalis boosting approaches, which can
only boost weak learners of specific output types. Note til#tipugh the weak learner selection
criteria of previous approaches can have interestingpregaitions, e.g. based on weighted error
rates [16], these only hold for specific weak learners. BINdMCBoost extends the definition of
margin and loss function to multi-dimensional predictdrke derivation of Section 2 can easily be
generalized to the design of other multiclass boostingrdlyus by the use of 1) alternativi(v)
functions in (14) (e.g. those of the logistic [9] or TangetR]losses for increased outlier robustness,
asymmetric losses for cost-sensitive classification),edad 2) alternative optimization approaches
(e.g. Newton’s method [9, 17]).

5 Evaluation
A number of experiments were conducted to evaluate the MGBalgorithms,

5.1 Synthetic data

We start with a synthetic example, for which the optimal diexi rule is known. This is a three class
problem, with two-dimensional Gaussian classes of méans, [—1, 0], [2, —1] and covariances of

2Codes for CD-MCBoost and GD-MCBoost are available from [1].



Table 1:Accuracy of multiclass boosting methods, using decision stumps, on dixlat& sets

method landsat | letter | pendigit | optdigit | shuttle isolet

One Vs All 84.80% | 50.92% | 86.56% | 89.93% | 87.11% | 88.97%
AdaBoost-MH[18] | 47.70% | 15.73% | 24.41% | 73.62% | 79.16% | 66.71%
CD-MCBoost 85.70h6 | 49.60% | 89.51% | 92.8%% | 88.0% | 91.02%

Table 2:Accuracy of multiclass boosting methods, using trees of max depth 2x &Cs data sets

method landsat | letter | pendigit | optdigit | shuttle isolet
AdaBoost-M[7] 72.85% - - - 96.45% —
AdaBoost-SAMMEZ2] | 79.80% | 45.65% | 83.82% | 87.53% | 99.70% | 61.00%
AdaBoost-CosjtL 6] 83.95% | 42.00% | 80.53% | 86.20% | 99.55% | 63.69%
GD-MCBoost 86.69%0 | 59.69% | 92.94% | 92.32% | 99.73% | 84.28%

[1,0.5;0.5,2],[1,0.3;0.3,1],[.4,0.1; 0.1, 0.8] respectively. Training and test setsloH00 examples
each were randomly sampled and the Bayes rule computedsad:form [5]. The associated Bayes
error rate wasl1.67% in the training andl1.13% in the test set. A classifier was learned with
CD-MCBoost and decision stumps.

Figure 2) shows predictioA®f f*(x) on the test set, far = 0,10, 100. Note thatf°(z;) = [0, 0]
for all examplest;. However, as the iterations proceed, CD-MCBoost produpsgigtions that are
more aligned with the true class codewords, shown as dastes] While maximizing the distance
between examples of different classes (by increasing thisiance to the origin). In this context,
“alignment of f () with *” implies that< f(x),y* >>< f(x),y’ >,Vj # k. This combination
of alignment and distance maximization results in highergins, leading to more accurate and
robust classification. The test error rate aft@® iterations of boosting wakl.30%, and very close
to the Bayes error rate afl.13%.

5.2 CD-MCBoost

We next conducted a humber of experiments to evaluate therpemnce of CD-MCBoost on the
six UCI datasets of Table 1. Among the methods identified agpavable in the previous section,
we implemented “one vs all” and AdaBoost-MH [18]. In all caséecision stumps were used
as weak learners, and we used the training/test set decdinpapecified for each dataset. The
“one vs all” detectors were trained witt) iterations. The remaining methods were then allowed
to include the same number of weak learners in their finalsiletirules. Table 1 presents the
resulting classification accuracies. CD-MCBoost produtedmost accurate classifier in four of
the five datasets, and was a close second in the remaining®©ne.vs all” achieved the next best
performance, with AdaBoost-MH producing the worst classsfi

5.3 GD-MCBoost

Finally, the performance of GD-MCBoost was compared to Aolzd-M1 [7], AdaBoost-Cost [16]
and AdaBoost-SAMME [12]. The experiments were based on tBkedatasets of the previous sec-
tion, but the weak learners were now trees of deptiThese were built with a greedy procedure
so as to 1) minimize the weighted error rate of AdaBoost-M1afyd AdaBoost-SAMME[12], 2)
minimize the classification cost of AdaBoost-Cost [16], prr&aximize (32) for GD-MCBoost. Ta-
ble 2 presents the classification accuracy of each methodpftraining iterations. GD-MCBoost
achieved the best accuracy on all datasets, reaching stibBjalarger classification rate than all
other methods in the most difficult datasets, e.g. from aipusvbest 0f63.69% to 84.28% in
isolet,45.65% to 59.65% in letter, and83.82% to 92.94% in pendigit. Among the remaining meth-
ods, AdaBoost-SAMME achieved the next best performandbpadh this was close to that of
AdaBoost-Cost. AdaBoost-M1 had the worst results, and wasble to boost the weak learners
used in this experiment for four of the six datasets. It stitvel noted that the results of Tables 1 and
2 are not directly comparable, since the classifiers aredbaselifferent types of weak learners and
have different complexities.

3We emphasize the fact that these are plotg‘dk) € R?, notz € R>.
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A Margin upper bound

From (15) and (10)

M
Luly, f(z)] = Ze—%[<f(m)vy>—<f(m)»y’“>] (39)
k=1
M
= 1+ Z e 3 [<F(@)y>—<f(z)y">] (40)
yk#y
= 14 MU@Y e BI<f(@)y>—<f (@) 5" ST+ M(f(2).y) (41)
yk#y
_ 1+6—M(‘f(w),y) Z e*%[maxyziy<f($),yl>7<f(93)7yk>] (42)
yr#y
= 14eMUE@W |14 Z e—%[<f($)7y’*>—<.f(91)7y’°>] (43)
yRFy,yt”
S 14 e MUY (44)

wherel* = arg max; i, < f(z),y" >.

B Convexity

Defining 8, = Py|x (y*|x) and using (13)

R(flx) = Eyx{Luly, f(z)]|z} (45)
M
= > BeLluly”, f(@)] (46)
k=
M1 M _ M M _
— Z B Z e—%<f(96)7yk—y]> — Z Z Bke_%<f(x)»yk—y’>. (47)
k=1 j=1 k=1j=1

Denotingn; ; = y* — 7 the functional derivatives of first and second order, witkpeet tof (z),
are

IR(f|x) 1 LM U

_ 7 = — T3 )Mk, 48
of () > kzzuzlﬁk"‘” (48)

82R(f|m) _ 1 M M . _l<f(I) o

W ] kZ:l 32::1 Brc e, ;le . (49)

If all codewords are different, i.ey, ; # 0 Vk, j, the matriceink,jn,zj] are positive definite/k, ;.

Sincef, >0 Vi andZQil Br =1, B; > 0 for at least ong and (49) is strictly positive definite.
Hence,R(f|x) is strictly convex, and haswniqueglobal minimum.

C Bayes Consistency

Using B, = Py |x (y"|x), setting

e~ 3 <f(@)me ;> _ % (50)
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and substituting in (48)

OR(f|x 1l
e - IR mk]\F (51

M

l\D

M
Z (" —v")\/B;Bx (52)
1j:1

N | =
>~

= —fzy’“fz Bi+3 ZMEZW«—O (53)

?

Hence, wherf(x) is f*(z), the unique minimum of( f|z), (50) holds. It follows that

s i * k < __ PY|X(y’L|x)
< fH(x),y > — < [T (x),y" >= 10gm (54)
and ' _
< f(2).y' >=log Pyx (y']a) + cvi (5)

for some constant. This shows that (11) is equivalentto (18).

D Underdetermined predictor

Letd > M — 1 and consider a set @il vectorsy’, ...y™ € R%. There are three possibilities

1. If d > M theny!,...y™ belong to an at most/ dimensional subspacg of R¢. S, the
orthogonal complement &, is nonempty an®? = S’ U S. Since, by definition

VueS,vesS, <u,v>=0, (56)

anyv € S’ satisfies (20).

2. Ifd = M andy’,...y™ are linearly dependent, then, ...y belong to an, at mosty/ — 1
dimensional subspacg of RM. It follows thatS’, the orthogonal complement &, is
nonempty. As in the previous case, this implies the exigt@iav € S’ that satisfies (20).

3. Ifd = M andy',..yM € RM are linearly independent, then, the matkixof rows
y!, ...yM is invertible and
Yv=1, (57)

with 1 = [1,..1]7 € RM, has a unique solution. This solution satisfy (20) since

<yv>=1 Vi (58)

E Solving optimization problem of codewords

Lemma 1. Consider the set of distinct unit vectays, ...y € RM~! of smallest pairwise distance

2, =min |[ly’ — 7[> (59)
i#j
Then
oM
d? 60
T)’LLIL —_ (M _ 1) ( )

Proof. Since the minimum distance cannot be larger than the aveliiagace between the vectors,

d2

min — ZZ ||y yk‘|2 (61)

i jF#i

11



To derive the bound of (60), we consider the following protle
{ maxy', ..y %Zz Zj;éi ||y2 - ysz

st |[y¥ll=1 Vk=1.M.

(62)

This problem can be solved with the Lagrange multiplier madtiThe Lagrangian is

L= %ZZHyi—yjHQ—Zai(HyiHQ—l) (63)

i j#i i
for which
or . 4 Mo
g = 2 WY (0 -y 2ot =2 (M o) —2) ' (64)
Yy i#k ik i=1
0L
pyciie 2AM — oj — 1). (65)
This has a maximum when
M .
VM —o) = >y (66)
i=1
M — Ok < 1 (67)

We next consider two possibilities fad — oy.
1. 3k such thatM — o = 0. In this case, it follows from (66) tha‘zij\i1 y* = 0. Since
|[y*|| = 1, it follows thatM — o, = OVEk.
2. M — o, # 0 Vk. Then, from (66)

M i
E_ Zi:l Y
Y=o o ,VEk. (68)

Since they* have to be distinct, there can be no pair such #at o, = M — oy,,. Using
|ly¥|| = 1, it follows from (68) that

M
(M —on)? =1 y'II? (69)
=1
and, for anyk,
M M
(M —ox) € {1 D_y'lL,+ID_ vl (70)
=1 =1

Hence, there is a contradiction fdf > 2. For M/ = 2 the contradiction can be avoided if
M — oy, = —(M — oy,). Inthis case, using (68),

M 1 1 M
i 1 2 i
Yyt =yt +yt = + >y =0 71
y'=y +y [ Vo T %} y (71)

i=1 i=1

Sincel|y*|| = 1, it follows from (66) thatM/ — o, = 0V, contradicting the initial hypoth-
esis thatM — oy, # 0 Vk.

In summary, the Lagrangian is maximum when

M B
Yy =0 (72)
=1

M, Vk. (73)

Ok

12



Taking the dot product of both sides of (72) with and using the fact thaty*|| = 1,
o<yt > =1 (74)
ik

Combining with the fact thaty’ — y7||? = 2 — 2 < ¢, »’ > it follows that

YD -YIP = MM —1) =23 <yly > (75)
i g i g
= 2M? (76)
Combining this with (61) leads to (60)

Theorem 2. Any set of unit vectorg!, ...y € RM~! which form a regular simplex iR ! is a
solution of (19)

Proof. From Lemma 1, if2,;,, = min,; ||y* — y?|| then
d? 72M .
min — (M _ 1)
Since the pairwise distances between the vertices of aaegnit simplex inR» ! are all equal to
(M 0 [3], the set of these vertices achieves the upper bound of (fehce, this set is a solution

to (19). Note that this solution is not unique, since anytiotaof the simplex is an equally valid
solution.

min

(77)

F Derivation of CD-MCBoost

From (13) and (22)

—0RIfS .00 = ZLM i, [ (z:) + eg(w;)15] (78)
e=0
oy Qbuly a0+ egl@l] (79)
Oe
=1 —o
n M
- Z —3<f' (i) teg(zi)lyi—y"> (80)
i:1 k: e=0
= E 077 o Yi— e 2 xi),Yi—Y > (81)
o 8 e=0
1 k
Sl () s —
- 522 I'L <1]7y2 yk>€ 2<f(1)7yt Yy > (82)
i=1 k=1
1 M ) t i
= § Z xl) Z< 1‘77:[/7( — yk > e—§<f (xi)7yi_y > (83)
1=1 k=1
- st -
1=1
where
1Y 1 )
/ k _1 t Dsyi—y*
wg - §Z<1jvyi—y > ez <S (@) yi—y> (85)
k=1
1 M
= 567%<ft(1i),yi> Z < 1j7yi - yk > 6%<ft(xi),yk'>. (86)
k=1
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G Derivation of GD-MCBoost

Using (13) and (29)

where

—6R[f"; 9]

Wy

- % ZLM[% Fi (@) + eg(xi)]

e=0
5 OLarly S'2) + o)
=1 Oe e=0
n P M X
- v —3<f(®mi)teg(mi)yi—y >
>3 et
=1 k=1 e=0
n M

,E E ge*%€<g(l’i)’yi*yk>}e*%<ft($i)’yi*yk>

o

1 M
- Z(y _ yk‘)e—%<ft($i),yi—yk>
2 1

M
L o—t<rt@n > S (i — yF)ed<S @t
2

k=1

14

e=0

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)



