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Abstract sifier in the large training sample regime. The second is
the ability to enforce a margin, by penalizing examples cor-
A new family of boosting algorithms, denoted Taylor- rectly classified but close to the boundary. This results in
Boost, is proposed. It supports any combination of loss improved generalization when using finite samplie§.[
function and first or second order optimization, and in- Despite the importance of these properties, the set of
cludes classical algorithms such as AdaBoost, Gradient- Bayes-consistent large-margin losses has remained small.
Boost, or LogitBoost as special cases. Its restriction ® th In fact, its study has only recently been addressed in a sys-
set of canonical losses makes it possible to have boostingematic form in P]. This work introduced a generic frame-
algorithms with explicit margin control. A new large family work for the derivation of Bayes consistent losses. We have
of losses with this property, based on the set of cumulativerecently shown that this framework can also be used to de-
distributions of zero mean random variables, is then pro- rive losses with explicit margin controL{]. This is a fam-
posed. A novel loss function in this family, the Laplace,loss ily of loss functions parameterized by a scalar that costrol
is finally derived. The combination of this loss and second the extent of the penalty for correctly classified examples.
order TaylorBoost produces a boosting algorithm with ex-  Given a loss, a second important boosting dimension is

plicit margin control. the optimization strategy used for risk minimization. For
example, AdaBoost has the well known interpretation of a
1. Introduction gradient descent procedure for minimization of the risk as-

sociated with the exponential loss. This optimizationtstra
Modern solutions to many vision problems involve the egy has been generalized to other losses, through the in-
design of a classifier. Boosting is a reliable tool for this troduction of GradientBoost inlp]. Second order exten-

design. Since the introduction of AdaBoost ij,[a num- sions, based on the Newton method, were also developed
ber of algorithms have appeared in the literature, includ- for the logistic and exponential risks, leading to LogitBbo
ing LogitBoost [], GentleBoost §], GradientBoost {7], and GentleBoostd]. While more powerful than gradient

or TangentBoost 1[1]. They all minimize a risk that upper  descent, these second order extensions turned out not to be
bounds the classification error, and converge asympthtical easy to reconcile with the weighting mechanism that is crit-
to the Bayes decision rule. However, when trained with a ical to the success of boosting. Since the straightforward
limited number of (possibly noisy) examples, their results application of Newton method does not produce example
vary significantly. In fact, experience has shown that dif- weighting, a somewhat arbitrary weighting mechanism was
ferent boosting algorithms can achieve significantly bette added to these algorithms. Despite its limited mathemlatica
performance in different classification problems. support, experiments show that this mechanism is crucial
Boosting algorithms differ along three main dimensions: for classifier effectiveness. For example, Figligompares
the weak learners that are boosted, the optimization stratthe evolution of the LogitBoost risk, as a function of boost-
egy used for weak learner selection, and the loss functioning iteration, with and without weights. It is clear that per
that guides this optimization. Weak learners can be highly formance degrades significantly when weights are omitted.
problem dependent, and are not considered in this work.This can be problematic, since it is unclear how the weight-
Effective loss functions combine two main properties. The ing mechanism could be generalized to other losses. This
first is Bayes consistency, in the sense that the minimizatio problem has prevented the introduction of a generic second-
of the associated risk converges asymptotically to the Baye order method, that generalizes LogitBoost in a manner sim-
decision rule §, 15, 3, 9]. This guarantees an optimal clas- ilar to how GradientBoost generalizes AdaBoost.
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013 ‘ ‘ ‘ ‘ and the method used to compute the best update at each it-

eration. Many of these algorithms can be interpreted as gra-
— LoaitBoost with out weights| | dient descent procedures in the functional spage This
requires familiarity with some analytical tools.

2.1. Analytical tools

Solving ) by iterative descent requires the derivative of
the functionalR.[f(x)] along the directioy(x), [7]

0.09
[o]
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Figure 1.Classification risk of LogitBoost with and without weights. SR.(fi9) = OR:(f +&g)
(& b

In this work, we propose joint contributions along the % ’5_0
dimensions of second order boosting, and margin control-This is a measure of the variation &f. at point f along
lable loss functions. The first contribution is a generic op- the direction specified by. For simplicity, we sometimes
timization procedure, based on a Taylor series expansion ofomit the argument throughout this paper. The curvature
the risk, that can be applied to any loss function. It leads of R.[f] alongg is given by the second order derivative
to a family of boosting algorithms of either first or sec- )
ond order (depending on the approximation), dendieg 8R.(fig) = W‘ ]
lorBoost This family is shown to include GradientBoost o¢? £=0
(first-order methods) and LogitBoost (second order) when
applied to the logistic loss. The final contribution is a new
family of loss functions wittmargin contro| derived from
the set of cumulative probability distributions of zero mea
random variables. A novel Bayes consistent loss in this
family, Laplace, is introduced. The combination of this

loss and second order TaylorBoost produces an algoritth'nceRC.m onl_y depends on the exaT“p'e sp:_a?éehrough
. . . - the training points:;, there is no loss in mapping the space
with state-of-the-art results in various vision problems.

of functions f(x) into the finite vector spac® € R" of

©)

(4)

Using these quantitie$;. can be approximated by a Taylor
series expansion arourfd 7],

62
Re(f+eg) = Re(f)+€0Re(f;9)+ 5 0°Re(f39) +O(¢7).

) vectors[f(x1), ..., f(x,)], wheren is the training set size.
2. Boosting In V, the dot product is usually defined as
A classifier is a mah(z) from examplest € X into — 23) g (). 5
labelsy € {—1,1}. This is usually implemented dgz) = (91, 92) Zi:gh( )2(z:) ©)

sgn[f(x)] for some real-valued classifier predictpr The

optimal predictorf* (z) minimizes theclassification risk Without loss of generality, we assume that the weak learn-

ers,g € G, are normalized so thay, g) = 1. Defining the
R.f)=E Lly, 1 indicator function/(x) = 1 if « holds and zero otherwise,
(/) xy {Lly, J@)]} @ the functionalgradientof R, is the vector of components

associated with a loss functidr ., .). Boosting is a proce- o
dure to findf*, from a training set of examplés;, y;), by Vr.p(@i) = %Rc[f + &I (x = ;)]
solving the optimization

OLlyi, f(z:) +¢]

{ ming)  Re(f) =3, Llyi, f(z:)] o) - 73 ’5_0
s.t f(z) € Qg,

L_o
(6)

and thesecond order gradienbr Hessian, is the matrix
whereG = {¢1,...9m} IS a set of weak learners, and

Qg = span(G). The optimal classifier is found by se- V2 o (z,1;) = O*Re(f+&l(z=ai)+El(a=xy))
quentially adding to the current solutiorf*, an update Re(f) ! 0610, €1,62=0
hz) = cg9(x), with ¢, € R, g € G. The values ok, %L[yi,f(ari) +¢ if i=j

and g are chosen to minimize the risk of the updated pre- = ' €=0 i (7)
dictor, f**1(z) = f*(z) 4+ h(z). SinceQg is a convex 0 otherwise

set, the optimization problem is convex whenef( f) is For simplicity, we denot&?2, . . (z;, z;) asV2 . (x;). R
. . . . . . ’ RC (f) 19 K3 Rr(f) 1) C

convex inf. In this case, the boosting iterations converge to i .onvex whenever

a globally optimal solution. Particular boosting algonith

differ in the loss functions adopted, the weak learnegset V?%c(f)(mi) >0, Vf, Va,. (8)
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Projection intoy simplifies @) into Lly, f(x)] = log(1 + e~2¥/(*)), and real-valued learners.
Application of §), (7) and (L2) leads to the update

0
J £=0 Re(f)\Ti) = 14 e—2vif* (@)’
do2e—2vif* (@)
0 2 i — Yi
= Zg(xj)aig”y“ﬂxj) +Oll - ={(Vra9)- (10) Vi) (1+ -2 (@) e
j o
Tnapo(@) = sp+e 205 (g)

Similarly, it can be shown that 2

at iterationk. As in AdaBoost,R, is strictly convex, and

§°Re(f:9) = <V%C(f),92> =(9,9)v2, . (11)  Jg. (s is approximated by the closest weak learner
where< f,g >,= >, w;f(z;)g(x;). Gradient descent g° = arg max (TR.(1%),9) - (19)
g

iteratively updateg’ by selecting, at each iteration, a step in
the direction of the negative gradient. The Newton method owever, as shown in Figute, this results in boosted clas-

is a second order method that also considers the curvaturgiiers with weak performance. Noting that, whes G are
of R, using the update®] normalized, {9) is the solution of

Ve (@)

j (f €T; = .
) Vi (@)

* % . 2
(12) (9%, c) = argmin |\ TR, (1) — cog| ™ (20)
[6] suggested to overcome this limitation by solving, in-

2.2. AdaBoost stead, the weighted least squares problem

AdaBoost [] is a gradient descent method for minimiza- )
tion of the exponential risk. [y, f(x)] = e~¥f(*). Since (g, ¢;) = argmingeg |Tn () — Cog|,,  (21)

= arg min L w; ;) — cog(x)]? (22
V2, () = y2e @) > 0, gmingeg > ; Wil T, (s) (1) — cog(@)]” (22)

. . ) ) _ with a set of weights defined as
R, is strictly convex and?) has a unique solution. Given
the predictor at iteratioh, f*(z), the descent direction is ’ -2
P fH@) w; =4 (efk(zi) + eifk(xi)> . (23)

Vi) = pe V@ =y, (13)
Ry (1) (21) results in

wherew; = e~/ is the weight of thei" example. 2
This direction may not belong @, and is approximated by * <\7Rc(fk)v 9>w (24)

g© = argmax ,
9cd  (9,9),

= —VR.,9) = ig9(z)w; (14 . . ' .
g argglggx< R 9) argglggzi:y glwsjws (14) and perform a line search, using5}, to find the optimal

step size. While this improves the performance, it has var-

The optimal step size, in the direction ¢f, is then ious problems. First, unlike AdaBoost, the weights do not
follow naturally from the optimization. Second, they are
cg- = argmin R.(f*(x)+cg*(2)), (15) somewhat arbitrary, defined so as to guarantee that the fi-
C

nal algorithm has boosting-like properties. Third, it is no
The predictor is updated t*+! = f* + ¢..g* and the clear that the addition of such weights would benefit other
procedure iterated. Sincé4) and (L5) are independent of ~P0OSting algorithms, or how they should be defined.
bothG and the loss used, they are valid, and called as Grad-
Boost [L7], for any proper loss and set of weak learners. 3. Taylor Boost

: The distinguishing feature of TaylorBoost is that, rather
2.3. LogitB . . .
3. LogitBoost than computing the best update (in the gradient or Newton
LogitBoost [f] is an implementation of Newton’s sense) and selecting the closest weak learner, asfjrof
method for the minimization of the logistic risk loss, (21), it selects the best weak learner directly. This is done
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by defining the latter as the minimizer of the Taylor series
expansion of the risk around the current predicfér,

(€*,9%)

(25)

argmin R.(f* + cg)
¢\

Re(f* + cg)

2
= Re(f")+cSR(f*:9) + S8 Re( 5 g).
By controlling the order of the approximation, it is possibl
to obtain different boosting algorithms.
For an approximation of first order,

(cg,9") = argmin Re(f*) + ¢0Re(f*59)  (26)
the optimal weak learner is
g* = argmin §R.(f"; g) = argmin (Vg.,9) (27)
g g

This is identical to the selection rule of4). The optimal
step is then defined as ia%), and the proposed procedure
reduces to GradBoost. For a second order approximation

2
(¢",9") = arg min Rc(fk)+05Rc(fk;g)+%52Rc(fk§g)'
Given a weak learner, the optimal weighting of the two

derivatives is obtained by setting to zero the derivativiawi
respect ta:. This leads to

0R(f*:9)
= 28
G T TERrg) 29
The optimal weak learner is then usirgl)

2

. BR.(f";9))? (Vr.():9)
= e 0 dN - ~—e =l (29
I TR RAFg) T T (g0, 2)

wherew; = Vf%c(fk) (z;). The optimal step size can finally
be found by a line search according tt5), We denote
this methodQuadratic boostingor QuadBoost. Note that if
logistic loss is used, these weights are the sam&asapd

it follows from (12) that 7 () (i) X w; = =V g_gr(7;).
The optimal weak learner 020) can then be written as

2
(Vo) 9) (Tre(4):9) (20)
<gvg>w <g7g>w

Since this is identical to24), LogitBoost is a special case
of QuadBoost. First and second order TaylorBoost are pre-
sented in AlgorithmiL.

g* = argmax

= arg max
geg

3.1. Properties

The TaylorBoost family has a number of interesting
properties. First, it generalizes classical boosting. dcra
Boost is the family of algorithms derived from the first-
order Taylor series expansion, and LogitBoost is the Quad-
Boost derived with the logistic loss. Second, it does not

Algorithm 1 Taylor Boost
Input: Training setS;, Number of weak learners in the
final classifier,V, Loss function L[y, f(x)].
Initialization: Setk = 0, f*(z) =0
whilek < N do
ComputeV p_(sx)(z;) using €)
For first order TaylorBoost; = 1
For second order methad, = V%C(fk)
Find the best weak learner;, by (29)
Find the optimal step;,-, size by (5)
At = fF 4 cpgandk =k + 1
end while
Output: decision rulesign[fV ()]

() by (7)

require arbitrary weight specification. Instead, for bottfi
and second-order algorithms, the weights follow naturally
from the optimization. Third, any conveR.(f) is also ana-
lytical, has a convergent Taylor series, and makes the prob-
lem of (2) convex. Hence, all TaylorBoost methods con-
verge to the global optimum, iR.(f) is convex. Fourth,
due to the more accurate approximation of QuadBoost, it
selects better weak learners and has faster convergerce rat
Finally, although second order methods are sometimes ex-
pensive (need to invert the Hessian), QuadBoost has com-
plexity equivalent to that of GradBoost.

4. Lossand Risk function design

The discussion above is applicable to any choice of loss
function L[y, f] and weak learner s&f. In this section,
we consider the choice of loss function. The design of loss
functions suitable for classification is an extensivelydstu
ied topic [, 15, 3, 9]. Losses commonly used in machine
learning are upper-bounds on the zero-one loss. When the
classifier that minimizes the risk associated with a Ibss
converges asymptotically to the Bayes rule, as training sam
ples increasel, is said to beBayes consistelfi.5, 9].

Bayes consistency is a necessary condition for effective
learning. It guarantees that, with infinite training date t
algorithm produces the optimal decision rule. It is, how-
ever, not sufficient, as it does not guarantee that the deci-
sion rule is the best possible for small training sampleg Th
classification margin plays an important role in this regime
as larger margins guarantee improved generalizatich |
SVM and boosting guarantee a large margin by relying on
margin enforcing losses. These are losses that assign a
penalty to correctly classified examples which are near the
classification border. The use of losses that are both Bayes
consistent and margin enforcing guarantees good perfor-
mance in both the small and large sample size regimes.
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4.1. Mar gi n control Table 1.Classification error of various combinations of boosting kss
o functions on car, face, and pedestrian detection.

The design of Bayes consistent loss functions has mos Car Face Pedesiian

recently been studied iR]. This work introduced a generic Method Grad Quad Grad | Quad | Grad | Quad

framework for the derivation of such losses, showing that| Exponential [ 27.54% | 17.5% | 9.14% | 8.7%% | 7.45% | 6.9%%
it is possible to augment Bayes consistency with other de- (L:Cég's“‘t? 2‘11?37? i;ii? 186615;7; g-gié 32%0 g;‘go

H H H 00S . (0 . 0 . () . (0 . © . 0
sirable loss properties. We have recently considered th CBooste™) | 13.76% | 1244% | 8.29% | 8237 | 5.47% | 5.29%

problem of controlling the margin enforced by a loss, and Caplace | 29.87% | 12.97, | 9.56% | 8.16% | 6.94% | 5.26%

shown that it is possible to derive Bayes consistent l0Sses Laplaceg®) | 13.02% | 12.97% | 8.1%% | 8.16% | 55%% | 5.28%

with explicit margin control {0]. This builds on a special-
ization of the loss design procedure 61.[ The procedure

is based on a decomposition of the optimal predictor into
f(z) = l[n(x)], wheren(z) = Py |x(1]z) andi(n) a link
function. The specialization is as follows(]

“““ Exponential loss|]
— Laplace loss
= = = | ogistic loss
----- CBoost loss

1. select any real, invertible, and increasing link funetio
[:0,1] — R that satisfies

Y~
...............

I =v) =1-1""(v). (31) e 020
Figure 2.Laplace and other convex Bayes consistent loss functions.
2. computeC'(n) = — [I(n)dn

3. define the loss ab(y, f) = ¢(yf) where were proposed inl[J]. These losses are canonical exten-
sions of those used by AdaBoost and LogitBoost, whose
p(v) =C[I ()] — (1 =17 (v)) (32) margin properties are controlled by the parametdn this
work, we note that the family of canonical losses with mar-
It can be shown that, minimization of the risk associated 9" control is much broader, using the fact that the cumu-
with L, produces a classifier of conditional rigkn) [9]. Iat|ve.d|str_|but|ons qf many zero mean random variables 1)
The lossL is denotectanonicalsincel () = _% [4, 10]. are sigmoidal funct|on§ W|th the symmetr_y 1, and 2)
The ability to control the margin properties of canoni- enable control of the sigmoid slope by a simple parameter.

cal losses follows from the fact that they have a predicable 7O €xample, the cumulative distribution of a the zero
form wheni~" is a sigmoidal function. In this case, it can be Me&N Laplacian random variable of variarizé, exhibits
shown thaty(v) is convex, monotonically decreasing, linear the_se properties and e_nable_s margin _control through the
(slope—1) for large negative, constant for large positive, variance parameter. Using this distribution a$ leads to

and has slope-1/2 at the origin [L0]. These properties can

be seen in Figure, and are frequently used to justify the alog(2n) ifn<05

success of the logistic loss (a member of canonical losses) ln) = { —alog(—2n +2) ifn>05

and LogitBoost. The only degrees of freedom are in the be-

havior of the loss around = 0, i.e. its margin enforcing = —asgn(2n —1)log(1 - [2n — 1)) (35)
properties. These properties can be controlled by control-
ling the slope of the sigmoiéi! around the origin. While
the details depend on the selected sigmoidal functionether
is usually a parameter which controls this slope. This pa- I TP

rameter thus controls the margin properties of the 108k [ o) = glae™ + -0, (36)

Application of the procedure of Sectighl then produces
the loss

2

. . which we denotéaplace lossand is compared with a num-
4.2. A new family of canonical losses ber of losses discussed above in Figagor a = 1).

Two losses with explicit margin control, the CBoost loss
5. Evaluation

1
dlvia) = %( 4+ (av)* — av) (33) We start with the problems of car, face, and pedestrian
detection. The face dataset consist8,000 face and), 000
non-face images, of sizel x 24. Car detection is based on
the UIUC dataset]]] of 1,100 positives and 0, 000 nega-

1
P(v;a) = g[log(l + (™)) — av) (34) tives, of size20 x 50. Pedestrian detection is based on the

and the canonical logistic loss
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MIT Pedestrian dataset ] of 1,000 positives and.0, 000 Table 2.Tracking accuracy for five video clips.
negatives, of sizd0 x 20. In all cases, the data was split [ Method | Tangent| Logit | Gentle | Lap+Quad| CBoost+Quad
into five folds, four of which were used for training and one | Gravel | 186% | 18.8% | 19.2% | 18.8% 17.8%
for testing. All experiments were repeated with each fold | _Athlete | 36.6% | 37.2% | 36.4% | 35.8% 354 %
taking the role of test set, and the results averaged. Als Karls | 799% | S1.7%] 33.7% | 314% 3%
' ' Montins | 86.9% | 92.2% | 925% | 834% 87.7%

regression on Haar wavelets were used as weak learners. [ piush 3.9% 94% | 9.5% 10.2% 10.9%

Table 1 presents the error rates of detectors learned
with 25 iterations of TaylorBoost and the losses discussed
above. Underlined entries are methods that were availableBoost. Table2 presents the error rates (as definedsi) ff
before this work: GradBoost (for logistic and exponential €ach method on five video clips. The combination of Quad-
loss), LogitBoost (QuadBoost + logistic loss), GentleBoos Boost and canonical losses achieves the best performances.
(QuadBoost + exponential loss) and (GradBoost + CBoost!n particular, Laplace+QuadBoost and CBoost+QuadBoost
loss) [L0]. For the losses with margin control, results are €ach achieve the best result on two clips, while Tangent-
presented for botlk = 1 and the cross-validated margin Boost has the lowest error rate on the last.
parameter*. A number of observations can be made.
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