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A. Properties of Lt(C, z, S(x)) loss function
Lemma 1. The loss function

Lt(C, z, S(x)) =

M∑
j,k=1

Cz,je
Sj(x)−Sk(x) (1)

is Classification Calibrated.

Proof. Using (1), risk of classification is

RLt
[S] = EX,Z{Lt[C, z, S(x)] (2)

=

M∑
z=1

ηz(x)Lt(C, z, S(x)) (3)

=

M∑
z=1

ηz(x)

M∑
j,k=1

Cz,je
Sj(x)−Sk(x) (4)

=

M∑
z=1

M∑
j,k=1

ηz(x)Cz,je
Sj(x)−Sk(x). (5)

To find the optimal scores, S∗(x), we start by setting
derivatives to zero, where

0 =
∂RLt

[S]

∂Si(x)
=

M∑
z=1

ηz(x)Cz,ie
Si(x)

M∑
k=1

e−Sk(x) (6)

−e−Si(x)
M∑
z=1

M∑
j=1

ηz(x)Cz,je
Sj(x), (7)

results in

e−2Si(x) =

M∑
z=1

ηz(x)Cz,i

∑M
k=1 e

−Sk(x)∑M
z,j=1 ηz(x)Cz,jeSj(x)

. (8)

Assuming
∑M
i=1 Si(x) = 0, and defining

ψ(i) =

M∑
z=1

ηz(x)Cz,i (9)

results in

S∗i(x) = −1

2
log (ψ(i)) +

1

2M

M∑
j=1

log(ψ(j)). (10)

Therefore S∗i(x) will be inversely proportional to Bayes
cost of ith class and thus (1) will be classification cali-
brated.

Lemma 2. Lt(C, z, S(x)) is not guess-averse.

Proof. The proof is based on a counter example. Assume a
cost insensitive problem i.e Ci,j = 1 i 6= j, with M = 3
and S(x) = [3, 0,−3] where example x belongs to the first
class. In this case S(x) results in the correct prediction but
its loss is greater than random guessing since L(C, 1, 0) =
6 < L(C, 1, S(x)) ≈ 22.19. Therefore (1) is not guess-
averse.

B. Comparing Guess-aversion and
c-calibration

We start with following lemma that shows that c-
calibration (Vernet et al., 2011) implies guess-aversion.

Lemma 3. If a loss function L(C, z, S(x)) is c-calibrated,
then it will be guess-averse.

Proof. If L(C, z, S(x)) is c-calibrated, then according to
c-calibration definition

∀s1 ∈ Sz ∀s2 6∈ Sz, L(C, z, s1) < L(C, z, s2). (11)

In addition note that, 0 6∈ Sz and using (11)

∀s1 ∈ Sz L(C, z, s1) < L(C, z,0). (12)

which is definition of guess-aversion.

We next show that guess-aversion does not guarantee c-
calibration.
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Lemma 4. If a loss functionL(C, z, S(x)) is guess-averse,
then it may not be c-calibrated.

Proof. The proof is based on counter example. Consider
the cost-insensitive GLL-loss of Figure 3-b. Since it satis-
fies Lemma 1 in the paper this loss is guess-averse. How-
ever, for sufficiently small ε > 0, the set Aε = {S|S ∈
S2, L(C, 1, S) < L(C, 1, 0) − ε} is non-empty. Similarly,
since the loss surface is continuous and smooth in Figure
3-b, there exists a point p0 ∈ S1 such that L(C, 1, p0) >
L(C, 1, 0) − ε. Therefore for any q0 ∈ Aε, L(C, 1, p0) >
L(C, 1, q0) which is contradictory to c-calibration, since p0
results in correct classification and q0 does not.

C. Properties of the Generalized Exponential
Loss

Lemma 5. IfCi,j ≥ 0 ∀i, j = 1 . . .M and ∃i, j : Ci,j > 0
then

RLid,exp = EX,Z{Lid,exp(C, z, S(x))}

=

M∑
z,j=1

ηz(x)Cz,je
Sj(x)−Sz(x), (13)

is strictly convex with respect to S(x) ∈ RM .

Proof. Denoting βi,j = 1i − 1j , we start by computing
first and second order derivatives,

∂RLid,exp

∂S
=

∂

∂S

M∑
z,j=1

ηzCz,je
〈S,βj,z〉

=

M∑
z,j=1

ηzCz,jβj,ze
〈S,βj,z〉 (14)

∂2RLid,exp

∂S2
=

∂

∂S

M∑
z,j=1

ηzCz,jβj,ze
〈S,βj,z〉

=

M∑
z,j=1

ηzCz,j [βj,zβ
T
j,z]e

〈S,βj,z〉. (15)

where we omitted x for simplicity. Note that [βj,zβ
T
j,z] is

positive definite for all z, j, moreover Ci,j ≥ 0 ∀i, j =
1 . . .M and ∃i, j : Ci,j > 0. Therefore the hessian is a
sum of positive definite matrices, and is a positive definite
matrix. ThereforeRLid,exp is strictly convex.

Lemma 6. If the cost matrix, C, is symmetric then the min-
imizer ofRLid,exp(C,z,S(x)), (13), is independent of C.

Proof. We start by setting (14) to zero, therefore

M∑
z,j=1

ηzCz,j1je
〈S,βj,z〉 =

M∑
z,j=1

ηzCz,j1ze
〈S,βj,z〉 (16)

Table 1. Cost Matrix for MLC (Beijbom et al., 2012).
CCA Turf Macro Sand Acro. Pav. Mon. Pocil. Porit

CCA 0 1 1 2 4 4 4 4 4
Turf 1 0 1 2 4 4 4 4 4

Macro 1 1 0 2 4 4 4 4 4
Sand 2 2 2 0 4 4 4 4 4

Acropora 4 4 4 4 0 1 1 1 1
Pavona 4 4 4 4 1 0 1 1 1
Monti 4 4 4 4 1 1 0 1 1
Pocill 4 4 4 4 1 1 1 0 1
Porit 4 4 4 4 1 1 1 1 0

and thus

M∑
j=1

ηkCk,je
Sj−Sk =

M∑
z=1

ηzCz,ke
Sk−Sz . (17)

However note that when C is symmetric,

Sk(x) =
1

2
log(ηk(x))− 1

2M

M∑
j

log(ηj(x)) (18)

satisfies (17). This is because eSj−Sk =
√
ηj√
ηk

and thus left
and right sides of (17)

M∑
j=1

ηkCk,je
Sj−Sk =

M∑
j=1

Ck,j
√
ηjηk (19)

M∑
z=1

ηzCz,ke
Sk−Sz =

M∑
z=1

Cz,k
√
ηzηk. (20)

become equal. Therefore (18) is a minimizer of
RLid,exp(C,z,S(x)). In addition according to lemma (5),
RLid,exp is strictly convex and thus (18) will be the unique
minimizer.

D. MLC - Cost Matrix
The cost matrix for the Moorea Labelled Corals dataset is
shown in Table 1. The costs are set with an coral ecology
application in mind. There, the most important goal is a
binary estimate of the amount of corals versus everything
else. Thus, the cost of confusion between the coral gen-
era (classes 5-9) and the non-corals (classes 1-4) is set to
a high value, 4. Cost of confusion among corals is low,
1, and similarly for cost of confusion among algae (classes
1-3). Finally, confusion between any algae and the sand
class is worse than confusion within algae, but not as bad
as confusion to (or from) corals. These values are set to 2.

E. Structured SVMs are guess-averse
Let Y = {Y1, . . . YM} be a set of structured outputs. For
a training set D = {(xi, Yzi)}n1 , where zi ∈ {1 . . .M}, a
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Figure 1. Structured SVM loss functions: Cost-insensitive
(top), and cost-sensitive, with C1,2 = 1, C1,3 = 2, (bottom).

structured SVM (Tsochantaridis et al., 2004) solves minw,ε
λ
2 ‖w‖

2 +
∑n
i=1 εi

s.t., ∀i,z∈Z , Sz(xi) + Czi,z ≤ Szi(xi) + εi
εi ≥ 0 ∀i,

(21)
where

Sz(x) = 〈w,Ψ(x, z)〉 (22)

is the score of structure Yz for the example x, Ψ(x, z) is
a feature vector extracted with respect to structure Yz , and
Czi,z ≥ 0 is the cost of assigning structure Yz instead of
the true structure Yzi .

An equivalent way of writing (21) is

min
w

λ

2
‖w‖2 +

∑
i

LH(C, zi, S(xi)) (23)

where

LH(C, zi, S(xi)) = max
k

(Sk(xi)+Czi,k−Szi(xi)), (24)

is the loss function for structured SVM. Similar to Figure
3 of the paper, loss surfaces for LH , (24), are shown in
Figure 1. Note how, in the bottom figure, the surface shifts

away the boundary between S1 and S2, in a similar manner
as the cost-sensitive Llog,exp did. This is not surprising as
the logistic function approximates the hinge loss. Finally,
the following lemma shows that LH is guess-averse.

Lemma 7. The loss function for structured SVM,(24), is
guess-averse.

Proof. Let x be a sample corresponding to a structure Yz ,
S ∈ RM the classifier score vector and C a non-negative
cost function. First note that using (24) if S = 0 ∈ RM ,

LH(C, z,0) = max
k

C(z, k). (25)

Second, if x is correctly classified, i.e. S(x) ∈ Sz , then
Sz(x) > Sk(x) ∀k 6= z and thus using (24), (25)

LH(C, z, S(x)) = max
k

[Cz,k + (Sk(x)− Sz(x))]

<max
k

(Cz,k)

=LH(C, z,0).

Therefore if S(x) ∈ Sz , then LH(C, z, S(x)) <
LH(C, z,0) and thus LH is guess-averse.
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