
Maximum Covariance Unfolding:
Manifold Learning for Bimodal Data

Vijay Mahadevan
Department of ECE

University of California, San Diego
La Jolla, CA 92093

vmahadev@ucsd.edu

Chi Wah Wong
Department of Radiology

University of California, San Diego
La Jolla, CA 92093
cwwong@ieee.org

Jose Costa Pereira
Department of ECE

University of California, San Diego
La Jolla, CA 92093
josecp@ucsd.edu

Thomas T. Liu
Department of Radiology

University of California, San Diego
La Jolla, CA 92093
ttliu@ucsd.edu

Nuno Vasconcelos
Department of ECE

University of California, San Diego
La Jolla, CA 92093

nvasconcelos@ucsd.edu

Lawrence K. Saul
Department of CSE

University of California, San Diego
La Jolla, CA 92093

saul@cs.ucsd.edu

Abstract

We propose maximum covariance unfolding (MCU), a manifold learning al-
gorithm for simultaneous dimensionality reduction of data from different in-
put modalities. Given high dimensional inputs from two different but naturally
aligned sources, MCU computes a common low dimensional embedding that
maximizes the cross-modal (inter-source) correlations while preserving the local
(intra-source) distances. In this paper, we explore two applications of MCU. First
we use MCU to analyze EEG-fMRI data, where an important goal is to visualize
the fMRI voxels that are most strongly correlated with changes in EEG traces. To
perform this visualization, we augment MCU with an additional step for metric
learning in the high dimensional voxel space. Second, we use MCU to perform
cross-modal retrieval of matched image and text samples from Wikipedia. To
manage large applications of MCU, we develop a fast implementation based on
ideas from spectral graph theory. These ideas transform the original problem for
MCU, one of semidefinite programming, into a simpler problem in semidefinite
quadratic linear programming.

1 Introduction

Recent advances in manifold learning and nonlinear dimensionality reduction have led to powerful,
new methods for the analysis and visualization of high dimensional data [14, 1, 20, 24, 16]. These
methods have roots in nonparametric statistics, spectral graph theory, convex optimization, and mul-
tidimensional scaling. Notwithstanding individual differences in motivation and approach, these
methods share certain features that account for their overall popularity: (i) they generally involve
few tuning parameters; (ii) they make no strong distributional assumptions; (iii) efficient algorithms
exist to compute the global minima of their cost functions.
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All these methods solve variants of the same basic underlying problem: given high dimensional
inputs, {x1,x2, . . . ,xn}, compute low dimensional outputs {y1,y2, . . . ,yn} that preserve certain
nearness relations (e.g., local distances). Solutions to this problem have found applications in many
areas of science and engineering. However, many real-world applications do not map neatly into this
framework. For instance, in certain applications, aligned data is acquired from two different modal-
ities — we refer to such data as bimodal — and the goal is to find low dimensional representations
that capture their interdependencies.

In this paper, we investigate the use of maximum variance unfolding (MVU) [24] for the simultane-
ous dimensionality reduction of data from different input modalities. Though the original algorithm
does not solve this problem, we show that it can be adapted to provide a compelling solution. In its
original formulation, MVU computes a low dimensional embedding that maximizes the variance of
its outputs, subject to constraints that preserve local distances. We explore a modification of MVU
that computes a joint embedding of high dimensional inputs from different data sources. In this
joint embedding, our goal is to discover a common low dimensional representation of just those
degrees of variability that are correlated across different modalities. To achieve this goal, we design
the embedding to maximize the inter-source correlation between aligned outputs while preserving
the local, intra-source distances. By analogy to MVU, we call our approach maximum covariance
unfolding (MCU).

The optimization for MCU inherits the basic form of the optimization for MVU. In particular, it can
be cast as a semidefinite program (SDP). For applications to large datasets, we can also exploit the
same strategies behind recent, much faster implementations of MVU [25]. In particular, using these
same strategies, we show how to reformulate the optimization for MCU as a semidefinite quadratic
linear program (SQLP). In addition, for one of our applications—the analysis of EEG-fMRI data—
we show how to extend the basic optimization of MCU to visualize the high dimensional correlations
between different input modalities. This is done by adding extra variables to the original SDP; these
variables can be viewed as performing a type of metric learning in the high dimensional voxel space.
In particular, they indicate which fMRI voxels (in the high dimensional space of fMRI images)
correlate most strongly with observed changes in the EEG recordings.

As related work, we mention several other studies that have proposed SDPs to achieve different
objectives than those of the original algorithm for MVU. Bowling et al [4, 5] developed a related
approach known as action-respecting embedding for problems in robot localization. Song et al [18]
reinterpreted the optimization criterion of MVU, then proposed an extension of the original algo-
rithm that computes low dimensional embeddings subject to class labels or other side information.
Finally, Shaw and Jebara [15, 16] have explored related SDPs to produce minimum-volume and
structure-preserving embeddings; these SDPs yield much more sensible visualizations of social net-
works and large graphs that do not necessarily resemble a discretized manifold. Our work builds
on the successes of these earlier studies and further extends the applicability of SDPs for nonlinear
dimensionality reduction.

2 Maximum Covariance Unfolding
We propose a novel adaptation of MVU, termed maximum covariance unfolding or MCU to perform
non-linear correlation between two aligned datasets whose points have a one-to-one correspondence.
MCU embeds the two datasets, of different dimensions, into a single low dimensional manifold such
that the two resulting embeddings are maximally correlated. As in MVU, the embeddings are such
that local distances are preserved. The problem formulation is described in detail next.

2.1 Formulation
Let {x1i}n

i=1,x1i ∈ Rp1 and {x2i}n
i=1,x2i ∈ Rp2 be two aligned datasets belonging to two dif-

ferent input spaces, and {y1i}n
i=1,y1i ∈ Rd and {y2i}n

i=1,y2i ∈ Rd be the corresponding low
dimensional representations (in the output space), with d ¿ p1 and d ¿ p2.

As in MVU [21], we need to find a low dimensional mapping such that the Euclidean distance
between pairs of points in a local neighborhood are preserved. For each dataset s ∈ {1, 2}, if
points xsj and xsk are neighbors or are common neighbors of another point, we denote an indicator
variable ηsij = 1. The neighborhood constraints can then be written as

||ysi − ysj ||2 = ||xsi − xsj ||2 if ηsij = 1 (1)
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To simplify the notation, we concatenate the output points from both datasets into one large set,

{zi}2n
i=1 containing 2n points, zi =

{
y1i i ≤ n
y2(i−n) i > n

We also define the inner-product matrix for {zi}, Kij = zi.zj . This allows us to formulate the MCU
very similarly to the MVU formulation of [21], and so we omit the details for the sake of brevity.

The distance constraint of (1) is written in the matrix form as:

Kii − 2Kij + Kjj = D1ij
, {(i, j) : i, j ≤ n and η1ij

= 1} (2)
Kii − 2Kij + Kjj = D2(i−n)(j−n) , {(i, j) : i, j > n and η2(i−n)(j−n) = 1} (3)

The centering constraint to ensure that the output points of both datasets are centered at the origin
requires that

∑
i ysi = 0, ∀s ∈ {1, 2}. The equivalent matrix constraints are,

∑

ij

Kij = 0, ∀i, j ≤ n
∑

ij

Kij = 0, ∀i, j > n (4)

The objective function is to maximize the covariance between the low dimensional representations
of the two datasets. We can use the trace of the covariance matrix as a measure of how strongly the
two outputs are correlated. The average covariance can be written as:

tr(cov(y1,y2)) = tr(E(y1yT
2 )) = E(tr(y1yT

2 )) = E(y1.y2) ≈ 1
n

∑

i

y1i.y2i (5)

Combining all the constraints together with the objective function, we can write the optimization as:

Maximize:
∑
ij

WijKij , with W =

[
0 In
In 0

]

subject to: Kii − 2Kij + Kjj = D1ij , {(i, j) : i, j ≤ n and η1ij = 1}
Kii − 2Kij + Kjj = D2(i−n)(j−n) , {(i, j) : i, j > n and η2(i−n)(j−n) = 1}
K º 0,

∑
ij

Kij = 0, ∀i, j ≤ n,
∑
ij

Kij = 0, ∀i, j > n (6)

As in the original MVU formulation [21], this is a semi-definite program (SDP) and can be solved
using general-purpose toolboxes such as SeDuMi [19]. The solution returned by the SDP can be
used to find the coordinates in the low-dimensional embedding, {y1i}n

i=1 and {y2i}n
i=1, using the

spectral decomposition method described in [21].

One shortcoming of the MCU formulation is that it provides no means to visualize the results.
While the low-dimensional embeddings of the two datasets may be well correlated, there is no way
to identify which dimensions or covariates of the data points in one modality contribute to high
correlation with the points in the other modality. To address this issue, we include a novel metric
learning framework in the MCU formulation, as described in the next section.

2.2 Metric Learning for Visualization
For each dimension in one dataset, we need to compute a measure of how much it contributes to the
correlation between the datasets. This can be done using a metric learning type step applied to data
of one or both modalities within the MCU formulation. In this work we describe this approach for
the situation where metric learning is applied to only {x1i}.

The MCU formulation of Section 2 assumes that the distances between the points is Euclidean. So in
the computation of nearest neighbor distances, each of the p1 dimensions of {x1i} receive the same
weight, as shown in (1). However, inspired by the recently proposed ideas in metric learning [22],
we use a more general distance metric by applying a linear transformation T1 of size p1 × p1 in the
space, and then perform MCU using the transformed points, T1xi. This allows some distances to
shrink/expand if that would help in increasing the correlation with {x2i}.

For the sake of simplicity, we choose a diagonal weight matrix T1, whose diagonal entries are
{σi}p1

i=1, σi ≥ 0, ∀i. This allows us to weight each dimension of the input space separately.

In order to find the weight vector that produces the maximal correlation between the two datasets,
these p1 new variables can be learned within the MCU framework by adding them to the optimization
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problem. As each dimension has a corresponding weight, the optimal weight vector returned would
be a map over the dimensions indicating how strongly each is correlated to {x2i}.

To modify the MCU formulation to include these new variables, we replace all Euclidean dis-
tance measurements for the data points in the first dataset in (2) with the weighted distance
D1ij =

∑
m σm(xim − xjm)2.

This adds a linear function of the new weight variables to the existing distance constraints of (2).
However, if we had to define the neighborhood of a data point itself using this weighted distance,
the formulation would become non-convex. So we assume that the neighborhood is composed of
points that are closest in time . An alternative is to use neighbors as computed in the original space
using the un-weighted distance. We also add constraints to make the weights positive and sum to p1.

The objective function of (6) does not change, but we need to maximize the objective over the p1

weight variables also. The problem still remains an SDP and can be solved as before. The new
formulation, denoted MCU-ML, is written as:

Maximize:
∑

ij

WijKij , with W =
[

0 In
In 0

]

subject to: σk ≥ 0, ∀k ∈ {1 . . . p1}, and
∑

k

σk = p1.

Kii − 2Kij + Kjj −
∑
m

σm(xim − xjm)2 = 0, {(i, j) : i, j ≤ n and η1ij
= 1}

Kii − 2Kij + Kjj = D2(i−n)(j−n) , {(i, j) : i, j > n and η2(i−n)(j−n) = 1}
K º 0,

∑

ij

Kij = 0, ∀i, j ≤ n,
∑

ij

Kij = 0, ∀i, j > n (7)

We next describe how these formulations for MCU can be applied to find optimal representations
for high dimensional EEG-fMRI data.

3 Resting-state EEG-fMRI Data
In the absence of an explicit task, temporal synchrony of the blood oxygenation level dependent
(BOLD) signal is maintained across distinct brain regions. Taking advantage of this synchrony,
resting-state fMRI has been used to study connectivity. fMRI datasets have high resolution of the
order of a few millimeters, but offer poor temporal resolution as it measures the delayed haemody-
namic response to neural activity. In addition, changes in resting-state BOLD connectivity measures
are typically interpreted as changes in coherent neural activity across respective brain regions. How-
ever, this interpretation may be misleading because the BOLD signal is a complex function of neural
activity, oxygen metabolism, cerebral blood flow (CBF), and cerebral blood volume (CBV) [3]. To
address these shortcomings, simultaneous acquisition of electroencephalographic data (EEG) during
functional magnetic resonance imaging (fMRI) is becoming more popular in brain imaging [13].
The EEG recording provides high temporal resolution of neural activity (5kHz), but poor spatial
resolution due to electric signal distortion by the skull and scalp and the limitations on the num-
ber of electrodes that can be placed on the scalp. Therefore the goal of simultaneous acquisition
of EEG and fMRI is to exploit the complementary nature of the two imaging modalities to obtain
spatiotemporally resolved neural signal and metabolic state information [13]. Specifically, using
high temporal resolution EEG data, we are able to examine dynamic changes and non-stationary
properties of neural activity at different frequency bands. By correlating with the EEG data with
the high resolution BOLD data, we are able to examine the corresponding spatial regions in which
neural activity occurs.

Conventional approaches to analyzing the joint EEG-fMRI data have relied on linear methods. Most
often, a simple voxel-wise correlation of the fMRI data with the EEG power time series in a specific
frequency band is performed [13]. But this technique does not exploit the rich spatial dependencies
of the fMRI data. To address this issue, more sophisticated linear methods such as canonical correla-
tion analysis (CCA) [7], and the partial least squares method [11] have been proposed. However, all
linear approaches have a fundamental shortcoming - the space of images, which is highly non-linear
and thought to form a manifold, may not be well represented by a linear subspace. Therefore, lin-
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ear approaches to correlate the fMRI data with the EEG data may not capture any low dimensional
manifold structure.

To address these limitations we propose the use of MCU to learn low dimensional manifolds for both
the fMRI and EEG data such that the output embeddings are maximally correlated. In addition, we
learn a metric in the fMRI input space to identify which voxels of the fMRI correlate most strongly
with observed changes in the EEG recordings. We first describe the methods used to acquire the
EEG-fMRI dataset.

3.1 Method for Data Acquisition
One 5 minute simultaneous EEG-fMRI resting state run was recorded and processed with eyes
closed (EC). Data were acquired using a 3 Tesla GE HDX system and a 64 channel EEG system
supplied by Brain Products. EEG signals were recorded at 5kHz sampling rate. Impedances of the
electrodes were kept below 20kΩ. Recorded EEG data were pre-processed using Vision Analyzer
2.0 software (Brain Products). Subtraction-based MR-gradient and Cardio-ballistic artifact removal
were applied. A low pass filter with cut off frequency 30Hz was applied to all channels and the
processed signals were down-sampled to 250Hz. fMRI data were acquired with the following pa-
rameters: echo planar imaging with 150 volumes, 30 slices, 3.438 × 3.438 × 5mm3 voxel size,
64× 64 matrix size, TR=2s, TE=30ms. fMRI data were pre-processed using an in-house developed
package. The 5 frequency channels of the EEG data were averaged to produce a 63 dimensional
time series of 145 time points. The fMRI data consisted of a 122880 (64 × 64 × 30) dimensional
time series with 145 time points.

3.2 Results on EEG-fMRI Dataset
The EEG and fMRI data points described in the previous section are extremely high dimensional.
However, both EEG and fMRI signals are the result of sparse neuronal activity. Therefore, attempts
to embed these points, especially the fMRI data, into a low dimensional manifold have been made
using non-linear dimensionality reduction techniques such as Laplacian eigenmaps [17]. While such
techniques may be used to find manifold embeddings for fMRI and EEG data separately, they are
not useful for finding patterns of correlation between the two. We demonstrate how MCU can be
applied to this setting below.

Due to the very high dimensionality of the fMRI dataset, we pre-processed the data as follows. An
anatomical region of interest mask was used, followed by PCA to project the fMRI samples to a
subspace of dimension p1 = 145 (which represented all of the energy of the samples, because there
are only 145 time points). The EEG data was not subject to any pre-processing, and p2 remained
63. We applied the MCU-ML approach to learn a visualization map and a joint low dimensional
embedding for the EEG-fMRI dataset. We compared the results to two other techniques - the voxel-
wise correlation, and the linear CCA approach inspired by [7]. The MCU-ML solution directly
returned a weight vector of length 145. For CCA, the average of the canonical directions (weighted
using the canonical correlations) was used as the weight vector. In both cases, the 145 dimensional
weight vector was projected back to the fMRI voxel space using the principal components of the
PCA step.

Two types of voxel wise correlations maps were computed to assess the performance of MCU-ML.
First, a naive correlation map was generated where each voxel was separately correlated with the av-
erage EEG power time course from the alpha aband (8-12Hz) (which is known to be correlated with
the fMRI resting-state network [13]) from all the 63 electrodes. Second, a functional connectivity
map was generated using the knowledge that at rest state (during which the dataset was recorded),
the Posterior Cingulate Cortex (PCC) is known to be active [8] and is correlated with the Default
Mode Network (DMN) while anti-correlated with the Task Positive Network (TPN). To achieve this,
a seed region of interest (ROI) was first selected from PCC. The averaged fMRI signal from the ROI
was then correlated with the whole brain to obtain a voxel-wise correlation map. Therefore, voxels
in the PCC region should have high correlation with the EEG data. This information provides a
“sanity-check” version of the fMRI correlation map.

The results for the anatomically significant slice 18, within which both DMN and the TPN are
located, are shown in Figure 1. The functional connectivity map is shown in 2(a), and the correlation
map obtained using MCU-ML, overlaid with the relevant anatomical regions appears in 2(b). The
MCU-ML map shows the activation of Default Mode Network (DMN) and a suppression of Task
Positive Network (TPN). From the results, it is clear that the MCU-ML approach produces the best
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Figure 1: Comparison of results on the EEG-fMRI dataset. (a) naive correlation map (b) using only PCA (c)
using CCA (d) using MCU-ML

match, showing well localized regions of positive correlation in the DMN, and regions of negative
correlation in the TPN. The correlation maps for 12 slices overlaid with over a high-resolution T1-
weighted image for the proposed MCU-ML approach are shown in Figure 3(b).
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Figure 2: (a) the functional connectivity map, and (b) the MCU-ML correlation map overlaid with information
about the anatomical regions relevant during rest state.
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Figure 3: (a) The plot showing the normalized weights for the 145 dimensions for CCA, MCU-ML and PCA.
(b) A montage showing the recovered weights for each voxel in the 12 anatomically significant slices, with the
MCU overlaid on a high-resolution T1-weighted image.

To compare the learned weights using the MCU-ML and CCA, we plot the normalized importance
of each of the 145 dimensions in Figure 3(a). We also plot the eigenvalues for the 145 dimensions
obtained using PCA. It is seen that the weights produced by the MCU-ML approach have fewer
components (around 20) than those of CCA. It is also interesting to see that the weights that produce
maximal correlation with the EEG dataset are very different from the eigenvalues of PCA them-
selves, indicating that the dimensions that are important for correlation are not necessarily the ones
with maximum variance.

4 Fast MCU
One of the primary limitations of the SDP based formulation for MCU in Section 2.1, shared with
MVU, is its inability to scale to problems involving a large number of data points [23]. To address
this issue, Weinberger et al. [23] modified the original formulation using graph laplacian regular-
ization to reduce the size of the SDP. However, recent work has shown that even this reduced for-
mulation of MVU can be solved more efficiently by reframing it as a semidefinite quadratic linear
programming (SQLP) [25]. In this section, we show how a fast version of MCU, denoted Fast-MCU,
can be implemented using a similar approach.
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Let L1 and L2 denote the graph laplacians [6] of the two sets of points, {y1i} and {y2i}, respectively.
The graph laplacian depends only on nearest neighbor relations and in MCU these are assumed to
be unchanged as the points are embedded from the original space to the low dimensional manifold.
Therefore, L1 and L2 can be obtained using the graph of data points, {x1i} and {x2i}, in the original
space. Let Q1, Q2 ∈ Rn×m contain the bottom m eigenvectors of L1 and L2. Then we can write
2n vectors {y1i} and {y2i} in terms of two new sets of m unknown vectors, {u1}m

i=1 and {u2}m
i=1,

with m ¿ n, using the approximation:

y1i ≈
m∑

α=1

Q1iαu1α and y2i ≈
m∑

α=1

Q2iαu2α (8)

As in Section 2, we concatenate the vectors from both datasets into one larger set, {ui}2m
i=1 contain-

ing 2m points:

ui =
{

u1i i ≤ m
u2(i−m) i > m

(9)

We define m×m inner product matrices, (Uij)αβ = uT
iαujβ ∀i, j ∈ {1, 2} ∀α, β ∈ {1 . . .m}, and

a 2m× 2m matrix, Uαβ = uT
αuβ ∀α, β ∈ {1 . . . 2m}. Therefore, U =

[
U11 U12

U21 U22

]
.

The 2n × 2n inner product matrix K can therefore be approximated in terms of the much smaller
matrix 2m× 2m matrix U :

K ≈
[

Q1U11Q
T
1 Q1U21Q

T
2

Q2U21Q
T
1 Q2U22Q

T
2

]
(10)

The formulate MCU as an SQLP, we first rewrite (6) by bringing the distance con-
straints into the objective function using regularization parameters ν1, ν2 > 0:

Maximize:
∑
ij

WijKij −ν1

∑

i∼j,∀i,j≤n

(
Kii − 2Kij + Kjj −D1ij

)2

−ν2

∑

i∼j,∀i,j>n

(
Kii − 2Kij + Kjj −D2ij

)2

subject to: K º 0,
∑
ij

Kij = 0, ∀i, j ≤ n,
∑
ij

Kij = 0, ∀i, j > n (11)

By using (10) in (11), and by noting that the centering constraint is automatically satisfied [23], we
get the modified formulation in terms of U :

Maximize: 2tr(Q1U21Q
T
2 )−

∑

k

νk

∑
i∼kj

(
(QkUkkQT

k )ii − 2(QkUkkQT
k )ij + (QkUkkQT

k )jj −Dkij

)2

subject to: U º 0 (12)
where i ∼k j for k ∈ {1, 2} encodes the neighborhood relationships of the kth dataset.

This SDP is similar to the formulation proposed by [23]. In order to obtain further simplification, let
U ∈ R4m2

be the concatenation of the columns of U . Then, (12) can be reformulated by collecting
the coefficients of all quadratic terms in the objective function in a positive semi-definite matrix
A ∈ R4m2×4m2

, and those of the linear terms, including the trace term, in a vector b ∈ R4m2
:

Minimize: UAUT + bTU
subject to: U º 0 (13)

This minimization problem can be solved using the SQLP approach of [6]. From the solution of the
SQLP, the vectors{u1i}m

i=1 and {u2i}m
i=1, can be obtained using the spectral decomposition method

described in [21], followed by the low dimensional coordinates {y1i}n
i=1 and {y2i}n

i=1, using (8).
Finally, these coordinates are refined using gradient based improvement of the original objective
function of (11) using the procedure described in [23].

5 Results
We apply the Fast-MCU algorithm to n = 1000 points generated from two “Swiss rolls” in three
dimensions, with m set to 20. Figure 4 shows the embeddings of this data generated by CCA and
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by Fast-MCU. While CCA discovers two significant dimensions, the Fast-MCU accurately extracts
the low dimensional manifold where the embeddings lie in a narrow strip.
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Figure 4: (a) Two “swiss rolls” consisting of 1000 points each in 3D with the aligned pairs of points shown
in the same color. (b) the 2D embedding obtained using CCA. (c) low dimensional manifolds obtained using
Fast-MCU, before and after the gradient based improvement step. (best viewed in color)

To further test the proposed Fast-MCU on real data, we use the recently proposed Wikipedia dataset
composed of text and image pairs [12]. The dataset consists of 2866 text - image pairs, each belong-
ing to one of 10 semantic categories. The corpus is split into a training set with 2173 documents, and
a test set with 693 documents. The retrieval task consists of two parts. In the first, each image in the
test set is used as a query, and the goal is to rank all the texts in the test set based on their match to
the query image. In the second, a text query is used to rank the images. In both parts, performance
is measured using the mean average precision (MAP). The MAP score is the average precision at
the ranks where recall changes.

The experimental evaluation was similar to that of [12]. We first represented the text using an LDA
model [2] with 20 topics, and the image using a histogram over a SIFT [10] codebook of 4096
codewords. The common low dimensional manifold was learned from the text-image pairs of the
training set using the SQLP based formulation of (13), with m = 20, followed by a gradient ascent
step as described in the previous section. To compare the performance of Fast-MCU, we also used
CCA and kernel CCA (kCCA) to learn the maximally correlated joint spaces from the training set.
For kCCA we used a Gaussian kernel and implemented it using code from the authors of [9].

Given a test sample (image or text), it is first projected into the learned subspace or manifold. For
CCA, this involves a linear transformation to the low dimensional subspace, while for kCCA this
is achieved by evaluating a linear combination of the kernel functions of the training points [9].
For Fast-MCU, the nearest neighbors of the test point among the training samples in the original
space are used to obtain a mapping of the point as a weighted combination of these neighbors. The
same mapping is then applied to the projection of the neighbors in the learned low dimensional joint
manifold to compute the projection of the test point. To perform retrieval, all the test points of both
modalities, image and text, are projected to the joint space learned using the training set. For a
given test point of one modality, its distance to all the projected test points of the other modality
are computed, and these are then ranked. In this work, we used the normalized correlation distance,
which was shown to be the best performing distance metric in [12]. A retrieved sample is considered
to be correct if it belongs to the same category as the query.

The results of the retrieval task are shown in Table 1. The performance of a random retrieval scheme
is also shown to indicate the baseline chance level.It is clear that Fast-MCU outperforms both CCA
and kCCA in both image-to-text and text-to-image retrieval tasks. In addition, Fast-MCU produced
significantly lower number of dimensions for the embeddings - CCA produced 19 signficant dimen-
sions compared to just 3 for Fast-MCU.

Table 1: MAP Scores for image-text retrieval tasks
Query Random CCA KCCA Fast-MCU
Text - Image 0.118 0.193 0.170 0.264
Image - Text 0.118 0.154 0.172 0.198

6 Conclusions
In this paper, we describe an adaptation of MVU to analyze correlation of high-dimensional aligned
data such as EEG-fMRI data and image-text corpora. Our results on EEG-fMRI data show that

8



the proposed approach is able to make anatomically significant predictions about which voxels of
the fMRI are most correlated with changes in EEG signals. Likewise, the results on the Wikipedia
set demonstrate the ability of MCU to discover the correlations between images and text. In both
these applications, it is important to realize that MCU is not only revealing the correlated degrees of
variability from different input modalities, but also pruning away the uncorrelated ones. This ability
of MCU makes it much more broadly applicable because in general we expect inputs from truly
different modalities to have many independent degrees of freedom: e.g., there are many ways in text
to describe a single, particular image, just as there are many ways in pictures to illustrate a single,
particular word.
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