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Abstract

are, in fact, applications of theame principleto the de-
sign of a feature space and a classification architecture. Th

Recent research efforts in semantic representations andshared principle is that this desigannot account only for

context modeling are based on the principle of task expan-

sion: that vision problems such as object recognition, scen
classification, or retrieval (RCR) cannot be solved in isola

tion. The extended principle of modality expansion (that
RCR problems cannot be solved from visual information
alone) is investigated in this work. A semantic image la-

the class of interest, but has to leverage the detection of
many other classesWe refer to it as theéask expansion
principle: an RCR taske.g dog recognition, cannot be
solved without solving many other RCR tasksy the de-
tection of 1) concepts that provide context for dogs, or 2)
semantic attributes that make up a dog. Semantic abstrac-

beling system is augmented with text. Pairs of images andtion applies the principle to the design of feature spaces,
text are mapped to a semantic space, and the text featuregontext modeling to the design of classifiers.

used to regularize their image counterparts. This is done
with a new cross-modal regularizer, which learns the map-

ping of the image features that maximizes their average Sim'ject recognition,

ilarity to those derived from text. The proposed regularize
is class-sensitive, combining a set of class-specific denoi
ing transformations and nearest neighbor interpolation of
text-based class assignments. Regularization of a sfate-o
the-art approach to image retrieval is then shown to pro-
duce substantial gains in retrieval accuracy, outperfarqi
recent image retrieval approaches.

1. Introduction

Object recognition, scene classification, or image re-
trieval are challenging problems for computer vision. la th

The benefits of task expansion are now well established.
Many contextual representations have proven useful for ob-
, 27]. These methods have shown that
exploiting the presence, elsewhere in an image, of contextu
ally related objectsd.g “dog-house”, “bone”, “backyard”,
“ball”, etc.) improves the detection of an object of inter-
est €.g “dog”). This has motivatedontext-based architec-
turesof ever increasing complexity.p, 25]. The intuition
behind semantic abstraction is that a space of low-level fea
tures, such as SIFT, is too far removed from the RCR goal.
After all, people do not describe dogs as bags of edges
and textures, but as conceptual entities with certain prop-
erties,e.g “has legs”, “is hairy”, “chews bones”, “lives on
the backyard”, “chases cats”, etc. RCR performance should

last decades, they have been solved with recourse to statisthUS improve by designingemantic feature spaceshere

tical decision theory and machine learning. These solation

features are themselves image classification scores foy man

have two major components: an image representation, obSUch properties. This entails defining a vocabulargef

tained by projecting images into sorfeature spaceand a
classification architectureywhich maps that representation
into a recognition, classification, or retrieval (RCR) func

tion. Over the last decade there have been significant ad-#ge retrieval {6,

vances in both areas,g the SIFT [L5] or HoG [4] features
and many new classification architecturés I3, 24, 30).

mantic conceptsbuilding the associated detectors, and us-
ing the vector of classification scores for semantic image
representation. Such representations are widely used-in im
] and, more recently, in object detec-
tion [6, 7] and scene classification{, 23, 2€)].

From a statistical point of view, task expansion is a form

While advances continue to be made in these areas, there isf regularization A natural extension of task expansion
a sense that performance will asymptote and these solutionss the modality expansion principle This states that the

are not sufficient to solve all RCR problems.

design of RCR architecturesannot account only for vi-

This has spurred two recent research trends, which ex-sual information It is also inspired by perception, where

pand the RCR problem along the directionsemantic ab-
straction and contextual modeling These two extensions

RCR problems are always solved in the context of strong
cognitive priors(e.g concept taxonomies)ot necessarily



learned from visionFor example, much of our understand- X’. An imageZ; is labeled by computing its posterior prob-
ing of contextual relationships is acquired by reading lspok ability under each of the concept classes,

speaking with others, touching objects, etc. As in task ex-

pansion, these priors are regularizers, which can be imple- w5 = Pzix (§|Z:). 1)
mented indirectly, in a data-driven manner, lsing data ) o

from non-visual modalities to constrain the learning of vi- Given a set of manually labeled training examples per con-
sual models Modality expansion achieves this working on C€Pt this can be done by: 1) learning the concept distribu-
a semantic space, where features are not tied to visual reptions Px|z(x|), Vz and applying Bayes rule, or 2) learning
resentation. In general, it is not harder to learn a classifie & discriminant mapping. Imagg is finally represented by
from text or speech than from images. On the contrary, it the probability vectorr; of its assignment to all concepts.

is usually easier, because the semantics of text are exere The simplex of all such probability vectors is denoted the
plicit than those of images. semantic spacé. An example of the projection of images

in such space is given in Figufie(a). The data is a sub-

In this work, we introduce a solution for the image re- A R
trieval problem based on modality expansion. As is usual samplefromthree classes of the Wikipedia datasgt iz.
“History”, “Royalty” and “Warfare”.

for the design of semantic feature spaces, a vocabulary of
semantic concepts is first defined and r_alset of trgining exam- o Regularization
ples collected per concept. The only difference is thatedhes
examples are image-text pairs, instead of images alone. The representation of images in terms of a collection of
Since these sets are usually collected on the web, where/isual concepts has two main advantages. The firstis that it
most images have associated text, this is quite simples Pair is very robust to a number of confounding factors that fre-
of semantic classifiers are then learned for images and textguently plague RCR problems.g that sky can be blue on
and training examples from the two modalities mapped to sunny days, grey on cloudy days, or orange during a sun-
the semantic space. This usually leads to a noisy set of feaset. This has been exploited to substantially improve the
tures for images and a much cleaner set of features for textperformance of image retrieval systems in the past{€].
The latter are then used to regularize the former. This con-The second is that it maps images into an abstract space,
sists of learning the mapping of the image-based semantigvhere they can be easily combined with other sources of
features that maximizes their average similarity to thé-tex data. This follows from the fact that all the steps above
based semantic features. This regularizer is finally usedcould be equally applied to a datagefrom any modality
to build an image retrieval system. Images in a retrieval other than images.
database are projected onto the semantic space, the result- In this work, we exploit this fact, to design better im-
ing semantic feature vectors regularized and used as imag@ge retrieval systems. It is assumed that the training set
representation in a query-by-example retrieval system. Ex for the design of semantic labeling systems includes both
perimental results show that the proposeglilarized image ~ textand images,e. G = (71, 71), - - -, (Zg, 7g}. The pro-
semantic§RIS) retrieval method substantially outperforms cedure of the previous section is then applied to the text
both a state-of-the-art semantic image retrieval systeiin an documents, to learn a mapping from text documents to the
a retrieval system that combines images and text. semantic space. The goal is to leverage the fact that, due
to the reduced ambiguity of text classification, the seman-
tic space representation of text is usually much cleaner tha
that of images. This is illustrated in Figute Note how the

In this section, we briefly review the semantic space semantic feature vectors derived from text in Figl)
mappings used in our work, and explain how they can have much smaller variance than those derived from images
be exploited for the proposed text-based regularization.in Figurel-(a). Also note how the distributions of the differ-
Throughout the text the terms “semantic class” and “seman-ent classes is have much smaller overlap. This can also be
tic concept” are used interchangeably to refer to the cate-observed in Figuré-(b), which shows the average vectors

2. Semantic representation

gory to which the image or text belongs to. in the simplex for all entries of class “History”. The distri
bution derived from text assigns much higher probability to
2.1. Semantic space the “History” concept than that derived from images.

LetG = {Zi,...,Zc} be a set of images, where each 3 Reqylarization of the semantic space
entryZ; is represented in a low-level feature spacee.g

an histogram of visual-words, sampled from a random vari-  In this section we introduce a method that relies on the
ableX. This set is augmented with a concept vocabulary semantic feature vectors derived from textregularize

L = {z,z29,..,21}, sampled from a random variabe those derived from images. Building on the terminology
Each concept induces a probability density, 7 (x|z), on of [2]], this is denotedross-modal regularizatian
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Figure 1. Semantic space created from three Wikipediaeta@giz. “History”, “Royalty” and “Warfare”). Projections of imageand text
onto this space are shown in (a) and (c), respectively. Tloeatverage probability vectors (and respective error bars)hie “History”
class are shown in (b) —images on the left and text on the.right

3.1. Cross-modal regularization on the probability  and
simplex d'H1=1, Yi=1...N (5)

Cross-modal regularization addresses the problem of us-The problem can be transformed to the canonical form
ing anauxiliary source of information4 to regularize the
space where the information fromdata sourceD is to b= Mz, (6)
be represented. In this work we consider the case Wherq/vhereb andz are vectors of dimensioN L and .2

i~ . respec-
both th(_e_aux_|llary and the data sources are represented in ?ively and]M is a sparse matrix of dimension&L, x L2, as
probability simplex. Letd = {aj,as2,...anx} andD = follows
{dy,ds,...dy} be two samples from auxiliary and data
source, respectively. Points it andD are L-dimensional o -~ 0
probability vectorse. These are vectors on tHé — 1)- 0 da o :
simplexS, i.e. have non-negative componenis®) > 0, a1 1 ' hq
that add to onerZ1 2(®) = 1. Itis assumed that there is as : L0 ho
a one-to-one correspondence between the poing &md : = 0o - 0 dFf <] (7
D, namely that each vectay in D is a noisy estimate of a ' a0 - 0 h.
corresponding vectar; in A. The goal is to find the trans- anN . L
formation b . e
0 0 dy
H:S —» S v
d — a . . .
Further introducing thé&V x L2 matrix
that makes the noisy data observations as “similar as possi-
" ; o alr ar ... dr
ble” to the cleaner observations from the auxiliary source. Lo i
In this section, we consider the case whéfds alinear g — dy dy - dy ®)
transformation : : :
A=DH (2 s - dhodl

whereA andD are theN x L matrices containing one ex-

. the least squares solution &) (under the constraints off
ample fromA andD, respectively, per row: 9 a X

and 6) is given by the optimization

T T
ZIT ZlT z* = argmin || Mz —b|3 9)
2 2 *
= S| (b he e k) () subject to: Mz =0
aq]\} dqj\“] Sr=1

andh; are the columns off. Since this has no solution, in  Since the constraints are affine, the feasible set is convex
general, we seek the bdtin the least squares sense, under @nd the optimization problem is convex whenelef M is

the constraint that the transformed vector has to li§,ine. positive definite. Note thad/ M s known, dwgctly ob-
tained from the dat®. The learning procedure is summa-

d'h, >0, Yi=1...NVk=1...L (4) rized in Algorithm 1.
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Figure 2. Cross-modal regularization in the probabilitygiex. The figure shows the probability vectors derived fithin (a) auxiliary,
and (b) data sources, and (c) the regularized data distibfdr one class. The data was created from the “Wikipedaaset, using text

as auxiliary and images as data sources.

Algorithm 1 compute regularization operatof (
input: training set of images and auxiliary data
Vclasses =1,2,...,L

D, ={01,Zs,...,In}
A ={T1,T5,...,In}
1 compute vectors of posterior probabilities
dy, — V(Zy)
2 foreachconcept:=1,...,L
solve:z* = argmin, | Mz —b ||3
st.Mx >0
Sr=1

whereM, b are defined in{) and.S in (8).
output: set of regularization operatots
H == {Hl,HQ,...,HL}

In our implementation, the quadratic programming prob-
lem of (9) is solved by the method 0®[ 10)]. In all experi-
ments, the matrix\/” M was found to be positive definite,
making the solution found by this procedure a global mini-
mum. From {), the regularization matri¥l can be assem-
bled by sequential extraction of the columisfrom z*.
Given an exampld from the data source, the regularization
consists of the transformation

d=HTd (10)
Figure 2 illustrates the regularization procedure for data
from one of the three Wikipedia classes of FigareThe

pected from text, and the noisy distribution observed from
the images.

3.2. Class-sensitive regularization

In general, a linear regularizer is not rich enough for
problems involving real datasets. Better performance can
usually be obtained with a non-linear regularizgfd). One
possibility would be to kernelize the problem &)( This
is usually possible for quadratic problems with affine con-
straints. An alternative route, that we pursue in this wizk,
to make the regularization class-sensitive. This is fratjye
better for supervised learning problems, where trainirtg da
is available per class. In these problems a non-linear regu-
larizer can be learned by combining a set of linear operators
with a non-linear weighting function.

Let A;, D; be the matrices of examples collected from
the auxiliary and data sources for concépt i. A linear
regularizerH; is learned per concept, using the procedure of
the previous section, and the non-linear regularizer défine
as

®(d) = Z w;(d)H!d (11)

Theweighting functionsv; (d) are non-negative and sum to
onew;(d) > 0, ,wi(d) = 1,Vd € S, defining a soft
partition of the simplexS. Note that, since is the range
space of the class-specific regularizBsand (L1) is a con-
vex combination of their outputs, th@r(d) € S.

The weighting functions; (d) are of the form

w;i(d) = f(d; (dj,a;) € L;) (12)

where,; is the training set used to leafh;, i.e. the seman-

auxiliary source is the text, and the data source the imagetic feature vectors from images and text of concBpt i.

corpus. The probability vectors derived from text in Fig-
ure2-(a) cluster tightly in the upper corner of the space, but
those derived from images in Figu2gb) are much noisier.

After regularization they cluster much more tightly, in the
neighborhood of the upper corner of the simplex. This is

the least squares compromise between the distribution ex-

The method we adopt, is to 1) learn class-weighting func-
tions wj(a) from the auxiliary source, using standard ma-
chine learning methods, and 2ansfertheir scores to the
data source,e. use

wi(d) = f(d;dj,wi(a;), (dj,a;) € Li).  (13)



When the auxiliary data is texi, is already a good estimate the retrieval operation. This is quite remarkable since, as
of the posterior distribution of assignment of exampl® will be shown in the following section, the gains in retrieva

the semantic classes, and it suffices to u$e:;) = a;;. accuracy can be substantial.
To transfer these weighting functions, we rely on a simple
nearest-neighbor interpolation 4. Evaluation
wi(d) = wi(aj) = aj, (dj,a;) € L; (14) Several experiments were performed to evaluate the per-

7 = argmaxS(d,d;) (15) formance of RIS.
J

Representation: In all experiments, images were repre-
where S(-,-) is a similarity function between probability ~sented with thébag-of-words(BOW) model of [], using
vectors. This is the probability of assignment to semantic SIFT descriptors quantized withla024 visual word code-
classi of the auxiliary examplg* corresponding to the data  book. The text representation was basedadent Dirichlet
source examplé,- most similar tod. The image regular-  allocation(LDA) [ 1]. An LDA model is learned from a text

ization procedure is summarized by Algorithm 2. corpus, and used to compute the probability of each text un-
der100 hidden topics. The probability vectors are used for
Algorithm 2 cross-modal regularization {) text representation. For semantic classification, bothalis

word histograms and hidden topic probabilities were fed to

input: set of training images and auxiliary data , > X
a multi-class logistic regressiof][

P = {(dl,al), (dQ,CLQ), ceey (dN,aN)} and

d image to regularize Datasets: Three datasets were used. “TVGraz’] con-
1 findj* according to {5) (dy, ax) ‘t‘alr_ws_ 2,0_58” imagef/text pairs ofL0 semant|_c categgnes,
5 w(d) — a;- Wikipedia” [21] 2, 866 palrs.fromlo categones_, and “Pas-
J cal sentences™](] 1,000 pairs from20 categories. These
O(d) «— > wi(d)H]'d datasets have different properties. Pascal is a challgngin
output: regularized imag®(d) visual dataset. The added text features create a context

for each picture, but they are not as semantically rich as

a full text article. Both image and text classification is low
3.3. Image retrieval On Wikipedia, classes are broad (“History”, “Art”, “Liter-
ature”, etc.), but contain both high quality images and.text
Both relate to the category they belong to but, for images,
the intra-class variability is quite large. On this datasat

In image retrieval, the goal is to find, from an image
databaser = {Fi,...,Fn}, the image that most resem-

ples a query image. A popular solution to this pro_blem age classification has low accuracy, but text classification
IS t_hequery by sgmantlc exampﬂ@BSI_E) method of ,IL ]’_ is accurate. TVGraz classes report to narrow object classes
which poses retneval_ asa n(_aarest nelght_)or operation in the{“CaItech—Iike“). The text, although often less stylistian
semantic spacé. This consists of returning the database y,,se of other datasets, does relate to the class. This leads
image;- such that to the largest semantic classification accuracies for oth i
it = argmaxS(q, f;) (16) ages and text. All datasets were split into t_rain and test set
j T (in the range o70-80% and30-20% respectively). Tablé

] . summarizes this information.
whereq and f; are the semantic feature vectors associated

with Q andF; respectively. Table 1. Test set size and uni-modal classification accurfacy
We introduce a new method, denotegularized image  both images and text, on all datasets.

semanticqRIS). This consists of applyindlL{) to all im-

ages. The regularization is done off-line for the database

images inF. However, for the quer®, the search of1(5) Image 59% 30% 25%

must be performed at retrieval time. This is a nearest neigh- Text 91% 84% 65%

bor operation over all semantic feature vectors used ta lear | size || 500 | 693 | 300 |

the class regularizel;, i.e. all training examples from all

semantic classes. Since this set can be large, the computa-

tional cost can be substantial. However, we have noted thatExperiments: Image retrieval experiments were conducted

once the databases featuifgsare regularized, the regular- comparing our method, RIS, to a purely visual method,

ization of the query does not produce substantial additiona QBSE [22, 23], and a more recent retrieval method that

gains. Hence, in our implementation, queries are not regu-combines information from images and tekéxt-to-Image

larized and the regularization has computational cogbr Translator(TTI) [17, 18]. In the latter, text and image co-

Classifier || TVGraz | Wikipedia | Pascal




occurrences are used to learn a transformation that transfe 0.9
information from text to images. For best performance, fea- 0.8}
ture transformations should be class specific, and produce 5
a measure of confidence that an image-text pair relates to a 06
concept. Repeating this process across transformations pr g

duces a vector of confidence measures for all concepts. TTI 2 957
was implemented with code provided by its authors. The 504/
centered normalized correlation was used as the similarity  o.3}

function , 0.2}
S(p, Q) — (p_,up) (q—ﬂq)' ol
|lp = 1ol 1l = 1qll . QBSE ‘ | |
Retrieval performance was evaluated with standard met- 0 0.2 04 ocan &° 0.8 1

rics [16]: 1) precision-recall(PR) curves, and 2nean av-

.. . .. a) average PR curves
erage precisiofmAP), i.e. average precision at the ranks @ g

where recall changes. E RIS
CTTI
Results: Table 2 summarizes the mAP results for all 0.8} [ JQBSE]

datasets. In all cases, the gains of semantic space regular-
ization are quite large. The mAP gain of RIS over QBSE 0.6t
ranges fromi4% to 119%. This is strong evidence in sup-
port of the multimodal expansion principle. Gains of this oal
magnitude are virtually impossible to obtain from better
machine learning, or better image features. Figsh@)

'Dolphin

mAP
Deer
Dice
Elephant
Frog
Harp
Pram

0.2¢

Table 2. Summary of mAP scores. These mAP scorepare
query, i.e. mean average precision is averaged over all queries. 0 C
Gains in mAP scores towards our proposed retrieval methtigl) (R
are shown in (%) .

asses
(b) per-classmAP scores

Figure 3. Retrieval evaluation on TVGraz: (a) average PResir

Method TVGraz Wikipedia Pascal and (b)per-classmean average precision.
mAP| % | mMAP| % | mAP | %
RIS 062| - | 035 - | 021 - Figure4 shows a retrieval example under each method.
TTI[17] 056 | 11 | 034 3 | 019 | 11 The top four retrieval results for a butterfly query image are
QBSE P27 0.43 | 44 0.16 | 119 | 0.13 | 62 shown.
| Random || 01 | 520 | 01 | 250| 0.05 | 320| We have empirically shown the usefulness of accu-

rate auxiliary information in the regularization of images
on a probability simplex. Furthermore, we note that
presents the average PR curves obtained on TVGraz (simipur method needs this auxiliary data only to learn the
lar curves were obtained for the other datasets and are omitreqularizers. Other competitive methods such ag [
ted for brevity). Note that the average precision in RIS is require an image/text association in order to produce
quite high and approximately constant as a function of re- 3 confidence that the pair belongs to a certain class.
call. This indicates that RIS has much better generalinatio A demo of our method is available in the following
than QBSE. This is not surprising, since good generaliza- URL: http://www.svcl.ucsd.edu/ ~josecplris/
tion is a trademark of effective regularization. Although it was not explicitly tested, it is a straightfor-
When compared to TTI, RIS achieved superior perfor- ward extension of this work to add more sources of infor-
mance on all datasets. The mAP gains ranged 850 mation to learn the regularization operatoesy( audio, or
to 11%, which are non-trivial improvements. Figute(b)  yideo features where available). This flexibility resuttsrh

shows the mAP scores obtained per-class on TVGraz (againthe abstract space where the regularization operators have
the results were similar on other datasets), showing supe+their domain and co-domain.

rior RIS performance in almost all classes. The average PR

curve for RIS on Figure-(a) is also higher than that of Acknowledgments

TTI at all levels of recall, and more constant. Again, this

indicates stronger regularization and better generaizat This work was funded by FCT graduate Fellowship
Overall, RIS was clearly superior to TTI. SFRH/BD/40963/2007 and NSF grant CCF-0830535.


http://www.svcl.ucsd.edu/~josecp/ris/

Query image

s

Top 4 images retrieved (framing box indicatesorrectlyretrieved images)

Figure 4. Query image of hutterfly (left) with top four retrieval results (right). Top row shewesults with our proposed method, RIS,
middle row uses TTI]7] and bottom row uses QBSE].
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