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Abstract

The problem of transfer learning is considered in the
domain of crowd counting. A solution based on Bayesian
model adaptation of Gaussian processes is proposed. This
is shown to produce intuitive model updates, which are
tractable, and lead to an adapted model (predictive dis-
tribution) that accounts for all information in both train-
ing and adaptation data. The new adaptation procedure
achieves significant gains over previous approaches, based
on multi-task learning, while requiring much less computa-
tion to deploy. This makes it particularly suited for the prob-
lem of expanding the capacity of crowd counting camera
networks. A large video dataset for the evaluation of adap-
tation approaches to crowd counting is also introduced.
This contains a number of adaptation tasks, involving infor-
mation transfer across video collected by 1) a single camera
under different scene conditions (different times of the day)
and 2) video collected from different cameras. Evaluation
of the proposed model adaptation procedure in this dataset
shows good performance in realistic operating conditions.

1. Introduction

The problem of crowd counting [4] has recently received
significant attention in computer vision. Given video of a
crowded environment, the goal is to estimate the density
of the crowd, by counting the number of people that it con-
tains. Various methods have shown that the problem is solv-
able with fairly high accuracy [4, 5, 14, 21, 23]. In fact, state
of the art results place the prediction error at around±1 per-
son per video frame, for crowds with dozens of pedestrians.
While this is sufficient for most applications of practical in-
terest, the scalability problem remains open. Most works
assume a large annotated training set per camera view. This
is not practical for large camera networks, where crowd
counting systems are most useful.

The scalability goal makes crowd counting a prime can-
didate for transfer learning [15]. This consists of sharing

information (or models) across camera views, so as to min-
imize the amount of manual supervision per view. Like
transfer learning in general, transfer learning methods for
crowd counting can be of several types. They include semi-
supervised learning (SSL) to account for unlabeled video
in the training process, multi-task learning (MTL) to share
a model across camera views, or model adaptation, to apply
a model trained on a camera view to counting on another.

In principle, all of these are of interest to crowd count-
ing. For example, [13] proposed a system that elegantly
combines SSL and MTL with active learning and manifold
learning to share information across camera views. The
boundaries between different types of transfer learning are
also loose. For example, 2-task MTL can transfer infor-
mation between two views in a manner similar to model
adaptation. There are, nevertheless, important differences.
While adaptation subsumes the notion of a source and a tar-
get view, with asymmetric amounts of training data, this
is usually not the case for MTL, where all sources usually
have equal amounts of data, or for SSL, where the asymme-
try is between labeled and unlabeled data. In result, model
adaptation, which adapts an existing model to a small set of
unseen data, tends to be computationally less intensive than
MTL or SSL, which learn from all data.

These issues are of particular concern to this work, which
addresses the problem of expanding the capacity of a crowd
counting camera network, by adding cameras to an already
installed system. This is usually done to expand the system
footprint, i.e. increase the area of a scene that it covers, or
its resolution, e.g. by adding views of areas where counting
already takes place. Increased resolution is desirable when
certain scene features, e.g. building entries or landmarks,
justify detailed crowd counts. Capacity expansion has two
constraints: it should require 1) little human effort, in the
form of small amounts of labeled data per added camera
view, and 2) little computational effort, by requiring mini-
mal model re-training (ideally none). These make the prob-
lem more suited for model adaptation, due to its smaller
labeling and computation requirements, than SSL or MTL.

In this work, we introduce a model adaptation proce-
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dure for the popular Gaussian process (GP) counting model
of [19]. This procedure leverages the Bayesian nature of
GPs, which supports the interpretation of the source model
as a prior and the adaptation dataset as a set of observations.
The two components can then be combined into a predic-
tive distribution that captures the entire information in both
the source and adaptation data. In this sense, the Bayesian
formulation provides guarantees for the optimality of the
adapted model that are not available for other approaches,
e.g. gradient descent procedures that consider the original
model a starting point for the optimization. The predictive
distribution also provides a complete characterization of the
uncertainty of the model predictions. For GP models, it is
a Gaussian whose variance can be computed and acts as a
confidence score for the predictions. Finally, the GP formu-
lation is shown to enable kernel adaptation without retrain-
ing. We show that this is a major advantage over previous
MTL formulations of the transfer problem, which are much
more costly and have weaker transfer performance.

This theoretical contribution is complemented by the in-
troduction of a large video dataset for the evaluation of
count transfer. This dataset is unique in that it includes
video from a network of several cameras, which cover dif-
ferent views of a sizeable outdoor environment. The video
was collected to address both the footprint and resolution
aspects of capacity expansion, including a mix of overlap-
ping and non-overlapping camera views. In the model adap-
tation context, it tests the transfer of counts across 1) identi-
cal camera views under different crowd densities and imag-
ing conditions (e.g. video collected at different times of the
day), and 2) different camera views. The dataset includes
a total of 27, 000 video frames and will be made publically
available, from the author’s website, upon publication of
this work. A protocol is also introduced for the evaluation
of count transfer and used to compare the proposed method
to previous approaches. This comparison provides substan-
tial evidence for the benefits of model adaptation.

2. Related work
Many methods have been proposed for people counting.

Although object detection has been used for counting [12,
18], it tends to work only for low-density crowds. For dense
crowds, with severe occlusions and few pixels per person,
more attention has been devoted to feature-based methods,
which directly map image features to crowd counts. Two
main approaches have evolved. Region of interest (ROI)
methods estimate the number of people in a region [4, 21,
23], line of interest (LOI) methods the number of people
crossing a virtual gate [5, 14].

In this work, we consider ROI methods. These per-
form a preliminary segmentation of the scene into regions
or blobs, extract features from each region, and use a fea-
ture regression to estimate the number of people per re-

gion [4, 23, 21, 13]. The regression function can be lin-
ear, e.g. least squares [21], or non-linear, e.g. based on
GPs [4], manifold learning [13], or neural networks [23].
We adopt a GP, for its ability to account for crowd-counting
non-linearities and its support for transfer learning by model
adaptation. Since the complexity of transfer learning is a
major factor in the cost of capacity expansion, model adap-
tation is a better solution to this problem than SSL or MTL.

Model adaptation has a long history in speech recogni-
tion, where recognizers learned from a large speech corpus
are adapted to a new user or environment, e.g. a phone
connection [20, 24]. In computer vision, adaptation has
been proposed to bridge gap between camera views [8], data
modalities [6, 16, 17], image conditions [22], or even object
classes [10]. Recently, model adaptation has been used in
the deep learning literature, to adapt a model learned from
the Imagenet corpus [9] to other tasks [7]. Many of these
approaches require specific classes of models or classifica-
tion/regression architectures. We adopt a Bayesian formula-
tion of the adaptation problem because this is well matched
to GP-based regression and has tractable complexity.

The few works that have, so far, considered trans-
fer learning for crowd counting have relied heavily on
SSL. [23] presents an SSL procedure that uses sequential
information in unlabeled frames to penalize sudden predic-
tion changes. [13] proposes a system that combines SSL
and MTL with active and manifold learning to share infor-
mation between camera views. These approaches are feasi-
ble (albeit expensive) when there is unlimited time to jointly
train a number of cameras. They are, however, less practical
for capacity expansion, where they would require the solu-
tion of a complex optimization problem (neural net learning
or manifold-regularized regression) whenever a camera is
added to the network. More related to the solution now pro-
posed is prior work on transfer learning for GPs [1, 11, 2].
While these are mostly MTL methods, they can be used as
model adaptation procedures, albeit at some computational
cost (retraining of kernel parameters). A detailed discussion
of these approaches, and how they compare to the proposed
method, is given in Section 4.5.

3. Crowd Counting

We start by briefly reviewing the GP formulation and
then introduce the proposed adaptation procedure.

3.1. Counting as Gaussian process regression

GP-based crowd counting [4] formulates counting as a
regression problem, where a count y is predicted by a real-
valued function f(x) of a vector x ∈ Rd of d image fea-
tures, according to

y = f(x) + ε f(x) = φ(x)Tw, (1)



where φ(x) ∈ RD is a high-dimensional embedding of x,
w a vector of regression parameters sampled from a prior
Gaussian distribution w ∼ N (0,Σp), and ε ∼ N (0, σ2

n)
independent Gaussian noise.

Given a training sample X = [x1, ...,xN], whose
columns are feature observations, and the count vector y =
[y1, ..., yN ]T , w has Gaussian posterior distribution

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)
(2)

= G(w, µw,Σw) (3)

where

µw =
1

σ2
n

(
1

σ2
n

ΦΦT + Σ−1p

)−1
Φy (4)

Σw =

(
1

σ2
n

ΦΦT + Σ−1p

)−1
(5)

and Φ ∈ RD×N is a matrix of columns φ(xi). The predic-
tive distribution for the count y∗ of a novel input x∗ is

p(y∗|x∗, X,y) = G(y∗, µ(x∗), σ(x∗)) (6)

with

µ(x) = φ(x)Tµw (7)
σ(x) = σ2

n + φ(x)T Σwφ(x). (8)

By introducing a kernel

k(x,x′) = φ(x)T Σpφ(x′), (9)

(4)-(5) and (7)-(8) can be simplified into [4]

µ(x∗) = k∗
T (K + σ2

nI)−1y (10)
σ(x∗) = k(x∗,x∗)− k∗

T (K + σ2
nI)−1k∗, (11)

where k∗ = k(x∗),

k(x) = [k(x,x1), . . . , k(x,xN)]T , (12)

and K is the matrix of entries Kij = k(xi,xj). Since K is
available after training, the computation of the count predic-
tion of (10) and confidence score of (11) basically reduces
to computing the inner products of k∗.

3.2. Learning

Rather than explicitly learning Σp and Φ, [4] used the
standard trick of defining a parametric kernel k(., .) and
learning its parameters. They used the RBF-RBF kernel

k(xi,xj) = θ21e
− 1

2θ22
||xi−xj ||2

+ θ23e
− 1

2θ24
||xi−xj ||2

, (13)

where the first RBF term has a large scale parameter and
models the overall trends in the data, while the second has

a smaller scale and models local nonlinearities. We adopt
this kernel and, following [4], estimate the kernel hyper-
parameters θi by maximizing the marginal likelihood

log p(y|X; θ) = −1

2
yT (K + σ2

nI)−1y

− 1

2
log |K + σ2

nI| −
N

2
log 2π (14)

using an optimization procedure proposed in [19].

4. Model Adaptation for crowd counting
In this section, we introduce the proposed Bayesian

model adaptation procedure.

4.1. Bayesian formulation

The goal of adaptation is to transfer a model learned from
a source view to a target view, using a small amount of ad-
ditional training data, known as the adaptation dataset. As-
sume that, after learning the kernel parameters from source
data (X,y), we observe a small amount of adaptation data
X+ = [x+

1 , ...,x
+
M ],y+ = [y+1 , ..., y

+
M ]T , where M � N .

GPs are amenable to a Bayesian treatment of this problem.
If 1) the parameter w captures all information about the
original training data (X,y), i.e. p(y+|X+,w, y,X) =
p(y+|X+,w), and 2) only the observation of counts y+ al-
ters its distribution, i.e. p(w|X+, y,X) = p(w|y,X), the
updated posterior is

p(w|X+,y+, X,y) ∝ p(y+|X+,w)p(w|X,y). (15)

Note that (15) is similar to (2), with the prior p(w) replaced
by the posterior p(w|X, y). Hence, the model learned from
(X,y) can be considered a prior for the adaptation process
and the adaptation data can be seen as a new set of obser-
vations. This is a hallmark of Bayesian inference, which
makes it a very natural solution for problems, such as model
adaptation, where information collected from different ob-
servations of a stochastic process must be fused.

Given the updated posterior, it is possible to compute the
updated predictive distribution

p(y+∗ |x+
∗ , X

+,y+, X,y) (16)

=

∫
p(y+∗ |x+

∗ ,w)p(w|X+,y+, X,y)dw.

This is the updated model, e.g. a GP that predicts crowd
counts y+∗ for new observations x+

∗ under the new setting.
Note that the updated model accounts for all data, from
both training and adaptation datasets. The goal of Bayesian
model adaptation is to compute this distribution.

4.2. Parameter posterior

We start by discussing the updated parameter posterior
of (15). Given the equivalence between (15) and (2), it fol-



lows from (3) that

p(w|X+,y+, X,y) = G(w, µ+
w,Σ

+
w) (17)

where µ+
w and Σ+

w are the updated posterior mean and
covariance, respectively. An important difference be-
tween (15) and (2) is that, unlike p(w), p(w|X,y) is not
a zero mean distribution. This prevents the direct applica-
tion of Section 3.1 to the adaptation scenario. In Appendix
A of the supplementary materials, we show that the adapted
posterior has hyper-parameters

µ+
w = µw +

1

σ2
n

Γ−1w Φ+z+ Σ+
w = Γ−1w (18)

where

Γw =
1

σ2
n

Φ+Φ+T + Σ−1w (19)

Φ+ = [φ(x+
1 ), . . . , φ(x+

M )] (20)
z+ = y+ − Φ+Tµw (21)

and µw and Σw are as in (4) and (5), respectively.
This is the posterior distribution for w, given both the

training and adaptation data. Note that the mean prediction
is identical to that of the original model (µw) plus a correc-
tion based on the adaptation data. From (7) and (21), the
expected value of this correction, given by (18), is a func-
tion of the errors y+i − µ(x+

i ) of the original model on the
adaptation observations x+

i . Hence, the model will stay ap-
proximately unchanged if it makes accurate predictions on
the adaptation set. On the other hand, drastic prediction er-
rors will produce a significantly different model.

4.3. Predictive distribution

In Appendix B of the supplement, we show that the pre-
dictive distribution of (16) is

p(y+∗ |x+
∗ , X

+,y+, X,y) = G(y+∗ , µ
+(x+

∗ ), σ+(x+
∗ ))

with

µ+(x+
∗ ) = µ(x+

∗ ) + k+
∗
T

[K+ + σ2
nI]−1e (22)

σ+(x+
∗ ) = σ(x+

∗ )− k+
∗
T

[K+ + σ2
nI]−1k+

∗ (23)

where

e = y+ − µ(X+) (24)
µ(X+) = [µ(x+

1 ), . . . , µ(x+
M )]T , (25)

k+
∗ = Φ+T Σwφ

+
∗ , (26)

K+ = Φ+T
ΣwΦ+. (27)

The parameters µ+(x+
∗ ) and σ+(x+

∗ ) are the prediction and
confidence score, under the adapted model, for the count y+∗
of observation x+

∗ .

The prediction µ+(x+
∗ ) of the adapted model is equal to

the prediction µ(x+
∗ ) of the original model plus a correction

term, k+
∗
T

[K+ + σ2
nI]−1e, determined by the prediction

error e of the latter on the adaptation data X+. Hence, the
impact of the adaptation stage increases with the mismatch
between the predictions of the original model and the true
counts, in the adaptation dataset. In fact, the correction term
is a dot product of e with k+

∗ = k+(x+
∗ ), where

k+(x) = [k+(x,x+
1 ), . . . , k+(x,x+

M)]T . (28)

and
k+(x,x′) = φ(x)T Σwφ(x′) (29)

is the kernel defined by the covariance Σw. Since k+
∗ is a

vector of similarities, according to kernel k+(., .), between
x+
∗ and the entries of X+, the correction is larger when x+

∗
is most similar to the adaptation data X+. In summary, the
correction is most significant for the observations x+

∗ that
are most similar to the adaptation data X+ and have the
poorest count predictions under the source model.

4.4. Model adaptation

So far, we have seen how the predictions and confidence
score of the GP can be adapted to new data, through (22)-
(23). However, these equations depend on the kernel
k+(., .) of (29) rather than the original kernel of (9). Adap-
tation of the GP model requires the derivation of a relation-
ship between k+(x,x′) and k(x,x′). This relationship fol-
lows from the application of the matrix inversion lemma to
the right-hand side of (5), which results in

Σw = Σp − ΣpΦ(ΦT ΣpΦ + σ2
nI)−1ΦT Σp. (30)

Using (9) and (29),

k+(x,x′) = k(x,x′)− kt(x,x′) (31)

where

kt(x,x′) = φT (x)ΣpΦ(ΦT ΣpΦ + σ2
nI)−1ΦT Σpφ(x′)

= kT (x)(K + σ2
nI)−1k(x′), (32)

with k(x) given by (12), and K = ΦT ΣpΦ as in (10)-(11).
The kernel kt(., .) is a transfer kernel that, when combined
with the original kernel k(., .), results in the adapted kernel
k+(., .). It follows that the kernel matrix K+ of (27) can be
written as the matrix of entries

K+
ij = k(x+

i ,x
+
j )− kT (x+

i )(K + σ2
nI)−1k(x+

j ). (33)

Similarly, k+
∗ can be written as the vector of entries

(k+
∗ )i = k(x+

∗ ,x
+
i )− kT (x+

∗ )(K + σ2
nI)−1k(x+

i ). (34)

The updated prediction of (22) and score of (23) can thus be
computed with the original kernel k(x,x′) and no retrain-
ing. Algorithm 1 summarizes the GP adaptation procedure.



Algorithm 1 Bayesian model adaptation
Input:

Training data X and y; Adaptation data X+, and y+;
Feature vector x+

∗ for count prediction
Output:

Predictive distribution parameters: mean µ+(x+
∗ ) and

variance σ+(x+
∗ );

1: Training: Use (X,y) and (14) to learn the parameters
of the kernel k(., .) of (13)

2: Original prediction: Given x+
∗ compute the count es-

timate µ(x+
∗ ) and confidence score σ(x+

∗ ) with (10)
and (11), respectively

3: Adaptation: Use (X+,y+) to compute K+, us-
ing (33), e, using (24)-(25), (K+ +σ2

nI)−1 and (K+ +
σ2
nI)−1e.

4: Adapted prediction: compute k+
∗ with (34), the

adapted prediction µ+(x+
∗ ) with (22) and the adapted

confidence score σ+(x+
∗ ) with (23).

4.5. Relation to previous approaches

Model adaptation has received little attention in crowd
counting. Instead, previous works [23, 13] rely on SSL.
While SSL could be implemented with GP regression, e.g.
by introducing an additional manifold regularization in the
prior over functions f(x), it is practical only when all
counting models are learned simultaneously, e.g. when a
camera counting network is first deployed. In general, its
complexity is too high for the capacity expansion scenario,
where it would require the solution of a learning problem in-
volving all training video (both labeled and unlabeled) from
all cameras, whenever a camera is added to the network.

The method of [13] also includes a simple model adap-
tation module. This assumes the existence of n observation
pairs {xsource,xtarget} with identical counts (ysource =
ytarget) and consists of learning a linear feature alignment
map Xtarget = Xsourceβ, where β is a diagonal matrix
learned by least squares. We refer to this method as feature
alignment (FA). It should be noted that, in [13], it is mostly
used to bring source and target data into alignment, so as
to enable SSL across views. More related to the approach
now proposed is prior machine learning research on transfer
learning with GPs. The most popular among these methods
is a procedure to jointly learn the parameters of a kernel
shared by several GPs [1]. The shared kernel k(x,x′) is
transferred to each task through a joint GP prior that induces
correlations between tasks l and k according to

< fl(x), fk(x′) >= Kf
lkk(x,x′), (35)

where Kf is a positive semi-definite matrix that specifies
inter task similarities and is learned from data of all tasks.
While this learning is expensive, the methods can be applied

with tractable complexity to the two-task (source-target)
problem that we consider in this work.

In this case, the MT kernel reduces to

< fl(x), fk(x′) >= ρ k(x,x′), (36)

where ρ is a measure of similarity between source and tar-
get views. Several authors have noted limitations of this
approach. [11] proposed an extension for asymmetric sce-
narios, where there is a primary and several secondary tasks,
making Kf

lk = ρlρk with ρp = 1 if p is the primary task.
However, in the two-task setting, this is identical to (36).
[2] noted that [1] fails to fully exploit the statistical inter-
pretation of the kernel a covariance for random functions,
in the GP context. They treat the parameter ρ as a Gamma
random variable and introduce a Bayesian procedure for its
estimation. For the 2-class setting, this still results in the
kernel of (36), albeit with ρ replaced by a constant derived
from the Gamma (hyper-) parameters. However, because
these are learned with the remaining GP parameters, this is
not fundamentally different from (36).

For capacity expansion, all these approaches require re-
learning kernel parameters whenever a camera is added to
the network. However, by only requiring data from the
source and target views, this learning is more tractable
than the combination of MTL and SSL [13]. Neverthe-
less, all these approaches suffer from the inconsistency be-
tween (36) and the statistical interpretation of a GP. Note
that, while it is common to replace the covariance of (9) by
a kernel function such as (13) (the “kernel trick”), this con-
tinues to be a covariance function. When data is observed,
this function must be adapted by Bayesian inference, as
shown in (31)-(34). While this results in the adapted ker-
nel k+(x,x′) of (29) with the covariance matrix of (30), the
MTL kernel of (36) reduces this covariance to Σ′w = ρΣp.
This is a massive simplification that ignores the role of the
source and adaptation data on kernel transfer. We thus refer
to these approaches as weak kernel transfer (WKT) meth-
ods. Our experiments (see Section 6) show that the weak
underlying covariance approximation renders these meth-
ods non-competitive with the training free model adaptation
of (31)-(34), even when the WKT parameters are relearned.

A final approach is to resort to a hierarchical probabil-
ity model, by introducing a (hyper-) prior distribution over
the parameters of the GP prior p(w) [25]. We refer to this
method as hierarchical GP (HGP). Although statistically
principled, HGP learning is based on an EM algorithm that
requires a good initialization and can easily overfit when
there is little data. The latter is a concern for the capacity
expansion problem, where the goal is to rely on an adapta-
tion dataset as small as possible. Perhaps due to this, HGP
has not performed very well in our experiments.



View 1 View 2 View 3

View 4 View 5 View 6

View 7 View 8 View 9
Figure 1. Typical image from the nine views in the proposed dataset for evaluation of transfer learning algorithms for crowd counting.

Table 1. Dataset properties. VI-J refers to View I, Sequence J.
Video Range avg Video Range avg
V1-1 22-43 33.31 V1-2 13-58 41.38
V1-3 14-22 17.00 V2-1 14-24 18.68
V2-2 3-43 20.61 V2-3 11-21 16.24
V3-1 10-30 20.35 V3-2 17-40 28.33
V3-3 5-32 17.51 V4-1 6-15 10.64
V4-2 4-18 9.57 V4-3 5-25 12.33
V5-1 9-16 12.85 V5-2 2-17 9.59
V5-3 6-22 13.36 V6-1 7-15 11.33
V6-2 4-18 9.57 V6-3 6-26 12.82
V7-1 8-20 14.31 V7-2 6-18 10.54
V7-3 3-26 16.59 V8-1 12-24 17.52
V8-2 3-14 7.82 V8-3 16-30 24.30
V9-1 7-15 11.02 V9-2 4-13 8.53
V9-3 6-23 12.76

5. Pedestrian count transfer dataset
In this section we introduce a new dataset, designed to

test adaptation methods for crowd counting.

5.1. The dataset

The dataset was collected with a network of nine cam-
eras, mounted on a building that overlooks a large pedes-
trian walkway. Figure 1 shows a typical image of each view.
The views were selected to address both the resolution and
footprint aspects of capacity expansion. Note how pairs of
views have different overlap, ranging from none (e.g. views
3 and 7) to substantial (e.g. views 4 and 6). Some views,
e.g. view 2, have no overlap with any other views, others,
e.g view 5, have overlap with several others. The views are
also at different resolutions, see e.g. views 1 and 9, and the
dataset covers a salient scene feature, a courtyard in front of
a building entrance, at higher resolution.

The dataset includes 3 video sequences per view, col-
lected at different times of the day. These were chosen to
induce significant variability of crowd-densities and light-
ing. Each sequence is 100s and 1,000 frames long (10
fps). Manual crowd count ground truth is provided for the
27, 000 frames in the dataset. Each video has between 2 and
58 people. Table 1 details the average and range of pedes-
trians per video. Since the videos were collected in a public
area, without any staging or coaching, pedestrian config-
urations are highly variable. Pedestrians walk in different
directions and at different speeds, sometimes stop, cast dif-
ferent shadows depending on time of day, and occlude each
other in complex ways. Different views can have different
resolutions (e.g. optical vs digital zoom). Occasionally, a
bicycle, skateboarder, or other outlier enters the scene. All

these factors pose challenges to count transfer.

5.2. Evaluation Protocol

To evaluate count transfer, we propose a protocol com-
posed of 27 tasks and 702 adaptation experiments. Each
task has one video as target and 26 experiments, using each
of the remaining 26 videos as source. For each experiment,
400 frames are specified for model training, and 1, 000
frames for adaptation and testing. All experiments are re-
peated under two adaptation modes: “weak,” and “strong”
adaptation. In the weak adaptation mode, the adaptation
dataset has a small size of 20 frames. This leaves 980
frames for testing, per experiment. In the strong adaptation
mode, the size of the adaptation set is 50 frames. Since the
assembly of an adaptation dataset requires manual supervi-
sion, the size of this dataset determines the amount of man-
ual labor involved. The two adaptation modes character-
ize counting performance in terms of manual labor (“weak”
vs. “strong”). This is an important component of the cost
of capacity expansion. For performance comparison, av-
erage error rates are reported per task, for each adaptation
mode. The error rate is measured by the mean absolute er-
ror (MAE) R = 1

N

∑N
i=1 |ŷi − yi|, where N is the number

of frames, ŷi the count estimate and yi the ground truth.

6. Experiments
In this section, we discuss experiments comparing var-

ious count transfer algorithms. Since a new representa-
tion for crowd counting was not our goal, we adopted the
features of [4]. A mixture of dynamic textures [3] is fit
to the video, in order to extract regions of crowd from
the background, a region of interest (ROI) is defined, the
video normalized for perspective, and several low-level fea-
tures extracted per region. The information extracted from
each frame is finally converted into a 30-dimensional vec-
tor, which is fed to a GP for crowd density estimation. For
details on this representation see [4].

6.1. Comparison with adaptation methods

We start with a comparison to prior transfer learning
methods using two datasets in the literature, ucsd [4] and
mall [13]. The ucsd dataset has been used to evaluate sev-
eral crowd counting algorithms. It includes 2000 frames
at 10 fps. Mall includes 2000 frames at < 2 fps. These
datasets are quite different, covering scenes of different



Table 2. Transfer counting accuracy (MAE) and time (seconds).
ucsd to mall mall to ucsd

MAE Time (sec) MAE Time (sec)
FA [13] 7.47 796 4.44 832

HGP [25] 4.36 3.2 3.32 2.0
WKT [2] 4.18 263 3.76 134

GPA 4.18 0 2.79 0
GPTL 3.55 205 2.91 165

types (indoors for mall, outdoors for ucsd) and crowd den-
sities, at different frame rates, from different camera an-
gles, etc. Two adaptation tasks were defined, using one
dataset as source and the other as target. For each task,
800 frames were used for training and 50 as adaptation set.
The proposed approach was compared to the feature align-
ment (FA), weak kernel transfer (WKT), and hierarchical-
GP (HGP) methods of Section 4.5. Two variants of the pro-
posed approach were considered. The first is the pure model
adaptation procedure of Section 4, denoted GP adaptation
(GPA). The second, is a transfer learning extension, where
the parameters of the kernel of (13) are relearned so as to
maximize the marginal likelihood

log p(y+|X+, X,y; θ) = −1

2
(y+)T (K+ + σ2

nI)−1y+

− 1

2
log |K+ + σ2

nI| −
N

2
log 2π,

with K+ as in (33). This is denoted as GP with transfer
learning (GPTL).

Table 2 presents the results of all methods on the two
transfer tasks. This includes MAE and total time used to
relearn kernel parameters1. Unsurprisingly, the linear map-
ping of FA achieves the worst MAE. More interesting is the
fact that the previous methods that relearn kernel parame-
ters (HGP, WKT) have weaker MAE than the learning free
GPA. This is strong evidence in support of the arguments
of Section 4.5 namely 1) the weakness of the approxima-
tion of (31)-(34) by (36) by WTK, and 2) the overfitting
potential of HGP. Finally, kernel transfer through (31)-(34)
severely reduces this tendency to overfit, enabling GPTL
to achieve the overall best results. In terms of training time,
transfer learning methods require about 4 min for parameter
relearning vs. no time for GPA. This increases as O(n3) on
number of adaptation frames (15 min for 800 frames). For
capacity expansion, it can be a non-trivial cost, specially
when it does not guarantee better performance. Over all,
only GPTL achieves lower MAE than GPA and only on one
transfer task (ucsd to mall). Weaker performance on mall to
ucsd suggests that parameter relearning can overfit. This is
not surprising, given the small adaptation set.

6.2. Proposed dataset

Table 3 summarizes the results of count transfer on the
dataset of Section 5. In addition to FA, WKT, HGP, GPA,

1All experiments were performed on a Intel Xeon E5504, 2.1 GHz.
Note that GPA involves no parameter learning.

and GPTL, results are reported for no adaptation (NA),
where the model learned from the source is simply applied
to the target data, and two no transfer modes: NTA, where a
GP is learned from the adaptation set only and NTF, where
a GP is learned from 400 frames of target data. This is
the standard implementation of crowd counting (a model
trained per view) and significantly more expensive in terms
of video labeling. It is included as a lower bound for count
transfer MAE. The table includes both the MAE and the
retraining time per method, normalized by that of NTF.

Several observations ensue. First, all methods outper-
formed NA in both adaptation modes, showing that trans-
fer learning is helpful for count transfer. Second, while
no method underperformed NA for heavy adaptation, this
was the case of both WKT and HGP for weak adaptation.
These methods can thus have negative transfer, i.e. transfer
learning results weaker than learning the counting model on
the adaptation set. Only GPA, GPTL, and FA had no neg-
ative transfer on average. However, all methods had nega-
tive transfer in at least some experiments, as NTA had best
results on 6 (5) experiments in heavy (weak) mode. This
shows that all methods can be improved upon, highlighting
the importance of testing transfer over a diversity of camera
views, as required by the proposed dataset.

Third, among the methods that, on average, had no neg-
ative transfer, GPA achieved the best performance. In fact,
it achieved the best results on an impressive 17 (13) of the
27 heavy (weak) adaptation experiments. It even outper-
formed GPTL - winner of only 3 (2) experiments. This is
further evidence that parameter relearning can lead to over-
fitting. This hypothesis is also supported by the fact that the
GPA gains over transfer learning were larger for weak adap-
tation. Fourth, GPTL clearly outperformed all other transfer
learning methods. Again, kernel transfer through (31)-(34)
seems to severely reduce the tendency for overfitting. Over-
all, GPA or GPTL achieved the top performance in 19 (17)
of the 21 (22) heavy (weak) adaptation experiments where
there was no negative transfer.

Finally, as expected, the error was larger in the weak than
in the heavy adaptation regime. For heavy adaptation (an-
notation of 5s of video), the best methods had fairly high ac-
curacy, with average error as low as 2.1 pedestrians (GPA).
This is very close to the lower bound of NTF (1.85). On the
other hand, errors were larger in weak adaptation (annota-
tion of 2s of video), where even the average error of GPA
was fairly high (3.18 people). This again suggests that there
is room for future improvements.

7. Conclusion
The results above suggest that model adaptation is bet-

ter suited for the capacity expansion problem than transfer
learning. This is mostly due to a stronger kernel transfer
by GPA and the fact that it is less prone to overfitting than



Table 3. MAE of various methods on proposed dataset. Confidence values are presented for average results.
Heavy V1-1 V1-2 V1-3 V2-1 V2-2 V2-3 V3-1 V3-2 V3-3 V4-1 V4-2 V4-3 V5-1 V5-2
GPA 2.78 3.09 1.47 1.73 2.39 1.39 2.14 2.30 2.26 1.86 2.02 2.01 2.15 2.18

GPTL 3.36 3.31 1.47 1.59 2.81 1.36 2.27 3.51 2.53 1.93 2.13 2.38 2.25 2.53
HGP 5.00 5.60 2.33 2.92 3.26 2.29 3.00 3.51 3.03 2.41 2.81 3.20 2.59 2.93
WKT 3.30 6.58 2.95 2.44 9.19 2.68 3.87 6.15 8.59 2.78 2.55 3.06 1.94 2.67

FA 5.65 13.75 3.18 2.99 6.47 2.32 2.96 5.66 3.07 2.14 2.80 2.70 2.52 3.03
NTA 4.23 6.51 1.34 2.32 21.55 3.97 3.79 6.47 11.05 2.29 3.20 3.68 1.37 2.05
NA 18.33 28.08 7.76 8.46 10.19 7.14 9.78 14.51 8.41 8.08 7.62 7.40 6.88 7.47
NTF 1.89 1.64 0.89 1.07 1.67 0.85 1.07 1.23 1.20 1.27 2.02 2.16 1.38 2.42
V5-3 V6-1 V6-2 V6-3 V7-1 V7-2 V7-3 V8-1 V8-2 V8-3 V9-1 V9-2 V9-3 Avg. Time
2.10 1.99 2.14 2.30 2.04 2.16 2.00 2.24 2.05 2.10 1.78 2.14 1.99 2.10± 0.82 0
3.96 1.61 2.32 2.84 2.15 2.12 2.23 2.73 2.07 2.76 1.77 2.46 2.14 2.39± 2.95 0.72
3.33 2.60 2.54 3.31 2.49 3.69 2.77 3.70 2.48 2.45 2.48 3.09 3.15 3.07± 1.29 0.01
1.80 1.68 2.77 3.06 2.52 3.20 2.66 3.42 4.12 3.32 1.27 2.71 2.41 3.47± 2.43 0.86
2.76 1.99 2.92 3.18 2.67 2.81 2.88 2.63 4.27 5.28 2.63 3.12 2.68 3.67± 3.10 3.32
3.17 1.41 3.20 3.10 2.03 2.14 2.57 3.86 3.78 3.30 1.45 1.94 2.31 4.00± 4.05 0.11
6.77 7.34 7.76 7.96 6.99 8.44 8.53 11.29 7.20 12.77 7.54 11.63 10.62 9.81± 8.77 0.05
2.64 1.34 2.37 3.39 1.64 1.76 1.63 2.86 3.43 2.50 1.56 2.28 1.72 1.85± 0.70 1.00

Weak V1-1 V1-2 V1-3 V2-1 V2-2 V2-3 V3-1 V3-2 V3-3 V4-1 V4-2 V4-3 V5-1 V5-2
GPA 3.62 5.21 2.20 3.10 5.30 2.86 2.62 5.12 2.86 2.38 2.94 2.71 3.21 2.88

GPTL 3.91 6.02 3.27 3.05 7.43 2.84 4.62 3.53 4.59 3.92 2.64 3.62 4.27 3.18
HGP 7.14 19.33 3.47 5.17 8.53 3.64 5.14 5.71 4.33 2.70 4.11 3.40 3.61 5.41
WKT 4.69 11.62 3.76 3.26 7.37 2.91 3.81 4.94 7.18 2.78 7.43 3.55 2.88 4.66

FA 3.23 14.70 4.27 3.07 6.62 3.31 3.30 4.45 3.71 2.41 3.26 3.11 3.03 3.74
NTA 4.99 3.83 2.12 3.62 9.39 2.70 5.94 7.15 2.64 2.39 4.84 5.35 3.20 3.85
V5-3 V6-1 V6-2 V6-3 V7-1 V7-2 V7-3 V8-1 V8-2 V8-3 V9-1 V9-2 V9-3 Avg. Time
2.65 2.46 3.15 3.17 2.89 2.81 3.10 2.48 3.68 2.95 3.07 3.13 3.20 3.18± 1.61 0
3.83 4.68 3.35 3.65 3.71 3.46 3.50 4.65 3.96 4.13 3.54 4.62 3.65 3.99± 4.06 0.64
3.15 2.91 5.27 6.02 3.13 3.56 4.67 4.90 3.88 7.59 5.01 4.51 5.14 5.24± 4.81 0.01
3.90 2.56 10.20 3.83 3.79 3.43 3.40 4.37 4.06 2.78 3.18 6.01 3.84 4.67± 0.94 0.53
3.19 2.24 3.58 3.64 2.78 2.96 3.20 3.61 4.09 5.01 2.63 3.64 3.24 3.93± 3.35 2.83
5.78 3.08 4.91 5.51 2.89 4.40 4.23 4.37 4.57 5.27 2.85 2.75 4.38 4.33± 1.61 0.12

methods that require parameter relearning. While GPA per-
formance is quite strong, there is room for further progress
in terms of 1) the complete elimination of negative transfer,
and 2) more robust transfer in the weak adaptation scenario
(or even with less than 2s of annotated video per new view).
We believe that the dataset now introduced will enable fur-
ther progress towards these goals.
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