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1. Algorithm

In this section, we discuss the details of the learning al-

gorithm of Section 3.3. The optimal weight vector mini-

mizes the large-margin structured cost

w∗ = argmin
w

E(w) (1)
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E(w) =
1

2
α ‖ w ‖2 (2)
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This can be written as
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where ξ
(k)
i = (Ai(x

(k)) is the ith row of the propaga-

tion matrix for the kth image, F(k) the matrix of feature

responses to the image, and Sk = {(i, j)|δki = 1, δkj =

0, (ξ
(k)
i − ξ

(k)
j )F(k)w < 1}.

The optimization is performed by gradient descent. The

gradient of (5) with respect to w is

∇wE(w) = αw +
∑

k
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(i,j)∈Sk

(

(ξ
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(k)
i )F(k)

)T

,

and the gradient update equation

wt+1 = wt − λ0 ∗ ∇wE(w) (6)

Algorithm 1 learning weight for different features

Input: Propagation matrices {A(x(1)), . . . ,A(x(n))},
feature matrices {F(x(1)), . . . ,F(x(n))}, α.

Initialization:

Set Sdiff = 1, S = −1,w = 0, λ0 = 0.00003
Iteration:

1: while Sdiff > 0.0001 do

2: s = 1
2α||w||2

3: ∇w = 0
4: for all k ∈ {1, . . . , n} do

5: k0 = 0, γ = 0

6: for all i ∈ {i|δki = 1}, j ∈ {j|δkj = 1} do

7: d = (ξ
(k)
i − ξ

(k)
j )F(k)w

8: if d < 1 then

9: k0 ← k0 + 1

10: γ = γ +
(

(ξ
(k)
j − ξ

(k)
i )F(k)

)T

11: s = s+ 1− d
12: end if

13: end for

14: ∇w = ∇w + 1
k0

γ
15: end for

16: ∇w = ∇w + αw
17: w = w − λ0∇w

18: Sdiff = |s− S|
19: S = s
20: end while

Output: w

where λ0 is a learning rate. Convergence is declared when

the cost of (5) decreases by less than a threshold in con-

secutive iterations. Algorithm 1 summarizes the learning

procedure.

2. More experiments

In this section, we present results of a number of experi-

ments that analyze in greater detail the role of the different

features in the performance of the proposed algorithm.
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Table 1. Feature list
feature description feature No.

contrast to neighboring superpixels 1-25

contrast to left boundary 26-50

contrast to right boundary 51-75

contrast to top boundary 76-100

contrast to bottom boundary 101-125

geometry features 126-160

Element distribution 161-163

Element uniqueness 164-166

Pattern distinctness (2 scales) 167-168

Color distinctness (1 scale) 169

Center bias 170-172

Backgroundness 173-177

eye fixation feature 178

Table 2. Contrast features
feature description feature No.

difference of average RGB value 1-3

difference of average RGB value 4-6

Chi distance of LAB histogram 7

Chi distance of hue histogram 8

Chi distance of saturation histogram 9

difference of average texton 10-24

Chi distance of text on histogram 25

2.1. Features

Table 1 summarizes the features used in our implemen-

tation. Features 1 to 125 are five sets of contrast features.

These measure the contrast between the visual content of a

superpixel and a set of other superpixels. The latter can be

one of five sets: the neighboring superpixels or the super-

pixels on the four image boundaries. In each case, a set of

25 features are computed. These are described in Table 2.

They involve measures of color and texture contrast, typi-

cally a χ2 difference between histograms of color or texton

response. Given two histograms ha and hb, this is defined

as

χ2(a,b) =
1

2

K
∑

m=1

[ha(m)− hb(m)]2

ha(m) + hb(m)
(7)

Features 126 to 160 capture geometric properties of su-

perpixels. These features were proposed in the regional

property descriptor of [5]). They are listed in Table 3. The

geometric properties accounted for include various areas,

aspect ratio, and descriptors of the spatial coordinates of su-

perpixels, as well some measures of the spatial distribution

of colors and texture. Features 161 to 177 are the mid-level

vision features discussed in Section 3.5. of the paper. Fi-

nally, the eye fixation feature is the bottom-up saliency map

of Section 3.4.

The importance of the various features was analyzed

Table 3. Geometry features

feature description feature No.

normalized area 126

normalized superpixel number 127

average normalized x coordinates 128

average normalized y coordinates 129

10th percentile of normalized x coordinates 130

10th percentile of normalized y coordinates 131

90th percentile of normalized x coordinates 132

90th percentile of normalized y coordinates 133

aspect ratio 134

normalized neighbor superpixel number 135

normalized area of neighbor region 136

variance of RGB 137-139

variance of Lab 140-142

variance of hue and saturation 143-144

variance of LM filter response 145-159

normalized area 160

Figure 1. AUC score of the 15 best performing features on the

VOC2008 dataset.

through a number of experiments. The saliency detector

was implemented using the saliency seeds produced by each

feature alone. The features were then ranked by the re-

sulting AUC score on the VOC2008 1023 dataset. Figure

1 shows the ranked scores for the 15 best performing fea-

tures. The top feature was the bottom-up saliency map,

confirming the expectation that predicted eye fixations are

informative of object saliency. Interestingly, the majority

of the remaining features in the top 15 list were measures

of contrast between image superpixels and superpixels on

the image boundaries. This is indicative of the fact that, be-

cause photographers tend to capture salient objects in the

center of the image, image boundaries tend to contain back-

ground. Note, however, that the center bias features com-

monly used to account for this effect in the saliency litera-

ture (170-172) do not appear in the top 15. Beyond bottom-



Table 4. Performance of different feature combination methods: AUC/AP
AUC/AP MSRA5000 SOD SED1 SED2 VOC2008 1023

MeanseedProp 0.8935/0.7718 0.7343/0.5721 0.8289/0.7445 0.7603/0.6127 0.7001/0.65464

SalseedProp 0.9058/0.8136 0.8175/0.6688 0.9176/0.8537 0.8806/0.7500 0.7908/0.6421

OptseedProp 0.9615/0.8790 0.8684/0.7019 0.9530/0.8905 0.9058/0.8062 0.8181/0.6556

up saliency and contrast to boundary, the remaining top 15

features are mostly measures of contrast to neighboring su-

perpixels. This was expected, given the well known role of

center-surround processes in saliency.

2.2. Learning

We next evaluated the impact of learning feature com-

binations in the performance of the object saliency detec-

tor. For this, we compared the performance of the detec-

tor based on the proposed learning algorithm with that of a

detector without learning. This was implemented by sim-

ply assuming uniform weights, i.e. setting all the entries

of w to 1/n, where n is the number of features. In this

case, the saliency seed image is simply the average of all

the feature maps. The performance of the resulting detector

(denoted MeanseedProp) is compared to that of the opti-

mal detector (OptseedProp), for all the datasets discussed

in Section 4 of the paper, in Table 4. Also shown is the

performance obtained with the best feature only, i.e. using

the bottom-up saliency map to determine the saliency seeds

(denoted SalseedProp). Note that simply using many fea-

tures provides no guarantee of good performance. In fact,

MeanseedProp performs worse than using only the eye fix-

ation predictions to determine saliency seeds. On the other

hand, the proposed learning algorithm learns an effective

seed map, producing a saliency detector with substantially

higher AUC than those produced by the competing feature

combination mechanisms. Finally, Figure 2 presents a rank-

ing of the top 15 features according to the learning algo-

rithm, i.e. according to the weight wi learned for each fea-

ture. The list of top features includes several of the fea-

tures of Figure 1, i.e. the features of highest individual AUC

score. Note that, as in Figure 1, the top three features are

the bottom-up saliency map and two measures of contrast

to boundary pixels.

3. Saliency detection results

We finish by presenting an extended comparison of the

saliency maps obtained in different datasets. Figure 3 and 4

present a comparison between the proposed saliency detec-

tor and eight of the best performing methods in the literature

- Gof [3], CB [4], HC [2], RC [2], GBMR [8], PCA [6], FT

[1], and SF [7] - on the MSRA5000 dataset. Figure 5 and

Figure 6 present a similar comparison on VOC2008 1023.

Figure 2. Weights assigned by the learning algorithm to the 15

features of largest weight.
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Figure 3. Comparison of results on representative images from MSRA5000 datasets . The original image is shown on the extreme left

column. The other columns from left to right are the outputs of: ’CB’,’FT’,’GBMR’,’Gof’,’HC’,’PCA’,’RC’,’OptSeedProp (proposed)’.

The binary ground truth is shown in the column on the far right.



Figure 4. Comparison of results on representative images from MSRA5000 datasets . The original image is shown on the extreme left

column. The other columns from left to right are the outputs of: ’CB’,’FT’,’GBMR’,’Gof’,’HC’,’PCA’,’RC’,’OptSeedProp (proposed)’.

The binary ground truth is shown in the column on the far right.



Figure 5. Comparison of results on representative images from VOC2008 1023 datasets . The original image is shown on the extreme left

column. The other columns from left to right are the outputs of: ’CB’,’FT’,’GBMR’,’Gof’,’HC’,’PCA’,’RC’,’OptSeedProp (proposed)’.

The binary ground truth is shown in the column on the far right.



Figure 6. Comparison of results on representative images from VOC2008 1023 datasets . The original image is shown on the extreme left

column. The other columns from left to right are the outputs of: ’CB’,’FT’,’GBMR’,’Gof’,’HC’,’PCA’,’RC’,’OptSeedProp (proposed)’.

The binary ground truth is shown in the column on the far right.


