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Abstract

A new family of boosting algorithms, denoted Taylor-
Boost, is proposed. It supports any combination of loss
function and first or second order optimization, and in-
cludes classical algorithms such as AdaBoost, Gradient-
Boost, or LogitBoost as special cases. Its restriction to the
set of canonical losses makes it possible to have boosting
algorithms with explicit margin control. A new large family
of losses with this property, based on the set of cumulative
distributions of zero mean random variables, is then pro-
posed. A novel loss function in this family, the Laplace loss,
is finally derived. The combination of this loss and second
order TaylorBoost produces a boosting algorithm with ex-
plicit margin control.

1. Introduction

Modern solutions to many vision problems involve the
design of a classifier. Boosting is a reliable tool for this
design. Since the introduction of AdaBoost in [5], a num-
ber of algorithms have appeared in the literature, includ-
ing LogitBoost [6], GentleBoost [6], GradientBoost [12],
or TangentBoost [11]. They all minimize a risk that upper
bounds the classification error, and converge asymptotically
to the Bayes decision rule. However, when trained with a
limited number of (possibly noisy) examples, their results
vary significantly. In fact, experience has shown that dif-
ferent boosting algorithms can achieve significantly better
performance in different classification problems.

Boosting algorithms differ along three main dimensions:
the weak learners that are boosted, the optimization strat-
egy used for weak learner selection, and the loss function
that guides this optimization. Weak learners can be highly
problem dependent, and are not considered in this work.
Effective loss functions combine two main properties. The
first is Bayes consistency, in the sense that the minimization
of the associated risk converges asymptotically to the Bayes
decision rule [6, 15, 3, 9]. This guarantees an optimal clas-

sifier in the large training sample regime. The second is
the ability to enforce a margin, by penalizing examples cor-
rectly classified but close to the boundary. This results in
improved generalization when using finite samples [14].

Despite the importance of these properties, the set of
Bayes-consistent large-margin losses has remained small.
In fact, its study has only recently been addressed in a sys-
tematic form in [9]. This work introduced a generic frame-
work for the derivation of Bayes consistent losses. We have
recently shown that this framework can also be used to de-
rive losses with explicit margin control [10]. This is a fam-
ily of loss functions parameterized by a scalar that controls
the extent of the penalty for correctly classified examples.

Given a loss, a second important boosting dimension is
the optimization strategy used for risk minimization. For
example, AdaBoost has the well known interpretation of a
gradient descent procedure for minimization of the risk as-
sociated with the exponential loss. This optimization strat-
egy has been generalized to other losses, through the in-
troduction of GradientBoost in [12]. Second order exten-
sions, based on the Newton method, were also developed
for the logistic and exponential risks, leading to LogitBoost
and GentleBoost [6]. While more powerful than gradient
descent, these second order extensions turned out not to be
easy to reconcile with the weighting mechanism that is crit-
ical to the success of boosting. Since the straightforward
application of Newton method does not produce example
weighting, a somewhat arbitrary weighting mechanism was
added to these algorithms. Despite its limited mathematical
support, experiments show that this mechanism is crucial
for classifier effectiveness. For example, Figure1 compares
the evolution of the LogitBoost risk, as a function of boost-
ing iteration, with and without weights. It is clear that per-
formance degrades significantly when weights are omitted.
This can be problematic, since it is unclear how the weight-
ing mechanism could be generalized to other losses. This
problem has prevented the introduction of a generic second-
order method, that generalizes LogitBoost in a manner sim-
ilar to how GradientBoost generalizes AdaBoost.
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Figure 1.Classification risk of LogitBoost with and without weights.

In this work, we propose joint contributions along the
dimensions of second order boosting, and margin control-
lable loss functions. The first contribution is a generic op-
timization procedure, based on a Taylor series expansion of
the risk, that can be applied to any loss function. It leads
to a family of boosting algorithms of either first or sec-
ond order (depending on the approximation), denotedTay-
lorBoost. This family is shown to include GradientBoost
(first-order methods) and LogitBoost (second order) when
applied to the logistic loss. The final contribution is a new
family of loss functions withmargin control, derived from
the set of cumulative probability distributions of zero mean
random variables. A novel Bayes consistent loss in this
family, Laplace , is introduced. The combination of this
loss and second order TaylorBoost produces an algorithm
with state-of-the-art results in various vision problems.

2. Boosting

A classifier is a maph(x) from examplesx ∈ X into
labelsy ∈ {−1, 1}. This is usually implemented ash(x) =
sgn[f(x)] for some real-valued classifier predictorf . The
optimal predictorf∗(x) minimizes theclassification risk

Rc(f) = EX,Y {L[y, f(x)]} (1)

associated with a loss functionL(., .). Boosting is a proce-
dure to findf∗, from a training set of examples(xi, yi), by
solving the optimization

{

minf(x) Rc(f) ≃
∑

i L[yi, f(xi)]
s.t f(x) ∈ ΩG ,

(2)

where G = {g1, .., gm} is a set of weak learners, and
ΩG = span(G). The optimal classifier is found by se-
quentially adding to the current solution,fk, an update
h(x) = cgg(x), with cg ∈ R, g ∈ G. The values ofcg

andg are chosen to minimize the risk of the updated pre-
dictor, fk+1(x) = fk(x) + h(x). SinceΩG is a convex
set, the optimization problem is convex wheneverRc(f) is
convex inf . In this case, the boosting iterations converge to
a globally optimal solution. Particular boosting algorithms
differ in the loss functions adopted, the weak learner setG,

and the method used to compute the best update at each it-
eration. Many of these algorithms can be interpreted as gra-
dient descent procedures in the functional spaceΩG . This
requires familiarity with some analytical tools.

2.1. Analytical tools

Solving (2) by iterative descent requires the derivative of
the functionalRc[f(x)] along the directiong(x), [7]

δRc(f ; g) =
∂Rc(f + ξg)

∂ξ

∣

∣

∣

∣

ξ=0

. (3)

This is a measure of the variation ofRc at pointf along
the direction specified byg. For simplicity, we sometimes
omit the argumentx throughout this paper. The curvature
of Rc[f ] alongg is given by the second order derivative

δ2Rc(f ; g) =
∂2Rc(f + ξg)

∂ξ2

∣

∣

∣

∣

ξ=0

. (4)

Using these quantities,Rc can be approximated by a Taylor
series expansion aroundf [7],

Rc(f +ǫg) = Rc(f)+ǫδRc(f ; g)+
ǫ2

2
δ2Rc(f ; g)+O(ǫ3).

SinceRc[f ] only depends on the example spaceX through
the training pointsxi, there is no loss in mapping the space
of functionsf(x) into the finite vector spaceV ∈ R

n of
vectors[f(x1), . . . , f(xn)], wheren is the training set size.
In V, the dot product is usually defined as

〈g1, g2〉 =
∑

i

g1(xi)g2(xi). (5)

Without loss of generality, we assume that the weak learn-
ers,g ∈ G, are normalized so that〈g, g〉 = 1. Defining the
indicator functionI(x) = 1 if x holds and zero otherwise,
the functionalgradientof Rc is the vector of components

∇Rc(f)(xi) =
∂

∂ξ
Rc[f + ξI(x = xi)]

∣

∣

∣

∣

ξ=0

=
∂L[yi, f(xi) + ξ]

∂ξ

∣

∣

∣

∣

ξ=0

(6)

and thesecond order gradient, or Hessian, is the matrix

∇2
Rc(f)(xi, xj) =

∂2Rc(f+ξ1I(x=xi)+ξ2I(x=xj))
∂ξ1∂ξ2

∣

∣

∣

ξ1,ξ2=0

=

{

∂2

∂ξ2 L[yi, f(xi) + ξ]
∣

∣

∣

ξ=0
if i = j

0 otherwise
(7)

For simplicity, we denote∇2
Rc(f)(xi, xi) as∇2

Rc(f)(xi). Rc

is convex whenever

∇2
Rc(f)(xi) ≥ 0, ∀f, ∀xi. (8)
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Projection intoV simplifies (3) into

δRc(f ; g) =
∂

∂ξ

∑

j

L[yj , f(xj) + ξg(xj)]

∣

∣

∣

∣

∣

∣

ξ=0

(9)

=
∑

j

g(xj)
∂

∂ζ
L[yi, f(xj) + ζ)]

∣

∣

∣

∣

∣

∣

ζ=0

=
〈

∇Rc(f), g
〉

. (10)

Similarly, it can be shown that

δ2Rc(f ; g) =
〈

∇2
Rc(f), g

2
〉

= 〈g, g〉∇2
Rc(f)

, (11)

where< f, g >w=
∑

i wif(xi)g(xi). Gradient descent
iteratively updatesf by selecting, at each iteration, a step in
the direction of the negative gradient. The Newton method
is a second order method that also considers the curvature
of Rc, using the update [6]

JRc(f)(xi) = −
∇Rc(f)(xi)

∇2
Rc(f)(xi)

. (12)

2.2. AdaBoost

AdaBoost [5] is a gradient descent method for minimiza-
tion of the exponential risk,L[y, f(x)] = e−yf(x). Since

∇2
Rc(f)(xi) = y2

i e−yif(xi) > 0,

Rc is strictly convex and (2) has a unique solution. Given
the predictor at iterationk, fk(x), the descent direction is

−∇Rc(fk)(xi) = yie
−yif

k(xi) = yiwi, (13)

wherewi = e−yif
k(xi) is the weight of theith example.

This direction may not belong toG, and is approximated by

g∗ = arg max
g∈G

〈−∇Rc
, g〉 = arg max

g∈G

∑

i

yig(xi)wi (14)

The optimal step size, in the direction ofg∗, is then

cg∗ = arg min
c

Rc(f
k(x) + cg∗(x)), (15)

The predictor is updated tofk+1 = fk + cg∗g∗ and the
procedure iterated. Since (14) and (15) are independent of
bothG and the loss used, they are valid, and called as Grad-
Boost [12], for any proper loss and set of weak learners.

2.3. LogitBoost

LogitBoost [6] is an implementation of Newton’s
method for the minimization of the logistic risk loss,

L[y, f(x)] = log(1 + e−2yf(x)), and real-valued learners.
Application of (6), (7) and (12) leads to the update

∇Rc(fk)(xi) =
2yie

−2yif
k(xi)

1 + e−2yifk(xi)
, (16)

∇2
Rc(fk)(xi) =

4y2
i e−2yif

k(xi)

(

1 + e−2yifk(xi)
)2 > 0, (17)

JRc(fk)(xi) =
1

2
yi(1 + e−2yif

k(xi)), (18)

at iterationk. As in AdaBoost,Rc is strictly convex, and
JRc(fk) is approximated by the closest weak learner

g∗ = arg max
g∈G

〈

JRc(fk), g
〉

. (19)

However, as shown in Figure1 , this results in boosted clas-
sifiers with weak performance. Noting that, wheng ∈ G are
normalized, (19) is the solution of

(g∗, c∗g) = arg min
g∈G

∣

∣JRc(fk) − cgg
∣

∣

2
, (20)

[6] suggested to overcome this limitation by solving, in-
stead, the weighted least squares problem

(g∗, c∗g) = arg ming∈G

∣

∣JRc(fk) − cgg
∣

∣

2

w
(21)

= arg ming∈G

∑

i wi[JRc(fk)(xi) − cgg(xi)]
2 (22)

with a set of weights defined as

wi = 4
(

efk(xi) + e−fk(xi)
)−2

. (23)

(21) results in

g∗ = arg max
g∈G

〈

JRc(fk), g
〉2

w

〈g, g〉w
, (24)

and perform a line search, using (15), to find the optimal
step size. While this improves the performance, it has var-
ious problems. First, unlike AdaBoost, the weights do not
follow naturally from the optimization. Second, they are
somewhat arbitrary, defined so as to guarantee that the fi-
nal algorithm has boosting-like properties. Third, it is not
clear that the addition of such weights would benefit other
boosting algorithms, or how they should be defined.

3. TaylorBoost

The distinguishing feature of TaylorBoost is that, rather
than computing the best update (in the gradient or Newton
sense) and selecting the closest weak learner, as in (14) or
(21), it selects the best weak learner directly. This is done
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by defining the latter as the minimizer of the Taylor series
expansion of the risk around the current predictor,fk,

(c∗, g∗) = arg min
c,g

Rc(f
k + cg) (25)

Rc(f
k + cg) = Rc(f

k) + cδRc(f
k; g) +

c2

2
δ2Rc(f

k; g).

By controlling the order of the approximation, it is possible
to obtain different boosting algorithms.

For an approximation of first order,

(cg∗ , g∗) = arg min
c,g

Rc(f
k) + cgδRc(f

k; g) (26)

the optimal weak learner is

g∗ = arg min
g

δRc(f
k; g) = arg min

g
〈∇Rc

, g〉 (27)

This is identical to the selection rule of (14). The optimal
step is then defined as in (15), and the proposed procedure
reduces to GradBoost. For a second order approximation

(c∗, g∗) = arg min
c,g

Rc(f
k)+cδRc(f

k; g)+
c2

2
δ2Rc(f

k; g).

Given a weak learner, the optimal weighting of the two
derivatives is obtained by setting to zero the derivative with
respect toc. This leads to

c∗g = −
δRc(f

k; g)

δ2Rc(fk; g)
. (28)

The optimal weak learner is then using (11)

g∗ = arg max
g∈G

[δRc(f
k; g)]2

δ2Rc(fk; g)
= arg max

g∈G

〈

∇Rc(f), g
〉2

〈g, g〉w
(29)

wherewi = ∇2
Rc(fk)(xi). The optimal step size can finally

be found by a line search according to (15). We denote
this methodQuadratic boosting, or QuadBoost. Note that if
logistic loss is used, these weights are the same as (23) and
it follows from (12) thatJRc(fk)(xi)×wi = −∇Rcfk(xi).
The optimal weak learner of (29) can then be written as

g∗ = arg max
g∈G

〈

∇Rc(fk), g
〉2

〈g, g〉w
= arg max

g∈G

〈

JRc(fk), g
〉2

w

〈g, g〉w
. (30)

Since this is identical to (24), LogitBoost is a special case
of QuadBoost. First and second order TaylorBoost are pre-
sented in Algorithm1.

3.1. Properties

The TaylorBoost family has a number of interesting
properties. First, it generalizes classical boosting. Grad-
Boost is the family of algorithms derived from the first-
order Taylor series expansion, and LogitBoost is the Quad-
Boost derived with the logistic loss. Second, it does not

Algorithm 1 TaylorBoost
Input: Training setSt, Number of weak learners in the
final classifier,N , Loss function,L[y, f(x)].
Initialization: Setk = 0, fk(x) = 0
while k < N do

Compute∇Rc(fk)(xi) using (6)
For first order TaylorBoostwi = 1
For second order methodwi = ∇2

Rc(fk)(xi) by (7)
Find the best weak learner,g∗, by (29)
Find the optimal step,cg∗ , size by (15)
fk+1 = fk + cg∗g∗ andk = k + 1

end while
Output: decision rule:sign[fN (x)]

require arbitrary weight specification. Instead, for both first
and second-order algorithms, the weights follow naturally
from the optimization. Third, any convexRc(f) is also ana-
lytical, has a convergent Taylor series, and makes the prob-
lem of (2) convex. Hence, all TaylorBoost methods con-
verge to the global optimum, ifRc(f) is convex. Fourth,
due to the more accurate approximation of QuadBoost, it
selects better weak learners and has faster convergence rate.
Finally, although second order methods are sometimes ex-
pensive (need to invert the Hessian), QuadBoost has com-
plexity equivalent to that of GradBoost.

4. Loss and Risk function design

The discussion above is applicable to any choice of loss
function L[y, f ] and weak learner setG. In this section,
we consider the choice of loss function. The design of loss
functions suitable for classification is an extensively stud-
ied topic [6, 15, 3, 9]. Losses commonly used in machine
learning are upper-bounds on the zero-one loss. When the
classifier that minimizes the risk associated with a lossL
converges asymptotically to the Bayes rule, as training sam-
ples increase,L is said to beBayes consistent[15, 9].

Bayes consistency is a necessary condition for effective
learning. It guarantees that, with infinite training data, the
algorithm produces the optimal decision rule. It is, how-
ever, not sufficient, as it does not guarantee that the deci-
sion rule is the best possible for small training samples. The
classification margin plays an important role in this regime,
as larger margins guarantee improved generalization [14].
SVM and boosting guarantee a large margin by relying on
margin enforcing losses. These are losses that assign a
penalty to correctly classified examples which are near the
classification border. The use of losses that are both Bayes
consistent and margin enforcing guarantees good perfor-
mance in both the small and large sample size regimes.
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4.1. Margin control

The design of Bayes consistent loss functions has most
recently been studied in [9]. This work introduced a generic
framework for the derivation of such losses, showing that
it is possible to augment Bayes consistency with other de-
sirable loss properties. We have recently considered the
problem of controlling the margin enforced by a loss, and
shown that it is possible to derive Bayes consistent losses
with explicit margin control [10]. This builds on a special-
ization of the loss design procedure of [9]. The procedure
is based on a decomposition of the optimal predictor into
f(x) = l[η(x)], whereη(x) = PY |X(1|x) andl(η) a link
function. The specialization is as follows [10]

1. select any real, invertible, and increasing link function
l : [0, 1] → R that satisfies

l−1(−v) = 1 − l−1(v). (31)

2. computeC(η) = −
∫

l(η)dη

3. define the loss asL(y, f) = φ(yf) where

φ(v) = C[l−1(v)] − (1 − l−1(v))v (32)

It can be shown that, minimization of the risk associated
with L, produces a classifier of conditional riskC(η) [9].
The lossL is denotedcanonicalsincel(η) = −∂C

∂η
[4, 10].

The ability to control the margin properties of canoni-
cal losses follows from the fact that they have a predicable
form whenl−1 is a sigmoidal function. In this case, it can be
shown thatφ(v) is convex, monotonically decreasing, linear
(slope−1) for large negativev, constant for large positivev,
and has slope−1/2 at the origin [10]. These properties can
be seen in Figure2, and are frequently used to justify the
success of the logistic loss (a member of canonical losses)
and LogitBoost. The only degrees of freedom are in the be-
havior of the loss aroundv = 0, i.e. its margin enforcing
properties. These properties can be controlled by control-
ling the slope of the sigmoidl−1 around the origin. While
the details depend on the selected sigmoidal function, there
is usually a parameter which controls this slope. This pa-
rameter thus controls the margin properties of the loss [10].

4.2. A new family of canonical losses

Two losses with explicit margin control, the CBoost loss

φ(v; a) =
1

2a
(
√

4 + (av)2 − av) (33)

and the canonical logistic loss

φ(v; a) =
1

a
[log(1 + e(av)) − av] (34)

Table 1.Classification error of various combinations of boosting andloss
functions on car, face, and pedestrian detection.

Car Face Pedestrian
Method Grad Quad Grad Quad Grad Quad

Exponential 27.54% 17.59% 9.14% 8.74% 7.45% 6.98%
Logistic 21.68% 12.59% 8.68% 8.62% 5.86% 5.45%
CBoost 34.77% 12.44% 10.15% 8.23% 7.34% 5.29%

CBoost(a∗) 13.76% 12.44% 8.29% 8.23% 5.47% 5.29%
Laplace 29.87% 12.97% 9.56% 8.16% 6.94% 5.28%

Laplace(a∗) 13.02% 12.97% 8.19% 8.16% 5.54% 5.28%
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Figure 2.Laplace and other convex Bayes consistent loss functions.

were proposed in [10]. These losses are canonical exten-
sions of those used by AdaBoost and LogitBoost, whose
margin properties are controlled by the parametera. In this
work, we note that the family of canonical losses with mar-
gin control is much broader, using the fact that the cumu-
lative distributions of many zero mean random variables 1)
are sigmoidal functions with the symmetry of (31), and 2)
enable control of the sigmoid slope by a simple parameter.

For example, the cumulative distribution of a the zero
mean Laplacian random variable of variance2a2, exhibits
these properties and enables margin control through the
variance parameter. Using this distribution asl−1 leads to

l(η) =

{

a log(2η) if η < 0.5
−a log(−2η + 2) if η ≥ 0.5

= −asgn(2η − 1) log(1 − |2η − 1|). (35)

Application of the procedure of Section4.1 then produces
the loss

φ(v) =
1

2
[ae

−|v|
a + |v| − v], (36)

which we denoteLaplace loss, and is compared with a num-
ber of losses discussed above in Figure2 (for a = 1).

5. Evaluation

We start with the problems of car, face, and pedestrian
detection. The face dataset consists of9, 000 face and9, 000
non-face images, of size24× 24. Car detection is based on
the UIUC dataset [1] of 1, 100 positives and10, 000 nega-
tives, of size20 × 50. Pedestrian detection is based on the
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MIT Pedestrian dataset [13] of 1, 000 positives and10, 000
negatives, of size40 × 20. In all cases, the data was split
into five folds, four of which were used for training and one
for testing. All experiments were repeated with each fold
taking the role of test set, and the results averaged. Also
regression on Haar wavelets were used as weak learners.

Table 1 presents the error rates of detectors learned
with 25 iterations of TaylorBoost and the losses discussed
above. Underlined entries are methods that were available
before this work: GradBoost (for logistic and exponential
loss), LogitBoost (QuadBoost + logistic loss), GentleBoost
(QuadBoost + exponential loss) and (GradBoost + CBoost
loss) [10]. For the losses with margin control, results are
presented for botha = 1 and the cross-validated margin
parametera∗. A number of observations can be made.

First, best results are always obtained with a combina-
tion of TaylorBoost, a canonical loss, and margin cross-
validation. The gains can be very substantial. For example,
in Car detection, the lowest error of GradBoost with classi-
cal losses is21.7%. Its combination with the Laplace loss
and margin cross-validation reduces the error to13%. Sec-
ond, QuadBoost achieves better performance for all losses
and datasets. Again, the gains can be substantial, e.g. from
34.8% to 12.4% on Car detection with the CBoost loss
(a = 1). This is due to the better convergence rate of Quad-
Boost. Third, among the canonical losses, Laplace outper-
forms CBoost in 5 of 6 cases whena = 1, and 4 of 6 when
the margin parameter is cross-validated. Fourth, when com-
pared to the classic (Logistic and Exponential) losses, at
least one of the canonical losses (witha∗) achieves smaller
error on all cases, and this holds for both losses on 11 of
12. Fifth, margin cross-validation leads to more uniform
performance across losses and optimization strategies.

Overall, these results support the following conclusions:
1) QuadBoost is more effective than GradBoost, 2) with
margin cross validation, Laplace is usually the best of the
losses, and 3) margin cross-validation increases both the
classification accuracy and the robustness, by guaranteeing
less sensitivity to the loss and the optimization strategy.

5.1. Discriminant Tracking

Discriminant tracking is a state of the art object tracking
approach. A classifier is trained to distinguish the target ob-
ject from the background in each video frame, and used in
the next frame for tracking [2]. Various methods have been
proposed to learn the classifier, including AdaBoost [2], dis-
criminant saliency [8], and a combination of discriminant
saliency and TangentBoost [11]. The latter achieved the
best results in the literature. We implemented trackers that
combine QuadBoost with the Laplace and CBoost losses.
In all casesa = 1 since cross validation is too time con-
suming for the tracking application. We have also imple-
mented trackers by LogitBoost, GentleBoost, and Tangent-

Table 2.Tracking accuracy for five video clips.

Method Tangent Logit Gentle Lap+Quad CBoost+Quad
Gravel 18.6 % 18.8 % 19.2% 18.8 % 17.8 %
Athlete 36.6 % 37.2 % 36.4% 35.8 % 35.4 %
Karls 79.9 % 31.7 % 33.7% 31.4 % 35.3 %

Montins 86.9 % 92.2 % 92.5% 83.4 % 87.7 %
Plush 8.9% 9.4 % 9.5% 10.2 % 10.9 %

Boost. Table2 presents the error rates (as defined in [8]) of
each method on five video clips. The combination of Quad-
Boost and canonical losses achieves the best performances.
In particular, Laplace+QuadBoost and CBoost+QuadBoost
each achieve the best result on two clips, while Tangent-
Boost has the lowest error rate on the last.
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