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Abstract

A generalized formulation of the multiple instance learn-

ing problem is considered. Under this formulation, both

positive and negative bags are soft, in the sense that nega-

tive bags can also contain positive instances. This reflects a

problem setting commonly found in practical applications,

where labeling noise appears on both positive and negative

training samples. A novel bag-level representation is in-

troduced, using instances that are most likely to be positive

(denoted top instances), and its ability to separate soft bags,

depending on their relative composition in terms of positive

and negative instances, is studied. This study inspires a new

large-margin algorithm for soft-bag classification, based on

a latent support vector machine that efficiently explores the

combinatorial space of bag compositions. Empirical eval-

uation on three datasets is shown to confirm the main find-

ings of the theoretical analysis and the effectiveness of the

proposed soft-bag classifier.

1. Introduction

Multiple instance learning (MIL) [9] is a family of learn-

ing algorithms suitable for problems involving substantial

amounts of labeling noise. Examples, denoted as instances

in MIL, are grouped into bags, and a label is attached to

each bag. A bag that contains at least one positive exam-

ple is considered a positive bag, otherwise it is negative. A

classifier is finally designed to classify bags, rather than in-

dividual examples. Over the past twenty years, many MIL

algorithms have been developed and successfully applied

to different tasks where label noise is prevalent, e.g., im-

age categorization [16, 6, 5], object detection [22, 10], re-

trieval [16, 29, 4], etc. While a substantial step towards the

development of systems that can learn from very weakly la-

beled data, the current formulation of MIL fails to account

for a very characteristic property of this type of data: nega-

tive bags can also have very noisy instance composition.

In fact, for some of the most popular applications of

MIL, e.g., semantic annotation of images or video, the la-
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Figure 1. Noisy weak annotation of “flower” in Corel5k, where

negative bags are far more than positive bags in training data. Best

viewed in color (same for the rest).

beling of negatives is as noisy as that of positives. Figure 1

illustrates the problem for the popular Corel5k dataset [4].

Image patches are considered instances of visual concepts

and the goal is to classify images, which are bags of such

patches, with concept labels. The figure shows examples of

positive and negative bags for the concept “flower”. Note

that many of the negative images include regions of flowers.

This labeling noise is common in weakly supervised learn-

ing, where human annotators are asked to label data with a

few keywords. The absence of the “flower” label does not

mean that there are no flowers in the image, just that the

labeler did not think of “flower” as one of its predominant

concepts. In result, negative bags frequently contain pos-

itive instances. This nullifies the core MIL assumption of

clean negative bags.

To address this common issue, we consider a more gen-

eral definition of MIL, which softens its constraint on neg-

ative bags. Under this formulation, both positive and neg-

ative bags are soft (i.e., they can contain both positive and

negative instances, differing only in their composition with

regards to the two instance types). This is unlike the hard

bags of conventional MIL (where presence/absence of posi-
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tive instances makes a bag positive/negative). This is shown

to generalize both supervised learning and conventional

MIL, but is applicable to a much broader range of problems.

While a similar setting has been suggested before by [25],

its solution relies on a heuristic two-phase procedure that

does not fully exploit the properties of the problem. In this

work, our technical contribution goes far beyond [25]. We

propose a new bag representation for separating soft pos-

itive and negative bags. This relies on the bag instances

that are most likely to be positive (denoted top instances)

to construct a feature that remains discriminant in the soft-

bag setting. A detailed study of the separability of this fea-

ture, depending on the relative compositions of positive and

negative bags is then presented, establishing connections to

several previous works. Several theoretical results on soft

bag separability are derived, motivating a new large-margin

solution of the soft-bag MIL problem based on a latent sup-

port vector machine (SVM). This effectively and efficiently

exploits a combinatorial number of possible bag represen-

tations to achieve a provably optimal solution. Empirical

evaluation on three datasets, including both conventional

and soft-bag MIL, confirms the main theoretical findings

on soft-bag separability, and demonstrates the effectiveness

of the approach.

2. Related Works

MIL was introduced by [9] to address the problem of

drug prediction, where a positive bag is exclusively identi-

fied by one significant positive instance. Various solutions

and applications have since been proposed, based on both

generative [16, 4] and discriminant [1, 11, 25, 6, 5, 3, 31,

15, 30, 8, 12] formulations of the problem.

Early works posed MIL as the identification of the single

positive instance in a positive bag, learning a prediction rule

that separates it from negative instances [9, 16, 29, 1]. Var-

ious later works showed that robust MIL solutions require

understanding of the instance distributions of bags. [11] de-

signed a holistic bag representation by merging all instances

into a single feature vector. [31] investigated the relation

between MIL and semi-supervised learning. [3] showed

that when positive instances are sparse in positive bags, it

is desirable to extract them before making the final predic-

tion. [30] modeled relations among instances in a bag via

a graph, using graph kernels to encode bag-level similarity

for discrimination. [8] proposed a conditional random field

that combines unary instance classifiers and pairwise mea-

sures of bag dissimilarity. [12] studied the structure of posi-

tive bags and proposed a projection operator to learn robust

MIL classifiers. All these approaches follow the original

MIL formulation, assuming that all instances of negative

bags are negative examples.

A few works have tried to relax this assumption, ac-

knowledging the labeling noise in negative bags. [25] com-

plemented MIL with three such assumptions, which jus-

tify an alternative two-layer quantize-then-classify (TLC)

MIL algorithm. [24] formulated MIL as an adaptive pro-

cedure to determine instance-to-bag soft assignments, us-

ing a bag-level feature based on the p-th power of instance

aggregate posterior probabilities, generalizing the hard as-

signment of TLC. While, as discussed in Section 3 and Sec-

tion 4.2, some of these formulations have commonalities

with the proposed soft-bag MIL, they mostly rely on posi-

tive instances for bag separation. This fails to consider the

negative instances of negative bags, which are shown to fur-

ther improve the separability of soft bags in this work.

It should also be noted that the soft-bag image annota-

tion problem of Figure 1 is related to the semi-supervised

multiple-label image tagging problem of, e.g., [19]. How-

ever, in this setting 1) a bag is represented by a single in-

stance, 2) this instance is associated with multiple labels

as a whole, and 3) only a portion of the positive bags for

a given concept are annotated. This is different from the

soft-bag setting that we investigate, where all bags are an-

notated, but not with the proverbial “1,000 words” that a

picture is worth. Instead, reflecting the well known “pop-

out” effect of dominant attributes in human perception, it is

the predominance rather than the presence of a visual con-

cept in an image that makes a human annotator label the

image with that concept [17, 21].

3. Definitions

A soft bag B is a set of instances, or examples, x ∈ X ⊆

R
D

. Instances are sampled independently from two distri-

butions p+X(x) (denoted positive source) and p−X(x) (de-

noted negative source). The positive source is the distribu-

tion of the target concept (e.g., image patches of “flower”),

the negative source the distribution of background clut-

ter (e.g., image patches of everything else).

Definition 1. A soft bag B = {xi}
NB

i=1 is a set of NB in-

stances, where NB > N and N ∈ Z++ is a lower bound

on bag size, sampled as follows

• sample N+
B from a probability mass function p(N+

B =
i) with 0 6 i 6 NB;

• sample N+
B i.i.d. instances {xi}

N
+

B

i=1 from the positive

source p+X (x);

• sample N−
B = NB −N+

B i.i.d. instances {xi}
NB

i=N
+

B
+1

from the negative source p−X (x).

The bag label y ∈ Y = {−1,+1} is determined as fol-

lows.

Definition 2. Let 0 < µ 6 N be a lower bound on the

number of positive examples per positive bag. A soft bag B
is µ-positive (label +1) if N+

B > µ and µ-negative (label

−1) otherwise.



It follows that, while a µ-negative soft bag can contain

positive instances, the number of these has to be less than

that of a µ-positive soft bag. The goal is to predict if a query

bag Bq is µ-positive or µ-negative, i.e., to learn a prediction

rule f : XNB 7→ Y , from a training dataset D = {(Bi, yi)}.

Note that this definition generalizes the conventional MIL

and supervised learning problems. Conventional supervised

learning corresponds to NB = µ = 1, where a bag contains

either a positive or negative instance. Conventional MIL

corresponds to µ = 1, where a positive bag contains at least

one instance from p+X (x) and all instances in a negative bag

are from p−X (x). However, the classification of soft bags

is more complex than that of conventional MIL bags, since

a µ-negative soft bag can contain positive instances when

µ > 1. For example, since both positive and negative bags

are expected to contain both positive and negative exam-

ples, the conventional definition of class separability makes

little sense for soft-bag MIL. What matters is the separabil-

ity of the source distributions. This is the motivation for the

following definition.

Definition 3. The soft bag classification problem is denoted

separable if the regions of support of p+X (x) and p−X (x) are

linearly separable, i.e., if there exists a linear prediction

rule fX : X 7→ R such that ∀ x
+ ∈ supp(p+X), x− ∈

supp(p−X),

fX (x+) > 0 > fX (x−). (1)

fX is denoted a separator of the soft bag problem.

Figure 2 illustrates a separable soft bag classification

problem with N = 8. Denoting the positive (negative) bag

by Bp (Bn), the figure depicts a scenario where 1 N+
n = 1,

and N+
p = 4. As usual, while we base the definition on

the linear separability of the instance space X , all results

apply if linear separability holds in a reproducing kernel

Hilbert space (RKHS), after application of the kernel trick.

It should be noted that both the definitions above and the

analysis that follows can be extended to a slightly differ-

ent formulation of the problem, where positive and negative

soft bags differ in the proportion of their positive instances

(as opposed to the absolute number). This extension is dis-

cussed in the supplementary material.

4. Separability of Soft Bags via Top Instances

In this section, we study the separability of positive and

negative soft bags.

4.1. Representation of Soft Bags by Top Instances

Consider a separable soft bag MIL problem with separa-

tor f . Since positive bags have more positive instances than

1For simplicity, we use the shorthand notations Nn for NBn
and N

+
n

for N+

Bn
(similar for Np, N+

p ) in the rest of the paper.
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Figure 2. MIL for soft bags. The two contours delimit the support

sets of the two sources. Positive and negative instances are identi-

fied by symbol shape, their bag ownerships by color (see insets).

The top 2 instances are used to represent each of the two bags (one

positive and one negative). These are the instances connected by a

dotted line. For the other variables please see the text.

negative bags, it is natural to represent a bag B by a com-

pound feature Φf,k of its k (1 6 k 6 NB) “most positive”

instances

Φf,k(B) =
1

k

∑

xi∈Ω∗

f,k
(B)

xi (2)

with

Ω∗
f,k(B) = argmax

Ω⊆B,|Ω|=k

∑

xi∈Ω
f(xi).

In what follows, we refer to the instances in Ω∗
f,k(B) as the

top instances of B according to separator f (see Figure 2).

Under the top instance representation, the application of the

linear separator f(x) to a bag B produces a bag score

sf,k(B) = f

(

1

k

∑

xi∈Ω∗

f,k
(B)

xi

)

=
1

k

∑

xi∈Ω∗

f,k
(B)

f(xi).

(3)

Φf,k(B) generalizes features of various MIL methods.

When k = 1, it reduces to the feature of the MI-SVM [1],

which represents a bag by its most positive instance with

respect to f . On the other hand, when k = N+
B for pos-

itive bags, Φf,k(B) is the feature used by the sparse-bag

SVM [3] and TLC [25], which represent a positive bag by

its positive instances. Finally, when k = NB, Φf,k(B)
is the feature of the 1-norm normalized set kernel (NSK)

of [11], which represents each bag by the mean of all its in-

stances. We will later see that these choices are only optimal

for special classes of soft bags. For now, we study the sepa-

rability of soft bags under the feature representation of (2).

4.2. Soft Bag Separability

Given the bag scores of (3), the separability score, under

separator f , of a µ-positive soft bag Bp and a µ-negative



soft bag Bn is

∆sf,k(Bp, Bn) = sf,k(Bp)− sf,k(Bn). (4)

The bags are said to be Φf,k-separable if ∆sf,k(Bp, Bn) >
0. The following theorem characterizes how the expected

value of ∆sf,k(Bp, Bn) depends on k.

Theorem 1 (Expected separability). Consider a separable

MIL problem of separator f and let Bp be a µ-positive and

Bn a µ-negative soft bag with N+
p and N+

n positive in-

stances, respectively, where 0 6 N+
n < µ 6 N+

p 6 N .

Let ∆Sf,k be the random variable from which the separa-

bility scores ∆sf,k of (4) are drawn.

1. If 1 6 k 6 N+
n − 1, then

0 6 E [∆Sf,k(Bp, Bn)] 6 E [∆Sf,k+1(Bp, Bn)] . (5)

2. If N+
n < k 6 N+

p , then

0 6 E

[

∆Sf,N
+
n
(Bp, Bn)

]

6 E [∆Sf,k(Bp, Bn)] . (6)

3. For any finite N+
p ,

limN→∞ E [∆Sf,N (Bp, Bn)] = 0. (7)

Proof: See the supplemental material (same for others).

The first statement of the theorem shows that, while ex-

pected Φf,k-separability is guaranteed for all k 6 N+
n , the

expected value of ∆Sf,k(Bp, Bn) is non-decreasing with

k. It can also be shown that an upper bound of the variance

of the separability score decreases with k (see supplemen-

tal material, same for the rest). It follows that there is no

advantage in using k smaller than N+
n − 1 in (2). The sec-

ond statement then shows that using more than the N+
n top

instances (but no more than N+
p ) leads to an even larger

expected separability score. This is intuitive since, in this

regime, Φf,k(Bp) only includes scores of positive instances

xi (for which f(xi) is positive) while Φf,k(Bn) includes

scores from k −N+
n negative instances (for which f(xi) is

negative). Finally, the third statement shows that there is no

advantage in using a number of top instances much larger

than N+
p . For large bags (N → ∞) with small number

of positive instances, using all instances (k → ∞) leads to

zero expected separability. This is again intuitive since, in

this regime, bag scores are dominated by negative instances

and there is little hope of bag discrimination.

Overall, the theorem shows that, whenever µ-negative

bags have more than one positive example (N+
n > 0),

there exist values of k (N+
n < k 6 N+

p ) for which

the feature of (2) is more discriminant than that of MI-

SVM (k = 1). Note that this may also hold under

the standard MIL assumptions, i.e., µ = 1 (N+
n =

0). This behavior is illustrated by Figure 3, which
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Figure 3. Illustration of E [∆Sf,k(Bp, Bn)] (solid curves) and

Var (∆Sf,k(Bp, Bn)) (dotted curves). S+ ∼ U(1, 2), S− ∼
U(−3,−1) for red curve; S+ ∼ U(0, 1), S− ∼ U(−1, 0) for

blue; and S+ ∼ U(0.1, 0.2), S− ∼ U(−5,−0.5) for black.

presents curves of E [∆Sf,k(Bp, Bn)] (solid lines) and

Var (∆Sf,k(Bp, Bn)) (dotted lines) for three separable soft-

bag MIL problems of uniform bag score distributions pS . In

the black example (N+
p = 10, N+

n = 0), which falls within

the MI setting of µ = 1, the expected separability of k = 1,

as in the MI-SVM, is significantly smaller than the maxi-

mum value (k = 10).

On the other hand, the theorem shows that the NSK set-

ting (k = NB) of using all instances in (2) compromises

bag separability, at least when bags are large and positive

instances are sparse (this resembles the observation of [3]).

This is visible in all examples of Figure 3, where large k
lead to low separability in all examples. Finally, the largest

expected separability is usually obtained for values of k that

lie within these two settings, namely N+
n < k 6 N+

p .

Note, however, that there is no guarantee that this happens

for k = N+
p , as advocated by sparse-bag SVM [3] and

TLC [25]. In Figure 3, this has the largest separability for

the red example (N+
p = 15, N+

n = 10), but not for the blue

one (N+
p = 10, N+

n = 2).

One particularly interesting choice of k is k = µ. In this

case, separability holds not only in expected value but for

any sample, if certain conditions holds ( for a visualization

of the bounds in the theorem see Figure 2).

Theorem 2 (Absolute separability). Consider an MIL prob-

lem linearly separable by prediction rule fX with µ-positive

soft bags Bp and µ-negative soft bags Bn. Let b+u =
sup{fX (x)|x ∈ supp(p+X )}, b+l = inf{fX (x)|x ∈
supp(p+X )}, and b−u = sup{fX (x)|x ∈ supp(p−X )}. If the

number of positive instances in any µ-negative soft bag Bn

satisfies

N+
n 6 τ =

⌊

µ
b+l − b−u
b+u − b−u

⌋

=

⌊

µ
1

1 + ξ/δ

⌋

, (8)

where δ = b+l − b−u is the margin of the classification prob-

lem and ξ = b+u − b+l a measure of compactness of the



positive source, then, under the representation of (2), any

pair Bp, Bn is separable by fX (x) at k = µ, i.e.,

fX (ΦfX ,µ(Bp)) > fX (ΦfX ,µ(Bn)). (9)

It is worth making two notes. First, condition (8) does

not require that the total number of positive instances across

all negative bags be upper-bounded. In fact, this number

could be arbitrarily large, as long as the condition holds for

each single negative bag. The bound implies that the allow-

able number of positive instances in a µ-negative bag in-

creases when the margin δ is larger or the positive source

more compact (smaller ξ). Second, (8) implies that the

number of negative instances in any negative bag has to ex-

ceed NB − τ . While intuitive, since the negative examples

are what distinguishes the top instances of the two bags -

“pulling down” the score sf,k(Bn) of negative bags and in-

creasing the separability measure of (4) - this fact has re-

ceived little attention in the MIL literature. In what follows,

we will exploit it for improved performance.

4.3. Consistency with Supervised Learning

The separability of a soft-bag representation ΦfX ,k(·)
should increase with additional labeling of the instances in

each bag. In the limit of fully labeled instances, i.e., an ora-

cle that assigns labels to all instances, soft bag separability

should be as high as the separability δ of the source distri-

butions. When this happens, the representation ΦfX ,k(·) is

said to be consistent with supervised learning.

So far, we have assumed that all instances are equally

weighted in the bag representation of (2). Since Ω∗
f,k(B)

contains more negative instances for a µ-negative than for

a µ-positive bag, the assignment of larger weights to neg-

ative instances would increase the prediction score of (4).

Hence, separability would increase if heavier weights were

assigned to negative instances. Let di = g(xi) be a weight-

ing function. Given a bag B, the representation of (2) can

be generalized to a weighted compound feature

ΦfX ,k(B) = Φ(X,h∗) =
Xh

∗

d
T
h
∗
, (10)

with

h
∗ = argmax

h∈H
fX

(

Xh

d
T
h

)

, s.t.
∑

i
hi = k,

where X = [x1,x2, · · · ,xNB
] ∈ R

D×NB is a ma-

trix whose columns are the instances of B, d =
[d1, · · · , dNB

]T ∈ R
NB

++ the vector of weights, and h
∗ ∈

H = {0, 1}NB \ {0} (
∑

i hi = k 6 NB) an indicator

function for the top instances of bag B. Note that when

di = 1, ∀i, (10) reduces to (2).

The following theorem shows that (10) is consistent with

supervised learning.

Theorem 3 (Consistency with supervised learning). Let

γ = sup{g(x+)/g(x−)|x+ ∈ supp(p+X ),x− ∈ supp(p−X )}.
If N+

n < k 6 N+
p , then, under the bag representation

of (10),

lim
γ→0

inf ∆Sf,k(Bp, Bn) > δ, (11)

where δ is the margin as defined in Theorem 2.

Note that γ → 0 if g(x+) ≪ g(x−) for all pairs

(x+,x−). Since, when δ > 0, this holds if g(xi) is the in-

dicator function of negative instances, the condition of the

theorem holds whenever an oracle is available to label all in-

stances. Hence, if the source distributions are separable, the

representation of (10) is consistent with supervised learn-

ing.

4.4. Weighting Functions

The discussion above suggests that improved MIL per-

formance may be possible by replacing the representation

of (2) with that of (10). It remains to determine an effec-

tive weight function g(x). While an oracle is not available

in practice, it may suffice to use an approximation of the

indicator of negative examples. In this work, we consider

a combination of the consistent estimator p̃+X (x) of p+X (x)
from [4] and the logistic transformation

g(x) =
[

1 + exp(α log p̃+X (x) + β)
]−1

, (12)

where α ∈ R++ and β are scaling and offset parameters de-

termined by cross-validation. Note that many other choices

of weight functions would be possible. The determination

of the optimal weighing function is a topic that we leave for

future work.

5. Classification with Soft Bags

For now, we consider the design of a soft bag classifier

with the feature of (10).

5.1. Prediction Rule and Inference

Given a bagB, the prediction rule that quantifies the con-

fidence of B being positive with k top instances is

fw(XB) = maxh∈H w
T
Φ(XB ,h),

∑

i
hi = k, (13)

where w ∈ R
D

is the vector of predictor coefficients,

Φ(XB,h) ∈ R
D

the feature vector of (10),h a vector of la-

tent variables, H the hypothesis space {0, 1}NB \ {0}. The

prediction of (13) requires the solution of

(ILFP) : max
h∈H

w
T
XBh

d
T
h

, s.t.
∑

i
hi = k. (14)

Since the indicator variable h is discrete, this is a integer

linear-fractional programming (ILFP). Note that, given d ∈

R
NB

++, it can be solved efficiently, via the solution of a linear

programming by the following result.
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Figure 4. Classification accuracy on 15 synthetic datasets that differ in the percentage of positive instances per bag. The numbers shown

in the legend are the proportions of positive instances in a positive (η+
p ) and negative (η+

n ) bag, respectively. Solid curves correspond to

unweighted, dashed curves to weighted results (same for other figures).

Theorem 4 (Exact linear relaxation). If d ≻ 0 (i.e., ∀i, di
is strictly positive), the optimal value of (14) is identical to

that of the relaxed problem

(LFP) : max
h∈BNB

w
T
XBh

d
T
h

, s.t.
∑

i
hi = k, (15)

where BNB = [0, 1]NB is a unit box in R
NB .

Since (15) is a linear-fractional programming (LFP), it

can be reduced to a linear programming (LP) of NB + 1
variables and NB + 2 constraints [2]. It follows that exact

inference can be performed efficiently for the max-margin

latent variable classifier of (13) with combinatorial compo-

sition space.

5.2. Learning

The learning problem is to determine the parameter vec-

tor w, given a training set D = {Bi, yi}
NT

i=1. This is a latent-

SVM learning problem [10]

min
w

1

2
||w||2 + C

∑NT

i=1
max

(

0, 1− yifw(XBi
)
)

.

(16)

In this work, we adopt the concave-convex proce-

dure (CCCP) of [27] as the solver. This consists of rewriting

the objective of (16) as the difference of two convex func-

tions

min
w

[

1

2
||w||2 + C

∑

i∈Dn

max
(

0, 1 + fw(XBi
)
)

+

C
∑

i∈Dp

max
(

fw(XBi
), 1

)

]

−

[

C
∑

i∈Dp

fw(XBi
)

]

,

(17)

where Dp and Dn are the positive and negative training sets,

respectively. CCCP then alternates between two steps un-

til convergence . The first computes a tight convex upper

bound of the second (concave) term of (17), by estimating

the configuration of hidden variables that best explains the

positive training data using the current model. The sec-

ond minimizes this upper bound, by solving a structural

SVM [20] problem, which is convex, via the proximal bun-

dle method [14]. The initial w is learnt with a SVM by

setting h = 1 ∈ R
NB , which empirically produces a rea-

sonably good result to start the learning procedure.

6. Experiments

In this section, we report on an empirical evaluation of

soft-bag MIL.

6.1. Synthetic Data

To provide some intuition on the behavior of the pro-

posed soft-bag SVM, we conducted an experiment with 15

synthetic datasets of different instance distributions for pos-

itive and negative bags. In all cases the instance space is

X = R
2
, the sources Gaussian, with p+X (x) = N (x; 2, 1)

and p−X (x) = N (x;−4, 10), and every bag contains NB =
20 instances. The 15 datasets differ in the percentage of

positive instances in either positive or negative bags (de-

noted η+p and η+n , respectively). Each dataset contains 200

positive and 1000 negatives bags, which are split equally

between a training and a test set. A two-component Gaus-

sian mixture model (GMM) was used to learn the weighting

function of (12). Figure 4 shows the classification accuracy

for each dataset, for both uniform and GMM-based weight-

ing, as a function of the number k of top instances.

Overall, these results confirm the predictions of our anal-

ysis on the separability of soft bags in Section 4.2. For

example, in almost all datasets, classification accuracy in-

creases with k, when k is smaller than the number of pos-

itive instances per negative bag (k = 1 to k = 20 × η+n ).

Around this critical point (k = N+
n ), there is typically a

surge in accuracy (note the behavior around k = 20 × η+n
in curves “0.80-0.20”, “0.80-0.60”, “1.00-0.80”, etc), and

classification performance is consistently better for 20 ×
η+n < k 6 20 × η+p than for k 6 20 × η+n . This re-

flects the benefit of forcing negative bags to include neg-

ative instances, increasing bag separability. Furthermore,

while accuracy typically increases with k for 20 × η+n <
k 6 20 × η+p , there are many cases where k = 20 × η+p
does not guarantee best performance. In fact, most of the

accuracy maxima are located in k ∈ (20× η+p , 20). For the

sources used in this experiment, it is favorable to include

some negative instances even in positive bags. This may

be due to the fact that the Gaussian sources are not sepa-

rable, which could introduce a lag in the optimal value of

k. Finally, the use of the GMM-based weighting function



Table 1. Classification accuracy (%) on benchmark MIL datasets.

method Musk1 Musk2 Elep. Fox Tiger

EM-DD [28] 84.8 84.9 78.3 56.1 72.1

MI-SVM [1] 77.9 84.3 81.4 59.4 84.0

NSK [11] 88.0 89.3 84.3 60.3 84.2

TLC [25] 88.7 83.1 80.5 62.4 82.2

MI/LR [18] 85.4 87.1 89.3 63.1 86.2

sbMIL [3] 89.8 87.3 88.0 69.0 82.1

PPMM [24] 95.6 81.2 82.4 60.3 80.2

miGraph [30] 88.9 90.3 86.8 61.6 86.0

PC-SVM [12] 90.6 91.3 89.8 65.7 83.8

CRF-MIL [8] 88.0 85.3 85.0 67.5 83.0

Con. Rel.-WSC [13] 87.7 N/A 86.7 62.5 78.0

soft-bag SVM w/o weight 90.3 88.5 89.0 69.0 86.5

soft-bag SVM weighted

(average # instances per bag)

89.6

(5.2)

90.2

(64.7)

89.5

(7.0)

67.7

(6.6)

86.0

(6.1)
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Figure 5. Classification accuracy v.s. k for the

soft-bag SVM on MIL benchmark datasets.

usually improves performance, with improvements as large

as 10%.

6.2. Benchmark MIL Datasets

The second set of experiments was conducted on two

benchmark MIL datasets: Musk [9] and Corel-Animal [1].

Here, we followed the standard evaluation protocol from the

literature and reported results via 10-fold cross-validation.

The performance of the proposed soft-bag SVM is shown

as a function of k in Figure 5. Note that, in three of the

datasets, best performance is obtained with two top in-

stances (k = 2). This reflects the fact that the majority

of bags in these datasets only contain one or (possibly) two

positive instances and there is usually no positive instance

in negative bags. This is not surprising, since these datasets

are benchmarks for conventional MIL, where this setting

is assumed. Table 1 compares various methods, based on

per-fold average classification accuracy (the top two results

are bolded for each dataset). The optimal k of our method

was determined by cross validation on the training set (same

for Table 2). These results show that, even in the conven-

tional MIL scenario, the soft-bag SVM is a top performer.

It achieves one of two best results on three animal datasets

and results competitive with the best in the remaining two

(“Musk”). In fact, the soft-bag SVM with uniform weights

has the best performance on two datasets. The only other

method with two “wins” is PC-SVM.

The last row of the table details the average number of in-

stances per bag for each dataset. The superior performance

of the unweighted soft-bag SVM, is explained by the fact

that most datasets have very small bags, e.g., around 6 in-

stances per bag on “Musk1” and the three animal datasets

(where instances are feature vectors of pre-segmented im-

age regions). This difficults the estimation of the indicator

of negative examples with (12), hurting the weighted repre-

sentation. On the only dataset with reasonably well popu-

lated bags - “Musk2,” more than 60 instances per bag - the

estimates are substantially more accurate and the weighted

representation has much better performance.

6.3. Semantic Image Retrieval

The third experiment was performed on the Corel5k

dataset [4]. The task is to annotate images with seman-

tic topics (e.g., “flower”, “clouds”). The dataset contains

5, 000 natural images, each manually annotated with up to

five semantic topics. Images (≈ 200×100 or 100×200 pix-

els) are bags of 8 × 8 pixel patches, which are converted to

the YBR colorspace and subject to the discrete cosine trans-

form. This results in around 300 192-D vectors per image.

The dataset was equally split into a training and a test set

with three trials, and we considered topics with more than

100 annotations. instance.

Unlike the datasets of Table 1, this data exposes the lim-

itations of standard MIL (see Figure 1). As shown in Fig-

ure 6, the images are only weakly annotated, e.g., many im-

ages with small regions of sky are not annotated with the

“sky” label. This generates many soft negative bags per la-

bel. Note that the task is also significantly different from

previous MIL experiments on Corel (e.g., [6, 5], and the

three animal datasets of Section 6.2, for two reasons. First,

all instances are feature vectors computed from small image

patches, rather than from a small number of large regions

extracted with a segmentation algorithm. Hence, bags tend

to be large and negative bags to contain many positive in-

stances. Although popular in the early days of image an-

notation, segment-based image representations have been

abandoned in computer vision, where patch based instances

are well known to enable better performance [4, 26]. Sec-

ond, the goal is to detect generic visual concepts, which may

have extensive overlap of patch appearance (e.g., to distin-

guish images of “outdoors” from images of “sky”), rather

than classifying 10 to 20 distinct object categories.

In this experiment, performance was characterized by

mean per-topic average precision (mAP), as reported in Ta-

ble 2. The soft-bag SVM significantly outperforms the con-

ventional MIL methods. Figure 7 (left) shows soft-bag

SVM APs for three topics. Note how the difference be-

tween using k = 1 (MI-SVM) and a larger number of top

instances is significantly larger than in Section 6.2. On the
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Figure 6. Weak annotation on Corel5k.

Table 2. Performance on Corel5k.

method mAP (%)

MI-SVM [1] 18.5±1.7

NSK

[11]

w/o w. 23.3±2.1

weig. 26.6±2.3

TLC [25] 27.9±2.6

MI/LR [18] 27.4±1.6

SML [4] 27.9±2.4

sb-SVM

[3]

w/o w. 26.4±3.0

weig. 28.5±3.4

PPMM [24] 28.1±2.2

miGraph [30] 27.7±2.3

PC-SVM [12] 29.3±2.9

soft-bag SVM
w/o w. 30.3±2.5

weig. 32.9±2.8
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Figure 7. APs v.s. k (left) or #negative training bags (right, k = 50)

on Corel5k for soft-bag SVMs with non-weighted (solid curves)

and weighted (dashed curves) representation ΦfX ,k(B).

other hand, performance again degrades for large k, con-

firming that the use of whole bags, as in NSK, is not ad-

visable. This explains the relatively low performance of

PPMM and miGraph, which model the configuration of all

instances in a bag (by either aggregated instance posteriors

or graphs). However, previous attempts to avoid the “holis-

tic” bag representation (TLC, sb-SVM, PC-SVM) are not

much more successful. The main difference to the soft-bag

SVM is that these approaches ignore the negative instances

of negative bags, e.g., attempting instead to select all posi-

tive instances in a bag (TLC, sb-SVM), or enhance the sep-

arability of positive and negative instances in a positive bag

(PC-SVM). The fact that they significantly underperform

the soft-bag SVM, suggests that the composition of nega-

tive bags is indeed critical for MIL.

We have also investigated how the AP of the soft-bag

SVM varies with the number of negative bags. This is

shown, for two topics, in Figure 7 (right, all positive bags

used in all cases). The near constancy of the AP of the un-

weighted representation suggests that the soft-bag SVM is

quite invariant to this parameter. On the other hand, the per-

formance of weighted representation increases slightly with

the number of negative bags, since more negative bags en-

able better estimates of the indicator of negative instances.

Overall, the mAP of the weighted representation is sig-

nificantly higher than that of its unweighted counterpart

(see Table 2). Although the use of the weighting func-

tion - the 64-component GMM suggested by the popular

SML image annotation baseline of [4] - or its soft-max

counterpart (MI/LR) as a classifier has performance signif-

icantly inferior to that of the soft-bag SVM with uniform

weights, incorporating the GMM-based weights in the latter

improves its performance substantially, leading to the over-

all best result of 32.9%. This confirms that the weighted

representation of (10) is effective whenever bags have a suf-

ficient number of instances. While it is difficult to know

exactly what “sufficient” means, best results would likely

be possible by using cross-validation to choose between the

weighted and non-weighted representations. We have not

attempted this.

Finally, it is worth mentioning that our method recovers

a threshold for dominance of the underlying concept. For

example, on Figure 7 (left), the critical point for “sky” is

k = 50 (of 300 instances), suggesting that a typical image

without “sky” labeling has less than 1/6 of its area covered

by sky. This could be useful to evaluate human labelers in

crowd-sourcing [7, 23].

7. Conclusion

In this work, we considered the relaxed definition of

MIL, allowing positive instances in negative bags. This ac-

counts for noisy labeling of negative data, a common occur-

rence in many popular MIL applications. To address this

generalized problem, we proposed a novel bag representa-

tion based on top instance selection. A theoretical study

on the separability of soft-bag MIL under this represen-

tation was presented. An efficient max-margin classifica-

tion scheme was then derived to exploit the combinatorial

composition space of soft bags, under the proposed repre-

sentation. Experimental results show that, when compared

to state-of-the-art MIL methods, the proposed framework

has highly competitive performance in conventional MIL

problems and significantly better performance when nega-

tive bags are noisy, as is the case for image annotation.
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