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Abstract

The problem of multi-class boosting is considered. A new framework, based on
multi-dimensional codewords and predictors is introduced. The optimal set of
codewords is derived, and a margin enforcing loss proposed.The resulting risk is
minimized by gradient descent on a multidimensional functional space. Two algo-
rithms are proposed: 1) CD-MCBoost, based on coordinate descent, updates one
predictor component at a time, 2) GD-MCBoost, based on gradient descent, up-
dates all components jointly. The algorithms differ in the weak learners that they
support but are both shown to be 1) Bayes consistent, 2) margin enforcing, and
3) convergent to the global minimum of the risk. They also reduce to AdaBoost
when there are only two classes. Experiments show that both methods outperform
previous multiclass boosting approaches on a number of datasets.

1 Introduction

Boosting is a popular approach to classifier design in machine learning. It is a simple and effective
procedure to combine many weak learners into a strong classifier. However, most existing boosting
methods were designed primarily for binary classification.In many cases, the extension toM -
ary problems (ofM > 2) is not straightforward. Nevertheless, the design of multi-class boosting
algorithms has been investigated since the introduction ofAdaBoost in [8].

Two main approaches have been attempted. The first is to reduce the multiclass problem to a col-
lection of binary sub-problems. Methods in this class include the popular “one vs all” approach, or
methods such as “all pairs”, ECOC [4, 2], AdaBoost-M2 [7], AdaBoost-MR [18] and AdaBoost-
MH [18, 9]. The binary reduction can have various problems, including 1) increased complexity, 2)
lack of guarantees of an optimal joint predictor, 3) reliance on data representations, such as adding
one extra dimension that includes class numbers to each datapoint [18, 9], that may not necessarily
enable effective binary discrimination, or 4) using binaryboosting scores that do not represent true
class probabilities [15]. The second approach is to boost anM -ary classifier directly, using multi-
class weak learners, such as trees. Methods of this type include AdaBoost-M1[7], SAMME[12] and
AdaBoost-Cost [16]. These methods require strong weak learners which substantially increase com-
plexity and have high potential for overfitting. This is particularly problematic because, although
there is a unified view of these methods under the game theory interpretation of boosting [16], none
of them has been shown to maximize the multiclass margin. Overall, the problem of optimal and
efficientM -ary boosting is still not as well understood as its binary counterpart.

In this work, we introduce a new formulation of multi-class boosting, based on 1) an alternative
definition of the margin forM -ary problems, 2) a new loss function, 3) an optimal set of codewords,
and 4) the statistical view of boosting, which leads to a convex optimization problem in a multidi-
mensional functional space. We propose two algorithms to solve this optimization: CD-MCBoost,
which is a functional coordinate descent procedure, and GD-MCBoost, which implements functional
gradient descent. The two algorithms differ in terms of the strategy used to update the multidimen-
sional predictor. CD-MCBoost supports any type of weak learners, updating one component of
the predictor per boosting iteration, GD-MCBoost requiresmulticlass weak learners but updates all
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components simultaneously. Both methods directly optimize the predictor of the multiclass problem
and are shown to be 1) Bayes consistent, 2) margin enforcing,and 3) convergent to the global min-
imum of the classification risk. They also reduce to AdaBoostfor binary problems. Experiments
show that they outperform comparable prior methods on a number of datasets.

2 Multiclass boosting

We start by reviewing the fundamental ideas behind the classical use of boosting for the design of
binaryclassifiers, and then extend these ideas to the multiclass setting.

2.1 Binary classification

A binary classifier,F (x), is a mapping from examplesx ∈ X to class labelsy ∈ {−1, 1}. The
optimal classifier, in the minimum probability of error sense, is Bayes decision rule

F (x) = argminy∈{−1,1}PY |X(y|x). (1)

This can be hard to implement, due to the difficulty of estimating the probabilitiesPY |X(y|x). This
difficulty is avoided by large margin methods, such as boosting, which implement the classifier as

F (x) = sign[f∗(x)] (2)

wheref∗(x) : X → R is the continuous valued predictor

f∗(x) = argmin
f

R(f) (3)

that minimizes the classification risk

R(f) = EX,Y {L[y, f(x)]} (4)

associated with a loss functionL[., .]. In practice, the optimal predictor is learned from a sample
D = {(xi, yi)}

n
i=1 of training examples, and (4) is approximated by the empirical risk

R(f) ≈

n
∑

i=1

L[yi, f(xi)]. (5)

The lossL[., .] is said to be Bayes consistent if (1) and (2) are equivalent. For large margin methods,
such as boosting, the loss is also a function of the classification marginyf(x), i.e.

L[y, f(x)] = φ(yf(x)) (6)

for some non-negative functionφ(.). This dependence on the marginyf(x) guarantees that the
classifier has good generalization when the training sampleis small [19]. Boosting learns the
optimal predictorf∗(x) : X → R as the solution of

{

minf(x) R(f)
s.t f(x) ∈ span(H).

(7)

whereH = {h1(x), ...hp(x)} is a set of weak learnershi(x) : X → R, and the optimization is
carried out by gradient descent in the functional spacespan(H) of linear combinations ofhi(x) [14].

2.2 Multiclass setting

To extend the above formulation to the multiclass setting, we note that the definition of the classifica-
tion labels as±1 plays a significant role in the formulation of the binary case. One of the difficulties
of the multiclass extension is that these labels do not have an immediate extension to the multiclass
setting. To address this problem, we return to the classicalsetting, where the class labels of aM -ary
problem take values in the set{1, . . . ,M}. Each classk is then mapped into a distinct class label
yk, which can be thought of as acodewordthat identifies the class.

In the binary case, these codewords are defined asy1 = 1 andy2 = −1. It is possible to derive
an alternative form for the expressions of the margin and classifierF (x) that depends explicitly on
codewords. For this, we note that (2) can be written as

F (x) = argmax
k

ykf∗(x) (8)
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and the margin can be expressed as

yf =

{

f if k = 1
−f if k = 2

=

{

1
2 (y

1f − y2f) if k = 1
1
2 (y

2f − y1f) if k = 2
=

1

2
(ykf −max

l 6=k
ylf). (9)

The interesting property of these forms is that they are directly extensible to theM -ary classification
case. For this, we assume that the codewordsyk and the predictorf(x) are multi-dimensional, i.e.
yk, f(x) ∈ R

d for some dimensiond which we will discuss in greater detail in the following section.
The margin off(x) with respect to classk is then defined as

M(f(x), yk) =
1

2
[< f(x), yk > −max

l 6=k
< f(x), yl >] (10)

and the classifier as

F (x) = argmaxk < f(x), yk >, (11)

where< ., . > is the standard dot-product. Note that this is equivalent to

F (x) = arg max
k∈{1,...,M}

M(f(x), yk), (12)

and thusF (x) is the class of largest margin for the predictorf(x). This definition is closely related to
previous notions of multiclass margin. For example, it generalizes that of [11], where the codewords
yk are restricted to the binary vectors in the canonical basis of Rd, and is a special case of that in
[2], where the dot products< f(x), yk > are replaced by a generic function off, x, andk. Given a
training sampleD = {(xi, yi)}

n
i=1, the optimal predictorf∗(x) minimizes the risk

RM (f) = EX,Y {LM [y, f(x)]} ≈

n
∑

i=1

LM [yi, f(xi)]} (13)

whereLM [., .] is a multiclass loss function. A natural extension of (6) and(9) is a loss of the form

LM [y, f(x)] = φ(M(f(x), y)). (14)

To avoid the nonlinearity of themax operator in (10), we rely on

LM [y, f(x)] =
M
∑

k=1

e−
1

2
[<f(x),y>−<f(x),yk>]. (15)

which is shown, in Appendix A, to upper bound1+e−M(f(x),y). It follows that the minimization of
the risk of (13) encourages predictors of large marginM(f∗(xi), yi), ∀i. ForM = 2, LM [y, f(x)]
reduces to

L2[y, f(x)] = 1 + e−yf(x) (16)

and the risk minimization problem is identical to that of AdaBoost [8]. In appendices B and C it
is shown thatRM (f) is convex and Bayes consistent, in the sense that iff∗(x) is the minimizer of
(13), then

< f∗(x), yk >= logPY |X(yk|x) + c ∀k (17)

and (11) implements the Bayes decision rule

F (x) = argmaxkPY |X(yk|x). (18)

2.3 Optimal set of codewords

From (15), the choice of codewordsyk has an impact in the optimal predictorf∗(x), which is
determined by the projections< f∗(x), yk >. To maximize the margins of (10), the difference
between these projections should be as large as possible. Toaccomplish this we search for the set of
M distinct unit codewordsY = {y1, . . . , yM} ∈ R

d that are as dissimilar as possible










maxd,y1,...yM [mini6=j ||y
i − yj ||2]

s.t ||yk|| = 1 ∀k = 1..M.

yk ∈ R
d ∀k = 1..M.

(19)
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Figure 1:Optimal codewords forM = 2, 3, 4.

To solve this problem,we start by noting that, ford < M , the smallest distance of (19) can be
increased by simply increasingd, since this leads to a larger space. On the other hand, sinceM
pointsy1, ...yM lie in an, at most,M − 1 dimensional subspace ofRd, e.g. any three points belong
to a plane, there is no benefit in increasingd beyondM − 1. On the contrary, as shown in Appendix
D, if d > M − 1 there exits a vectorv ∈ R

d with equal projection on all codewords,

< yi, v >=< yj , v > ∀i, j = 1, ..,M. (20)

Since the addition ofv to the predictorf(x) does not change the classification rule of (11), this makes
the optimal predictor underdetermined. To avoid this problem, we setd = M − 1. In this case, as
shown in Appendix E, the vertices of aM−1 dimensionalregular simplex1 centered at the origin [3]
are solutions of (19). Figure 1 presents the set of optimal codewords whenM = 2, 3, 4. Note that
in the binary case this set consists of the traditional codewordsyi ∈ {+1,−1}. In general, there is
no closed form solution for the vertices of a regular simplexof M vectors. However, these can be
derived from those of a regular simplex ofM − 1 vectors, and a recursive solution is possible [3].

3 Risk minimization

We have so far defined a proper margin loss function forM -ary classification and identified an
optimal codebook. In this section, we derive two boosting algorithms for the minimization of the
classification risk of (13). These algorithms are both basedon the GradientBoost framework [14].
The first is a functional coordinate descent algorithm, which updates a single component of the
predictor per boosting iteration. The second is a functional gradient descent algorithm that updates
all components simultaneously.

3.1 Coordinate descent

In the first method, each componentf∗
i (x) of the optimal predictorf∗(x) = [f∗

1 (x), ..f
∗
M−1(x)], is

the linear combination of weak learners that solves the optimization problem
{

minf1(x),...,fM−1(x) R([f1(x), ..., fM−1(x)])
s.t fj(x) ∈ span(H) ∀j = 1..M − 1.

(21)

where H = {h1(x), ...hp(x)} is a set of weak learners,hi(x) : X → R. These can be
stumps, regression trees, or member of any other suitable model family. We denote byf t(x) =
[f t

1(x), ..., f
t
M−1(x)] the predictor available aftert boosting iterations. At iterationt + 1 a single

componentfj(x) of f(x) is updated with a step in the direction of the scalar functional g that most
decreases the riskR[f t

1, ..., f
t
j + α∗

jg, ..., f
t
M−1]. For this, we consider the functional derivative of

R[f(x)] along the direction of the functionalg : X → R, at pointf(x) = f t(x), with respect to the
jth componentfj(x) of f(x) [10],

δR[f t; j, g] =
∂R[f t + ǫg1j ]

∂ǫ

∣

∣

∣

∣

ǫ=0

, (22)

1A regularM − 1 dimensional simplex is the convex hull ofM normal vectors which have equal pair-wise
distances.
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where1j ∈ R
d is a vector whosejth element is one and the remainder zero, i.e.f t + ǫg1j =

[f t
1, .., f

t
j + ǫg, ..f t

M−1]. Using the risk of (13), it is shown in Appendix F that

−δR[f t; j, g] =

n
∑

i=1

g(xi)w
j
i , (23)

with

w
j
i =

1

2
e−

1

2
<ft(xi),yi>

M
∑

k=1

< 1j , yi − yk > e
1

2
<ft(xi),y

k>. (24)

The direction of greatest risk decrease is the weak learner

g∗j (x) = argmax
g∈H

n
∑

i=1

g(xi)w
j
i , (25)

and the optimal step size along this direction

α∗
j = argmin

α∈R

R[f t(x) + αg∗j (x)1j ]. (26)

The classifier is thus updated as

f t+1 = f t(x) + α∗
jg

∗
j (x)1j = [f t

1, ..., f
t
j + α∗

jg
∗
j , ..., f

t
M−1] (27)

This procedure is summarized in Algorithm 1-left and denoted CD-MCBoost. It starts withf0(x) =
0 ∈ R

d and updates the predictor components sequentially. Note that, since (13) is a convex function
of f(x), it converges to the global minimum of the risk.

3.2 Gradient descent

Alternatively, (13) can be minimized by learning a linear combination of multiclass weak learners.
In this case, the optimization problem is

{

minf(x) R[f(x)]
s.t f(x) ∈ span(H),

(28)

whereH = {h1(x), ..., hp(x)} is a set of multiclass weak learners,hi(x) : X → R
M−1, such as

decision trees. Note that to fit tree classifiers in this definition their output (usually a class number)
should be translated into a class codeword. As before, letf t(x) ∈ R

M−1 be the predictor available
aftert boosting iterations. At iterationt + 1 a step is given along the directiong(x) ∈ H of largest
decrease of the riskR[f(x)]. For this, we consider the directional functional derivative ofR[f(x)]
along the direction of the functionalg : X → R

M−1, at pointf(x) = f t(x).

δR[f t; g] =
∂R[f t + ǫg]

∂ǫ

∣

∣

∣

∣

ǫ=0

. (29)

As shown in Appendix G,

−δR[f t; g] =

n
∑

i=1

< g(xi), wi > (30)

wherewi ∈ R
M−1

wi =
1

2
e−

1

2
<ft(xi),yi>

M
∑

k=1

(yi − yk)e
1

2
<ft(xi),y

k>. (31)

The direction of greatest risk decrease is the weak learner

g∗(x) = argmax
g∈H

n
∑

i=1

< g(xi), wi >, (32)

and the optimal step size along this direction

α∗ = argmin
α∈R

R[f t(x) + αg∗(x)]. (33)

The predictor is updated tof t+1(x) = f t(x)+α∗g∗(x). This procedure is summarised in Algorithm
1-right, and denoted GD-MCBoost. Since (13) is convex, it converges to the global minimum of the
risk.
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Algorithm 1 CD-MCBoost and GD-MCBoost

Input: Number of classesM , set of codewordsY = {y1, . . . , yM}, number of iterationsN and
datasetS = {(x1, y1), ..., (xn, yn)}, wherexi are examples andyi ∈ Y are their class codewords.
Initialization: sett = 0, andf t = 0 ∈ R

M−1

CD-MCBoost GD-MCBoost
while t < N do

for j = 1 toM − 1 do
Computewj

i with (24)
Findg∗j (x), α

∗
j using (25) and (26)

Updatef t+1
j (x) = f t

j (x) + α∗
jg

∗
j (x)

Updatef t+1
k (x) = f t

k(x) ∀k 6= j
t = t+ 1

end for
end while

while t < N do
Computewi with (31)
Findg∗(x), α∗ using (32) and (33)
Updatef t+1(x) = f t(x) + α∗g∗(x)
t = t+ 1

end while

Output: decision rule:F (x) = argmaxk < fN (x), yk >

4 Comparison to previous methods

Multi-dimensional predictors and codewords have been usedimplicitly, [7, 18, 16, 6], or explicitly,
[12, 9], in all previous multiclass boosting methods.

“one vs all”, “all pairs” and “ECOC” [2]: as shown in [2], these methods can be interpreted
as assigning a codewordyk to each class, whereyk ∈ {+1, 0,−1}

l and l = M for “one vs all”,
l = M(M−1)

2 for “all pairs” andl is variable for “ECOC”, depending on the error correction code. In
all these methods, binary classifiers are learned independently for each of the codeword components.
This does not guarantee an optimal joint predictor. These methods are similar to CD-MCBoost in the
sense that the predictor components are updated individually at each boosting iteration. However,
in CD-MCBoost, the codewords are not restricted to{+1, 0,−1} and the predictor components are
learned jointly.

AdaBoost-MH [18, 9]: This method converts theM -ary classification problem into a binary one,
learned from aM times larger training set, where each examplex is augmented with a featurey that
identifies a class. Examples such thatx belongs to classy receive binary label1, while the remaining
receive the label−1 [9]. In this way, the binary classifier learns if the multiclass labely is correct
for x or not. AdaBoost-MH uses weak learnersht : X × {1, . . . ,M} → R and the decision rule

F̄ (x) = arg max
j∈{1,2,..M}

∑

t

ht(x, j) (34)

wheret is the iteration number. This is equivalent to the decision rule of (11) if f(x) is anM -
dimensional predictor withjth componentfj(x) =

∑

t ht(x, j), and the label codewords are de-
fined asyj = 1j . This method is comparable to CD-MCBoost in the sense that itdoes not require
multiclass weak learners. However, there are no guaranteesthat the weak learners in common use
are able to discriminate the complex classes of the augmented binary problem.

AdaBoost-M1 [7] and AdaBoost-Cost [16]: These methods use multiclass weak learnersht :
X → {1, 2, ..M} and a classification rule of the form

F̄ (x) = arg max
j∈{1,2,..M}

∑

t|ht(x)=j

αtht(x), (35)

wheret is the boosting iteration andαt the coefficient of weak learnerht(x). This is equivalent
to the decision rule of (11) iff(x) is anM -dimensional predictor withjth componentfj(x) =
∑

t|ht(x)=j αtht(x) and label codewordsyj = 1j . These methods are comparable to GD-MCBoost,
in the sense that they update the predictor components simultaneously. However, they have not been
shown to be Bayes consistent, and it is not clear that they canbe interpreted as maximizing the
multiclass margin.
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Figure 2:Classifier predictions of CD-MCBoost, on the test set, aftert = 0, 10, 100 boosting iterations.

SAMME [12]: This method explicitly usesM -dimensional predictors with codewords

yj =
M1j − 1

M − 1
=

[

−1

M − 1
,

−1

M − 1
, ..., 1,

−1

M − 1
,

−1

M − 1

]

∈ R
M , (36)

and decision rule
F̄ (x) = arg max

j∈{1,2,..M}
fj(x). (37)

Since, as discussed in Section 2.3, the optimal detector is not unique when the predictor isM -
dimensional, this algorithm includes the additional constraint

∑M
j=1 fj(x) = 0 and solves a con-

strained optimization problem [12, 9]. It is comparable to GD-MCBoost in the sense that it up-
dates the predictor components simultaneously, but uses the loss functionLSAMME [y

k, f(x)] =

e−
1

M
<yk,f(x)>. Using (36), the minimization of this loss is equivalent to maximizing

M′(f(x), yk) =< f(x), yk >= fk(x)−
1

M − 1

∑

j 6=k

fj(x), (38)

which is not a proper margin sinceM′(f(x), yk) > 0 does not imply correct classification i.e.
fk(x) > fj(x) ∀j 6= k. Hence, SAMME does not guarantee a large margin solution forthe
multiclass problem.

When compared to all these methods, MCBoost has the advantageof combining 1) a Bayes consis-
tent and margin enforcing loss function, 2) an optimal set ofcodewords, 3) the ability to boost any
type of weak learner, 4) guaranteed convergence to the global minimum of (21), for CD-MCBoost, or
(28), for GD-MCBoost, and 5) equivalence to the classical AdaBoost algorithm for binary problems.
It is worth emphasizing thatMCBoost can boost any type of weak learners of non-zero directional
derivative, i.e. non-zero (23) for CD-MCBoost and (30) for GD-MCBoost.This is independent
of the type of weak learner output, and unlike previous multiclass boosting approaches, which can
only boost weak learners of specific output types. Note that,although the weak learner selection
criteria of previous approaches can have interesting interpretations, e.g. based on weighted error
rates [16], these only hold for specific weak learners. Finally, MCBoost extends the definition of
margin and loss function to multi-dimensional predictors.The derivation of Section 2 can easily be
generalized to the design of other multiclass boosting algorithms by the use of 1) alternativeφ(v)
functions in (14) (e.g. those of the logistic [9] or Tangent [13] losses for increased outlier robustness,
asymmetric losses for cost-sensitive classification, etc.), and 2) alternative optimization approaches
(e.g. Newton’s method [9, 17]).

5 Evaluation

A number of experiments were conducted to evaluate the MCBoost algorithms2.

5.1 Synthetic data

We start with a synthetic example, for which the optimal decision rule is known. This is a three class
problem, with two-dimensional Gaussian classes of means[1, 2], [−1, 0], [2,−1] and covariances of

2Codes for CD-MCBoost and GD-MCBoost are available from [1].

7



Table 1:Accuracy of multiclass boosting methods, using decision stumps, on six UCI data sets

method landsat letter pendigit optdigit shuttle isolet
One Vs All 84.80% 50.92% 86.56% 89.93% 87.11% 88.97%

AdaBoost-MH [18] 47.70% 15.73% 24.41% 73.62% 79.16% 66.71%
CD-MCBoost 85.70% 49.60% 89.51% 92.82% 88.01% 91.02%

Table 2:Accuracy of multiclass boosting methods, using trees of max depth 2, on six UCI data sets

method landsat letter pendigit optdigit shuttle isolet
AdaBoost-M1[7] 72.85% − − − 96.45% −

AdaBoost-SAMME[12] 79.80% 45.65% 83.82% 87.53% 99.70% 61.00%
AdaBoost-Cost[16] 83.95% 42.00% 80.53% 86.20% 99.55% 63.69%

GD-MCBoost 86.65% 59.65% 92.94% 92.32% 99.73% 84.28%

[1, 0.5; 0.5, 2],[1, 0.3; 0.3, 1],[.4, 0.1; 0.1, 0.8] respectively. Training and test sets of1, 000 examples
each were randomly sampled and the Bayes rule computed in closed form [5]. The associated Bayes
error rate was11.67% in the training and11.13% in the test set. A classifier was learned with
CD-MCBoost and decision stumps.

Figure 2) shows predictions3 of f t(x) on the test set, fort = 0, 10, 100. Note thatf0(xi) = [0, 0]
for all examplesxi. However, as the iterations proceed, CD-MCBoost produces predictions that are
more aligned with the true class codewords, shown as dashed lines, while maximizing the distance
between examples of different classes (by increasing theirdistance to the origin). In this context,
“alignment off(x) with yk” implies that< f(x), yk >≥< f(x), yj >, ∀j 6= k. This combination
of alignment and distance maximization results in higher margins, leading to more accurate and
robust classification. The test error rate after100 iterations of boosting was11.30%, and very close
to the Bayes error rate of11.13%.

5.2 CD-MCBoost

We next conducted a number of experiments to evaluate the performance of CD-MCBoost on the
six UCI datasets of Table 1. Among the methods identified as comparable in the previous section,
we implemented “one vs all” and AdaBoost-MH [18]. In all cases, decision stumps were used
as weak learners, and we used the training/test set decomposition specified for each dataset. The
“one vs all” detectors were trained with20 iterations. The remaining methods were then allowed
to include the same number of weak learners in their final decision rules. Table 1 presents the
resulting classification accuracies. CD-MCBoost producedthe most accurate classifier in four of
the five datasets, and was a close second in the remaining one.“One vs all” achieved the next best
performance, with AdaBoost-MH producing the worst classifiers.

5.3 GD-MCBoost

Finally, the performance of GD-MCBoost was compared to AdaBoost-M1 [7], AdaBoost-Cost [16]
and AdaBoost-SAMME [12]. The experiments were based on the UCI datasets of the previous sec-
tion, but the weak learners were now trees of depth2. These were built with a greedy procedure
so as to 1) minimize the weighted error rate of AdaBoost-M1 [7] and AdaBoost-SAMME[12], 2)
minimize the classification cost of AdaBoost-Cost [16], or 3) maximize (32) for GD-MCBoost. Ta-
ble 2 presents the classification accuracy of each method, for 50 training iterations. GD-MCBoost
achieved the best accuracy on all datasets, reaching substantially larger classification rate than all
other methods in the most difficult datasets, e.g. from a previous best of63.69% to 84.28% in
isolet,45.65% to 59.65% in letter, and83.82% to 92.94% in pendigit. Among the remaining meth-
ods, AdaBoost-SAMME achieved the next best performance, although this was close to that of
AdaBoost-Cost. AdaBoost-M1 had the worst results, and was not able to boost the weak learners
used in this experiment for four of the six datasets. It should be noted that the results of Tables 1 and
2 are not directly comparable, since the classifiers are based on different types of weak learners and
have different complexities.

3We emphasize the fact that these are plots off t(x) ∈ R
2, notx ∈ R

2.
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A Margin upper bound

From (15) and (10)

LM [y, f(x)] =

M
∑

k=1

e−
1

2
[<f(x),y>−<f(x),yk>] (39)

= 1 +

M
∑

yk 6=y

e−
1

2
[<f(x),y>−<f(x),yk>] (40)

= 1 + e−M(f(x),y)
∑

yk 6=y

e−
1

2
[<f(x),y>−<f(x),yk>]+M(f(x),y) (41)

= 1 + e−M(f(x),y)
∑

yk 6=y

e−
1

2
[max

yl 6=y
<f(x),yl>−<f(x),yk>] (42)

= 1 + e−M(f(x),y)



1 +
∑

yk 6=y,yl∗

e−
1

2
[<f(x),yl∗>−<f(x),yk>]



 (43)

≥ 1 + e−M(f(x),y) (44)

wherel∗ = argmaxl|yl 6=y < f(x), yl >.

B Convexity

Definingβk = PY |X(yk|x) and using (13)

R(f |x) = EY |X{LM [y, f(x)]|x} (45)

=

M
∑

k=1

βkLM [yk, f(x)] (46)

=

M
∑

k=1

βk

M
∑

j=1

e−
1

2
<f(x),yk−yj> =

M
∑

k=1

M
∑

j=1

βke
− 1

2
<f(x),yk−yj>. (47)

Denotingηi,j = yi − yj the functional derivatives of first and second order, with respect tof(x),
are

∂R(f |x)

∂f(x)
= −

1

2

M
∑

k=1

M
∑

j=1

βkηk,je
− 1

2
<f(x),ηk,j> (48)

∂2R(f |x)

∂f(x)2
=

1

4

M
∑

k=1

M
∑

j=1

βk[ηk,jη
T
k,j ]e

− 1

2
<f(x),ηk,j>. (49)

If all codewords are different, i.e.ηk,j 6= 0 ∀k, j, the matrices[ηk,jηTk,j ] are positive definite∀k, j.

Sinceβk ≥ 0 ∀k and
∑M

k=1 βk = 1, βj > 0 for at least onej and (49) is strictly positive definite.
Hence,R(f |x) is strictly convex, and has auniqueglobal minimum.

C Bayes Consistency

Usingβk = PY |X(yk|x), setting

e−
1

2
<f(x),ηk,j> =

√

βj

βk

(50)
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and substituting in (48)

∂R(f |x)

∂f(x)
= −

1

2

M
∑

k=1

M
∑

j=1

βkηk,j

√

βj

βk

(51)

= −
1

2

M
∑

k=1

M
∑

j=1

(yk − yj)
√

βjβk (52)

= −
1

2

M
∑

k=1

yk
√

βk

M
∑

j=1

√

βj +
1

2

M
∑

j=1

yj
√

βj

M
∑

k=1

√

βk = 0 (53)

Hence, whenf(x) is f∗(x), the unique minimum ofR(f |x), (50) holds. It follows that

< f∗(x), yi > − < f∗(x), yk >= log
PY |X(yi|x)

PY |X(yk|x)
(54)

and
< f∗(x), yi >= logPY |X(yi|x) + c.∀i (55)

for some constantc. This shows that (11) is equivalent to (18).

D Underdetermined predictor

Let d > M − 1 and consider a set ofM vectorsy1, ...yM ∈ R
d. There are three possibilities

1. If d > M theny1, ...yM belong to an at mostM dimensional subspaceS of Rd. S ′, the
orthogonal complement ofS, is nonempty andRd = S ′ ∪ S. Since, by definition

∀u ∈ S, v ∈ S ′, < u, v >= 0, (56)

anyv ∈ S ′ satisfies (20).

2. If d = M andy1, ...yM are linearly dependent, theny1, ...yM belong to an, at most,M −1
dimensional subspaceS of RM . It follows thatS ′, the orthogonal complement ofS, is
nonempty. As in the previous case, this implies the existence of av ∈ S ′ that satisfies (20).

3. If d = M and y1, ...yM ∈ R
M are linearly independent, then, the matrixY of rows

y1, ...yM is invertible and
Y v = 1, (57)

with 1 = [1, ..1]T ∈ R
M , has a unique solution. This solution satisfy (20) since

< yi, v >= 1 ∀i (58)

E Solving optimization problem of codewords

Lemma 1. Consider the set of distinct unit vectorsy1, ...yM ∈ R
M−1 of smallest pairwise distance

d2min = min
i6=j

||yi − yj ||2. (59)

Then

d2min ≤
2M

(M − 1)
(60)

Proof. Since the minimum distance cannot be larger than the averagedistance between the vectors,

d2min ≤
2

M(M − 1)

∑

i

∑

j 6=i

||yi − yk||2. (61)
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To derive the bound of (60), we consider the following problem.






max y1, ...yM 1
2

∑

i

∑

j 6=i ||y
i − yj ||2

s.t ||yk|| = 1 ∀k = 1..M.

(62)

This problem can be solved with the Lagrange multiplier method. The Lagrangian is

L =
1

2

∑

i

∑

j 6=i

||yi − yj ||2 −
∑

i

σi(||y
i||2 − 1) (63)

for which

∂L

∂yk
= −

∑

i6=k

(yi − yk) +
∑

i6=k

(yk − yi)− 2σky
k = 2yk(M − σk)− 2

M
∑

i=1

yi (64)

∂2L

∂yk
2 = 2(M − σk − 1). (65)

This has a maximum when

yk(M − σk) =

M
∑

i=1

yi (66)

M − σk ≤ 1 (67)

We next consider two possibilities forM − σk.

1. ∃k such thatM − σk = 0. In this case, it follows from (66) that
∑M

i=1 y
i = 0. Since

||yk|| = 1, it follows thatM − σk = 0∀k.

2. M − σk 6= 0 ∀k. Then, from (66)

yk =

∑M
i=1 y

i

M − σk

, ∀k. (68)

Since theyk have to be distinct, there can be no pair such thatM −σk1
= M −σk2

. Using
||yk|| = 1, it follows from (68) that

(M − σk)
2 = ‖

M
∑

i=1

yi‖2 (69)

and, for anyk,

(M − σk) ∈ {−||
M
∑

i=1

yi||,+||
M
∑

i=1

yi||}. (70)

Hence, there is a contradiction forM > 2. ForM = 2 the contradiction can be avoided if
M − σk1

= −(M − σk2
). In this case, using (68),

M
∑

i=1

yi = y1 + y2 =

[

1

M − σk1

+
1

M − σk2

] M
∑

i=1

yi = 0 (71)

Since||yk|| = 1, it follows from (66) thatM − σk = 0∀k, contradicting the initial hypoth-
esis thatM − σk 6= 0 ∀k.

In summary, the Lagrangian is maximum when

M
∑

i=1

yi = 0 (72)

σk = M, ∀k. (73)
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Taking the dot product of both sides of (72) withyk and using the fact that||yk|| = 1,
∑

j 6=k

< yj , yk > = −1. (74)

Combining with the fact that||yi − yj ||2 = 2− 2 < yi, yj > it follows that
∑

i

∑

j 6=i

||yi − yj ||2 = 2M(M − 1)− 2
∑

i

∑

j 6=i

< yi, yj > (75)

= 2M2 (76)

Combining this with (61) leads to (60)

Theorem 2. Any set of unit vectorsy1, ...yM ∈ R
M−1 which form a regular simplex inRM−1 is a

solution of (19)

Proof. From Lemma 1, ifd2min = mini6=j ||y
i − yj ||2 then

d2min ≤
2M

(M − 1)
. (77)

Since the pairwise distances between the vertices of a regular unit simplex inRM−1 are all equal to
√

2M
(M−1) [3], the set of these vertices achieves the upper bound of (77). Hence, this set is a solution

to (19). Note that this solution is not unique, since any rotation of the simplex is an equally valid
solution.

F Derivation of CD-MCBoost

From (13) and (22)

−δR[f t; j, g] = −
∂

∂ǫ

n
∑

i=1

LM [yi, f
t(xi) + ǫg(xi)1j ]

∣

∣

∣

∣

∣

ǫ=0

(78)

= −

n
∑

i=1

∂LM [yi, f
t(xi) + ǫg(xi)1j ]

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

(79)

= −

n
∑

i=1

∂

∂ǫ

M
∑

k=1

e−
1

2
<ft(xi)+ǫg(xi)1j ,yi−yk>

∣

∣

∣

∣

∣

ǫ=0

(80)

= −

n
∑

i=1

M
∑

k=1

[

∂

∂ǫ
e−

1

2
ǫg(xi)<1j ,yi−yk>

]

e−
1

2
<ft(xi),yi−yk>

∣

∣

∣

∣

∣

ǫ=0

(81)

=
1

2

n
∑

i=1

M
∑

k=1

g(xi) < 1j , yi − yk > e−
1

2
<ft(xi),yi−yk> (82)

=
1

2

n
∑

i=1

g(xi)

M
∑

k=1

< 1j , yi − yk > e−
1

2
<ft(xi),yi−yk> (83)

=

n
∑

i=1

g(xi)w
j
i (84)

where

w
j
i =

1

2

M
∑

k=1

< 1j , yi − yk > e−
1

2
<ft(xi),yi−yk> (85)

=
1

2
e−

1

2
<ft(xi),yi>

M
∑

k=1

< 1j , yi − yk > e
1

2
<ft(xi),y

k>. (86)
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G Derivation of GD-MCBoost

Using (13) and (29)

−δR[f t; g] = −
∂

∂ǫ

n
∑

i=1

LM [yi, f
t(xi) + ǫg(xi)]

∣

∣

∣

∣

∣

ǫ=0

(87)

= −
n
∑

i=1

∂LM [yi, f
t(xi) + ǫg(xi)]

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

(88)

= −

n
∑

i=1

∂

∂ǫ

M
∑

k=1

e−
1

2
<ft(xi)+ǫg(xi),yi−yk>

∣

∣

∣

∣

∣

ǫ=0

(89)

= −

n
∑

i=1

M
∑

k=1

[
∂

∂ǫ
e−

1

2
ǫ<g(xi),yi−yk>]e−

1

2
<ft(xi),yi−yk>

∣

∣

∣

∣

∣

ǫ=0

(90)

=
1

2

n
∑

i=1

M
∑

k=1

< g(xi), yi − yk > e−
1

2
<ft(xi),yi−yk> (91)

=
1

2

n
∑

i=1

< g(xi),

M
∑

k=1

(yi − yk)e−
1

2
<ft(xi),yi−yk> > (92)

=

n
∑

i=1

< g(xi), wi > (93)

where

wi =
1

2

M
∑

k=1

(yi − yk)e−
1

2
<ft(xi),yi−yk> (94)

=
1

2
e−

1

2
<ft(xi),yi>

M
∑

k=1

(yi − yk)e
1

2
<ft(xi),y

k> (95)
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