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Abstract. Objective functions for training of deep networks for face-related recog-
nition tasks, such as facial expression recognition (FER), usually consider each
sample independently. In this work, we present a novel peak-piloted deep network
(PPDN) that uses a sample with peak expression (easy sample) to supervise the
intermediate feature responses for a sample of non-peak expression (hard sam-
ple) of the same type and from the same subject. The expression evolving pro-
cess from non-peak expression to peak expression can thus be implicitly embed-
ded in the network to achieve the invariance to expression intensities. A special-
purpose back-propagation procedure, peak gradient suppression (PGS), is pro-
posed for network training. It drives the intermediate-layer feature responses of
non-peak expression samples towards those of the corresponding peak expres-
sion samples, while avoiding the inverse. This avoids degrading the recognition
capability for samples of peak expression due to interference from their non-peak
expression counterparts. Extensive comparisons on two popular FER datasets,
Oulu-CASIA and CK+, demonstrate the superiority of the PPDN over state-of-
the-art FER methods, as well as the advantages of both the network structure
and the optimization strategy. Moreover, it is shown that PPDN is a general ar-
chitecture, extensible to other tasks by proper definition of peak and non-peak
samples. This is validated by experiments that show state-of-the-art performance
on pose-invariant face recognition, using the Multi-PIE dataset.

Keywords: Facial Expression Recognition, Peak-Piloted, Deep Network, Peak
Gradient Suppression

1 Introduction

Facial Expression Recognition (FER) aims to predict the basic facial expressions (e.g.
happy, sad, surprise, angry, fear, disgust) from a human face image, as illustrated in
Fig. 1.1 Recently, FER has attracted much research attention [1–7]. It can facilitate
other face-related tasks, such as face recognition [8] and alignment [9]. Despite sig-
nificant recent progress [10, 11, 4, 12], FER is still a challenging problem, due to the

1 This work was performed when Xiaoyun Zhao was an intern at 360 AI Institute.
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following difficulties. First, as illustrated in Fig. 1, different subjects often dsiplay the
same expression with diverse intensities and visual appearances. In a videostream, an
expression will first appear in a subtle form and then grow into a strong display of the
underlying feelings. We refer to the former as a non-peak and to the latter as a peak
expression. Second, peak and non-peak expressions by the same subject can have sig-
nificant variation in terms of attributes such as mouth corner radian, facial wrinkles,
etc. Third, non-peak expressions are more commonly displayed than peak expressions.
It is usually difficult to capture critical and subtle expression details from non-peak ex-
pression images, which can be hard to distinguish across expressions. For example, the
non-peak expressions for fear and sadness are quite similar in Fig. 1.

Peak 

expression

Surprise Angry Happy Fear Sad Disgust

Non-peak 

expression

Fig. 1. Examples of six facial expression samples, including surprise, angry, happy, fear, sad and
disgust. For each subject, the peak and non-peak expressions are shown.

Recently, deep neural network architectures have shown excellent performance in
face-related recognition tasks [13–15]. The has led to the introduction of FER network
architectures [4, 16]. There are, nevertheless, some important limitations. First, most
methods consider each sample independently during learning, ignoring the intrinsic
correlations between each pair of samples (e.g., easy and hard samples). This limits the
discriminative capabilities of the learned models. Second, they focus on recognizing the
clearly separable peak expressions and ignore the most common non-peak expression
samples, whose discrimination can be extremely challenging.

In this paper, we propose a novel peak-piloted deep network (PPDN) architecture,
which implicitly embeds the natural evolution of expressions from non-peak to peak ex-
pression in the learning process, so as to zoom in on the subtle differences between weak
expressions and achieve invariance to expression intensity. Intuitively, as illustrated in
Fig. 2, peak and non-peak expressions from the same subject often exhibit very strong
visual correlations (e.g., similar face parts) and can mutually help the recognition of
each other. The proposed PPDN uses the feature responses to samples of peak expres-
sion (easy samples) to supervise the responses to samples of non-peak expression (hard
samples) of the same type and from the same subject. The resulting mapping of non-
peak expressions into their corresponding peak expressions magnifies their critical and
subtle details, facilitating their recognition.

In principle, an explicit mapping from non-peak to peak expression could signifi-
cantly improve recognition. However, such a mapping is challenging to generate, since
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Surprise

Happy

Fig. 2. Expression evolving process from non-peak expression to peak expression.

the detailed changes of face features (e.g., mouth corner radian and wrinkles) can be
quite difficult to predict. We avoid this problem by focusing on the high-level feature
representation of the facial expressions, which is both more abstract and directly related
to facial expression recognition. In particular, the proposed PPDN optimizes the tasks
of 1) feature transformation from non-peak to peak expression and 2) recognition of
facial expressions in a unified manner. It is, in fact, a general approach, applicable to
many other recognition tasks (e.g. face recognition) by proper definition of peak and
non-peak samples (e.g. frontal and profile faces). By implicitly learning the evolution
from hard poses (e.g., profile faces) to easy poses (e.g., near-frontal faces), it can im-
prove the recognition accuracy of prior solutions to these problems, making them more
robust to pose variation.

During training, the PPDN takes an image pair with a peak and a non-peak expres-
sion of the same type and from the same subject. This image pair is passed through
several intermediate layers to generate feature maps for each expression image. The
L2-norm of the difference between the feature maps of non-peak and peak expres-
sion images is then minimized, to embed the evolution of expressions into the PPDN
framework. In this way, the PPDN incorporates the peak-piloted feature transformation
and facial expression recognition into a unified architecture. The PPDN is learned with
a new back-propagation algorithm, denotes peak gradient suppression (PGS), which
drives the feature responses to non-peak expression instances towards those of the cor-
responding peak expression images, but not the contrary. This is unlike the traditional
optimization of Siamese networks [13], which encourages the feature pairs to be close
to each other, treating the feature maps of the two images equally. Instead, the PPDN
focuses on transforming the features of non-peak expressions towards those of peak ex-
pressions. This is implemented by, during each back-propagation iteration, ignoring the
gradient information due to the peak expression image in the L2-norm minimization of
feature differences, while keeping that due to the non-peak expression. The gradients
of the recognition loss, for both peak and non-peak expression images, are the same
as in traditional back-propagation. This avoids the degradation of the recognition capa-
bility of the network for samples of peak expression due to the influence of non-peak
expression samples.

Overall, this work has four main contributions. 1) The PPDN architecture is pro-
posed, using the responses to samples of peak expression (easy samples) to supervise
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the responses to samples of non-peak expression (hard samples) of the same type and
from the same subject. The targets of peak-piloted feature transformation and facial
expression recognition, for peak and non-peak expressions, are optimized simultane-
ously. 2) A tailored back-propagation procedure, PGS, is proposed to drive the re-
sponses to non-peak expressions towards those of the corresponding peak expressions,
while avoiding the inverse. 3) The PPDN is shown to perform intensity-invariant facial
expression recognition, by effectively recognizing the most common non-peak expres-
sions. 4) Comprehensive evaluations on several FER datasets, namely CK+ [17] and
Oulu-CASIA [18], demonstrate the superiority of the PPDN over previous methods. Its
generalization to other tasks is also demonstrated through state-of-the-art robust face
recognition performance on the public Multi-PIE dataset [19].

2 Related Work

There have been several recent attempts to solve the facial expression recognition prob-
lem. These methods can be grouped into two categories: sequence-based and still image
approaches. In the first category, sequence-based approaches [7, 1, 20, 18, 21] exploit
both the appearance and motion information from video sequences. In the second cat-
egory, still image approaches [10, 4, 12] recognize expressions uniquely from image
appearance patterns. Since still image methods are more generic, recognizing expres-
sions in both still images and sequences, we focus on models for still image expres-
sion recognition. Among these, both hand-crafted pipelines and deep learning methods
have been explored for FER. Hand-crafted approaches [10, 22, 11] perform three steps
sequentially: feature extraction, feature selection and classification. This can lead to
suboptimal recognition, due to the combination of different optimization targets.

Convolutional Neural Network (CNN) architectures [23–25] have recently shown
excellent performance on face-related recognition tasks [26–28]. Methods that resort
to the CNN architecture have also been proposed for FER. For example, Yu et al. [5]
used an ensemble of multiple deep CNNs. Mollahosseini et al. [16] used three inception
structures [24] in convolution for FER. All these methods treat expression instances of
different intensities of the same subject independently. Hence, the correlations between
peak and non-peak expressions are overlooked during learning. In contrast, the pro-
posed PPDN learns to embed the evolution from non-peak to peak expressions, so as to
facilitate image-based FER.

3 The Peak-Piloted Deep Network (PPDN)

In this work we introduce the PPDN framework, which implicitly learns the evolution
from non-peak to peak expressions, in the FER context. As illustrated in Fig. 3, during
training the PPDN takes an image pair as input. This consists of a peak and a non-
peak expression of the same type and from the same subject. This image pair is passed
through several convolutional and fully-connected layers, generating pairs of feature
maps for each expression image. To drive the feature responses to the non-peak expres-
sion image towards those of the peak expression image, the L2-norm of the feature dif-
ferences is minimized. The learning algorithm optimizes a combination of this L2-norm



Peak-Piloted Deep Network for Facial Expression Recognition 5

Peak 

Expression

Non-Peak 
Expression

𝐺1

𝐺2

𝐹1

𝐹2

Su
rp

rise

H
ap

p
y

D
isgu

st

Fear

Sad

A
n

gry

Su
rp

rise

H
ap

p
y

D
isgu

st

Fear

Sad

A
n

gry

𝑊1 𝑊2

||𝐺
1
𝑥

−
𝐺
2 (𝑥

)||
2

||𝐹
1
𝑥

−
𝐹
2 (𝑥

)||
2

Cross-entropy

Cross-entropy

Convolutional 

Architecture

Fig. 3. Illustration of the training stage of PPDN. During training, PPDN takes the pair of peak
and non-peak expression images as input. After passing the pair through several convolutional
and fully-connected layers, the intermediate feature maps can be obtained for peak and non-
peak expression images, respectively. The L2-norm loss between these feature maps is optimized
for driving the features of the non-peak expression image towards those of the peak expression
image. The network parameters can thus be updated by jointly optimizing the L2-norm losses
and the losses of recognizing two expression images. During the back-propagation process, the
Peak Gradient Suppression (PGS) is utilized.

loss and two recognition losses, one per expression image. Due to its excellent perfor-
mance on several face-related recognition tasks [29, 30], the popular GoogLeNet [24] is
adopted as the basic network architecture. The incarnations of the inception architecture
in GoogLeNet are restricted to filters sizes 1×1, 3×3 and 5×5. In total, the GoogLeNet
implements nine inception structures after two convolutional layers and two max pool-
ing layers. After that, the first fully-connected layer produces the intermediate features
with 1024 dimensions, and the second fully-connected layer generates the label predic-
tions for six expression labels. During testing, the PPDN takes one still image as input,
outputting the predicted probabilities for all six expression labels.

3.1 Network Optimization

The goal of the PPDN is to learn the evolution from non-peak to peak expressions,
as well as recognize the basic facial expressions. We denote the training set as S =
{xpi , xni , y

p
i , y

n
i , i = 1, ..., N}, where sample xni denotes a face with non-peak expres-

sion, xpi a face with the corresponding peak expression, and yni and ypi are the corre-
sponding expression labels. To supervise the feature responses to the non-peak expres-
sion instance with those of the peak expression instance, the network is learned with a
loss function that includes the L2-norm of the difference between the feature responses



6 X. Zhao, X. Liang, L. Liu, T. Li, Y. Han, N. Vasconcelos, S. Yan

to peak and non-peak expression instances. Cross-entropy losses are also used to opti-
mize the recognition of the two expression images. Overall, the loss of the PPDN is

J =
1

N
(J1 + J2 + J3 + λ

N∑
i=1

||W ||2)

=
1

N

N∑
i=1

∑
j∈Ω
‖fj(xpi ,W )− fj(xni ,W )‖2 + 1

N

N∑
i=1

L(ypi , f(x
p
i ;W ))

+
1

N

N∑
i=1

L(yni , f(x
n
i ;W )) + λ||W ||2,

(1)

where J1, J2 and J3 indicate the L2-norm of the feature differences and the two cross-
entropy losses for recognition, respectively. Note that the peak-piloted feature transfor-
mation is quite generic and could be applied to the features produced by any layers. We
denoteΩ as the set of layers that employ the peak-piloted transformation, and fj , j ∈ Ω
as the feature maps in the j-th layer. To reduce the effects caused by scale variability of
the training data, the features fj are L2 normalized before the L2-norm of the difference
is computed. More specifically, the feature maps fj are concatenated into one vector,
which is L2 normalized. In the second and third terms, L represents the cross-entropy
loss between the ground-truth labels and the predicted probabilities of all labels. The
final regularization term is used to penalize the complexity of network parameters W .
Since the evolution from non-peak to peak expression is embedded into the network,
the latter learns a more robust expression recognizer.

3.2 Peak Gradient Suppression (PGS)

To train the PPDN, we propose a special-purpose back-propagation algorithm for the
optimization of (1). Rather than the traditional straightforward application of stochas-
tic gradient descent [13] [29], the goal is to drive the intermediate-layer responses of
non-peak expression instances towards those of the corresponding peak expression in-
stances, while avoiding the reverse. Under traditional stochastic gradient decent (SGD) [31],
the network parameters would be updated with

W+ =W − γ∇WJ(W ;xpi , x
p
i , y

n
i , y

p
i )

=W − γ

N

∂J1(W ;xni , x
p
i )

∂fj(W ;xni )
× ∂fj(W ;xni )

∂W
− γ

N

∂J1(W ;xni , x
p
i )

∂fj(W ;xpi )
× ∂fj(W ;xpi )

∂W

− 1

N
γ∇WJ2(W ;xpi , y

p
i )−

1

N
γ∇WJ3(W ;xni , y

n
i )− 2γW,

(2)

where γ is the learning rate. The proposed peak gradient suppression (PGS) learning
algorithm uses instead the updates

W+ =W − γ

N

∂J1(W ;xni , x
p
i )

∂fj(W ;xni )
× ∂fj(W ;xni )

∂W

− 1

N
γ∇WJ2(W ;xpi , y

p
i )−

1

N
γ∇WJ3(W ;xni , y

n
i )− 2γW.

(3)
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The difference between (3) and (2) is that the gradients due to the feature responses of
the peak expression image, − γ

N

∂J1(W ;xn
i ,x

p
i )

∂fj(W ;xp
i )
× ∂fj(W ;xp

i )

∂W are suppressed in (3). In this
way, PGS drives the feature responses of non-peak expressions towards those of peak
expressions, but not the contrary. In the appendix, we show that this does not prevent
learning, since the weight update direction of PGS is a descent direction of the overall
loss, although not a steepest descent direction.

4 Experiments

To evaluate the PPDN, we conduct extensive experiments on two popular FER datasets:
CK+ [17] and Oulu-CASIA [18]. To further demonstrate that the PPDN generalizes to
other recognition tasks, we also evaluate its performance on face recognition over the
public Multi-PIE dataset [19].

4.1 Facial Expression Recognition

Training. The PPDN uses the GoogLeNet [24] as basic network structure. The peak-
piloted feature transformation is only employed in the last two fully-connected layers.
Other configurations, using the peak-piloted feature transformation on various convo-
lutional layers are also reported. Since it is not feasible to train the deep network on
the small FER datasets available, we pre-trained GoogLeNet [24] on a large-scale face
recognition dataset, the CASIA Webface dataset [32]. This network was then fine-tuned
for FER. The CASIA Webface dataset contains 494,414 training images from 10,575
subjects, which were used to pre-train the network for 60 epochs with an initial learning
rate of 0.01.For fine-tuning, the face region was first aligned with the detected eyes and
mouth positions.The face regions were then resized to 128×128. The PPDN takes a pair
of peak and non-peak expression images as input. The convolutional layer weights were
initialized with those of the pre-trained model. The weights of the fully connected layer
were initialized randomly using the “xaiver” procedure [33]. The learning rate of the
fully connected layers was set to 0.0001 and that of pre-trained convolutional layers to
0.000001. ALL models were trained using a batch size of 128 image pairs and a weight
decay of 0.0002. The final trained model was obtained after 20,000 iterations. For fair
comparison with previous methods [10, 11, 4], we did not use any data augmentation in
our experiments.

Testing and Evaluation Metric. In the testing phase, the PPDN takes one testing
image as the input and produces its predicted facial expression label. Following the
standard setting of [10, 11], 10-fold subject-independent cross-validation was adopted
for evaluation in all experiments.

Datasets. FER datasets usually provide video sequences for training and testing the
facial expression recognizers. We conducted all experiments on two popular datasets,
CK+ [17] and Oulu-CASIA dataset [18]. For each sequence, the face often gradually
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Table 1. Performance comparisons on six facial expressions with four state-of-the-art methods
and the baseline using GoogLeNet in terms of average classification accuracy by the 10-fold
cross-validation evaluation on CK+ database.

Method Average Accuracy
CSPL [10] 89.9%

AdaGabor [34] 93.3%
LBPSVM [11] 95.1%

BDBN [4] 96.7%
GoogLeNet(baseline) 95.0%

PPDN 97.3%

Table 2. Performance comparisons on six facial expressions with UDCS method and the baseline
using GoogLeNet in terms of average classification accuracy under same setting as UDCS.

Method Average Accuracy
UDCS [35] 49.5%

GoogLeNet(baseline) 66.6%
PPDN 72.4%

evolves from a neutral to a peak facial expression. CK+ includes six basic facial ex-
pressions (angry, happy, surprise, sad, disgust, fear) and one non basic expression (con-
tempt). It contains 593 sequences from 123 subjects, of which only 327 are annotated
with expression labels. Oulu-CASIA contains 480 sequences of six facial expressions
under normal illumination, including 80 subjects between 23 and 58 years old.

Comparisons with Still Image-based Approaches. Table 1 compares the PPDN to
still image-based approaches on CK+, under the standard setting in which only the
last one to three frames (i.e., nearly peak expressions) per sequence are considered for
training and testing. Four state-of-the-art methods are considered: common and specific
patches learning (CSPL) [10], which employs multi-task learning for feature selection,
AdaGabor [34] and LBPSVM [11], which are based on AdaBoost [36], and Boosted
Deep Belief Network (BDBN) [4], which jointly optimizes feature extraction and fea-
ture selection. In addition, we also compare the PPDN to the baseline “GoogLeNet
(baseline),” which optimizes the standard GoogLeNet with SGD. Similarly to previous
methods [10, 11, 4], the PPDN is evaluated on the last three frames of each sequence.
Table 2 compares the PPDN with UDCS [35] on Oulu-CASIA, under a similar setting
where the first 9 images of each sequence are ignored, the first 40 individuals are taken
as training samples and the rest as testing. In all cases, the PPDN input is the pair of
one of the non-peak frames (all frames other than the last one) and the correspond-
ing peak frame (the last frame) in a sequence. The PPDN significantly outperforms all
other, achieving 97.3% vs a previous best of 96.7% on CK+ and 72.4% vs 66.6% on
Oulu-CASIA. This demonstrates the superiority of embedding the expression evolution
in the network learning.
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Table 3. Performance comparison on CK+ database in terms of average classification accuracy
of the 10-fold cross-validation when evaluating on three different test sets, including “weak ex-
pression”, “peak expression” and “combined”, respectively.

Method weak expression peak expression combined
PPDN(standard SGD) 81.34% 99.12% 94.18%
GoogLeNet (baseline) 78.10% 98.96% 92.19%

PPDN 83.36% 99.30% 95.33%

Table 4. Performance comparison on Oulu-CASIA database in terms of average classification
accuracy of the 10-fold cross-validation when evaluating on three different test sets, including
“weak expression”, “peak expression” and “combined”, respectively.

Method weak expression peak expression combined
PPDN(standard SGD) 67.05% 82.91% 73.54%
GoogLeNet (baseline) 64.64% 79.21% 71.32%

PPDN 67.95% 84.59% 74.99%

Training and Testing with More Non-peak Expressions. The main advantage of
the PPDN is its improved ability to recognize non-peak expressions. To test this, we
compared how performance varies with the number of non-peak expressions. Note that
for each video sequence, the face expression evolves from neutral to a peak expression.
The first six frames within a sequence are usually neutral, with the peak expression
appearing in the final frames. Empirically, we determined that the 7th to 9th frame
often show non-peak expressions with very weak intensities, which we denote as “weak
expressions.” In addition to the training images used in the standard setting, we used all
frames beyond the 7th for training.

Since the previous methods did not publish their codes, we only compare the PPDN
to the baseline “GoogLeNet (baseline)”. Table 3 reports results for CK+ and Table 4 for
Oulu-CASIA. Three different test sets were considered: “weak expression” indicates
that the test set only contains the non-peak expression images from the 7th to the 9th
frames; “peak expression” only includes the last frame; and “combined” uses all frames
from the 7th to the last. “PPDN (standard SGD)” is the version of PPDN trained with
standard SGD optimization, and “GoogLeNet (baseline)” the basic GoogLeNet, taking
each expression image as input and trained with SGD. The most substantial improve-
ments are obtained on the “weak expression” test set, 83.36% and 67.95% of “PPDN”
vs. 78.10% and 64.64% of “GoogLeNet (baseline)” on CK+ and Oulu-CASIA, respec-
tively. This is evidence in support of the advantage of explicitly learning the evolution
from non-peak to peak expressions. In addition, the PPDN outperforms “PPDN (stan-
dard SGD)” and “GoogLeNet (baseline)” on the combined sets, where both peak and
non-peak expressions are evaluated.

Comparisons with Sequence-based Approaches. Unlike the still-image recognition
setting, which evaluates the predictions of frames from a sequence, the sequence-based
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Table 5. Performance comparisons with three sequence-based approaches and the baseline
“GoogLeNet (baseline)” in terms of average classification accuracy of the 10-fold cross-
validation on CK+ database.

Method Experimental Settings Average Accuracy
3DCNN-DAP [37] sequence-based 92.4%
STM-ExpLet [1] sequence-based 94.2%

DTAGN(Joint) [7] sequence-based 97.3%
GoogLeNet (baseline) image-based 99.0%
PPDN (standard SGD) image-based 99.1%

PPDN w/o peak image-based 99.2%
PPDN image-based 99.3%

Table 6. Performance comparisons with five sequence-based approaches and the baseline
“GoogLeNet (baseline)” in terms of average classification accuracy of the 10-fold cross-
validation on Oulu-CASIA.

Method Experimental Settings Average Accuracy
HOG 3D [21] sequence-based 70.63%
AdaLBP [18] sequence-based 73.54%
Atlases [20] sequence-based 75.52%

STM-ExpLet [1] sequence-based 74.59%
DTAGN(Joint) [7] sequence-based 81.46%

GoogLeNet (baseline) image-based 79.21%
PPDN (standard SGD) image-based 82.91%

PPDN w/o peak image-based 83.67%
PPDN image-based 84.59%

setting requires a prediction for the whole sequence. Previous sequence-based approaches
take the whole sequence as input and use motion information during inference. In-
stead, the PPDN regards each pair of non-peak and peak frame as input, and only out-
puts the label of the peak frame as prediction for the whole sequence, in the testing
phase. Tables 5 and 6 compare the PPDN to several sequence-based approaches plus
“GoogLeNet(baseline)” on CK+ and Oulu-CASIA. Compared with [1, 37, 7], which
leverage motion information, the PPDN, which only relies on appearance information,
achieves significantly better prediction performance. On CK+, it has gains of 5.1%
and 2% over ‘STM-ExpLet” [1] and “DTAGN(Joint)” [7]. On Oulu-CASIA it achieves
84.59% vs. the 75.52% of “Atlases” [20] and the 81.46% of “DTAGN(Joint)” [7]. In ad-
dition, we evaluate this experiment without peak information, i.e. selecting image with
highest classification scores for all categories as peak frame in testing. PPDN achieves
99.2% on CK+ and 83.67% on Oulu-CASIA.

PGS vs. standard SGD. As discussed above, PGS suppresses gradients from peak
expressions, so as to drive the features of non-peak expression samples towards those
of peak expression samples, but not the contrary. Standard SGD uses all gradients, due
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Table 7. Performance comparisons by adding the peak-piloted feature transformation on different
convolutional layers when evaluated on Oulu-CASIA dataset.

Method inception layersthe last FC layerthe first FC layerboth FC layers
Inception-3a ! # # #

Inception-3b ! # # #

Inception-4a ! # # #

Inception-4b ! # # #

Inception-4c ! # # #

Inception-4d ! # # #

Inception-4e ! # # #

Inception-5a ! # # #

Inception-5b ! # # #

Fc1 ! # ! !

Fc2 ! ! # !

Average Accuracy 74.49% 73.33% 73.48% 74.99%

Table 8. Comparisons of the version with and without using peak information on Oulu-CASIA
database in terms of average classification accuracy of the 10-fold cross-validation.

Method weak expression peak expression combined
PPDN w/o peak 67.52% 83.79% 74.01%

PPDN 67.95% 84.59% 74.99%

Table 9. Face recognition rates for various poses under “setting 1”.

Method −45◦ −30◦ −15◦ +15◦ +30◦ +45◦ Average
GoogLeNet (baseline) 86.57% 99.3% 100% 100% 100% 90.06% 95.99%

PPDN 93.96% 100% 100% 100% 100% 93.96% 97.98%

Table 10. Face recognition rates for various poses under “setting 2”.

Method −45◦ −30◦ −15◦ +15◦ +30◦ +45◦ Average
Li et al. [38] 56.62% 77.22% 89.12% 88.81% 79.12% 58.14% 74.84%

Zhu et al. [27] 67.10% 74.60% 86.10% 83.30% 75.30% 61.80% 74.70%
CPI [28] 66.60% 78.00% 87.30% 85.50% 75.80% 62.30% 75.90%
CPF [28] 73.00% 81.70% 89.40% 89.50% 80.50% 70.30% 80.70%

GoogLeNet (baseline) 56.62% 77.22% 89.12% 88.81% 79.12% 58.14% 74.84%
PPDN 72.06% 85.41% 92.44% 91.38% 87.07% 70.97% 83.22%
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to both non-peak and peak expression samples. We hypothesized that this will degrade
recognition for samples of peak expressions, due to interference from non-peak ex-
pression samples. This hypothesis is confirmed by the results of Tables 3 and 4. PGS
outperforms standard SGD on all three test sets.

Ablative Studies on Peak-Piloted Feature Transformation. The peak-piloted feature
transformation, which is the key innovation of the PPDN, can be used on all layers of the
network. Employing the transformation on different convolutional and fully-connected
layers can result in different levels of supervision of non-peak responses by peak re-
sponses. For example, early convolutional layers extract fine-grained details (e.g., local
boundaries or illuminations) of faces, while later layers capture more semantic infor-
mation, e.g., the appearance pattens of mouths and eyes. Table 7 presents an extensive
comparison, by adding peak-piloted feature supervision on various layers. Note that we
employ GoogLeNet [24], which includes 9 inception layers, as basic network. Four dif-
ferent settings are tested: “inception layers” indicates that the loss of the peak-piloted
feature transformation is appended for all inception layers plus the two fully-connected
layers; “the first FC layer,”“the last FC layer” and “both FC layers” append the loss to
the first, last, and and both fully-connected layers, respectively.

It can be seen that using the peak-piloted feature transformation only on the two
fully connected layers achieves the best performance. Using additional losses on all
inception layers has roughly the same performance. Eliminating the loss of a fully-
connected layer decreases performance by more than 1%. These results show that the
peak-piloted feature transformation is more useful for supervising the highly semantic
feature representations (two fully-connected layers) than the early convolutional layers.

Absence of Peak Information. Table 8 demonstrates that the PPDN can also be used
when the peak frame is not known a priori, which is usually the case for real-world
videos. Given all video sequences, we trained the basic “GoogLeNet (baseline)” with
10-fold cross validation. The models were trained with 9-folds and then used to predict
the ground-truth expression label in the remaining fold. The frame with the highest pre-
diction score in each sequence was treated as the peak expression image. The PPDN
was finally trained using the strategy of the previous experiments. This training proce-
dure is more applicable to videos where the information of the peak expression is not
available. The PPDN can still obtain results comparable to those of the model trained
with the ground-truth peak frame information.

4.2 Generalization Ability of the PPDN

The learning of the evolution from a hard sample to an easy sample is applicable to
other face-related recognition tasks. We demonstrate this by evaluating the PPDN on
face recognition. One challenge to this task is learning robust features, invariant to
pose and view. In this case, near-frontal faces can be treated easy examples, similar
to peak expressions in FER, while profile faces can be viewed as hard samples, similar
to non-peak expressions. The effectiveness of PPDN in learning pose-invariant features
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is demonstrated by comparing PPDN features to the “GoogLeNet(baseline)” features
on the popular Multi-PIE dataset [19].

All the following experiments were conducted on the images of “session 1” on
Multi-PIE, where the face images of 249 subjects are provided. Two experimental set-
tings were evaluated to demonstrate the generalization ability of PPDN on face recog-
nition. For the “setting 1” of Table 9, only images under normal illumination were used
for training and testing, where seven poses of the first 100 subjects (ID from 001 to 100)
were used for training and the six poses (from −45◦ to 45◦) of the remaining individu-
als used for testing. One frontal face per subject was used as gallery image. Overall, 700
images were used for training and 894 images for testing. By treating the frontal face
and one of the profile faces as input, the PPDN can embed the implicit transformation
from profile faces to frontal faces into the network learning, for face recognition pur-
poses. In the “setting 2” of Table 10, 100 subjects (ID 001 to 100) with seven different
poses under 20 different illumination conditions were used for training and the rest with
six poses and 19 illumination conditions were used for testing. This led to 14,000 train-
ing images and 16,986 testing images. Similarly to the first setting, PPDN takes the pair
of a frontal face with normal illumination and one of the profile faces with 20 illumina-
tions from the same subject as the input. The PPDN can thus learn the evolution from
both the profile to the frontal face and non-normal to normal illumination. In addition to
“GoogLeNet (baseline),” we compared the PPDN to four state-of-the-art methods: con-
trolled pose feature(CPF) [28], controlled pose image(CPI) [28], Zhu et al. [27] and Li
et al. [38]. The pre-trained model, prepocessing steps, and learning rate used in the FER
experiments were adopted here. Under “setting 1” the network was trained with 10,000
iterations and under “setting 2” with 30,000 iterations. Face recognition performance is
measured by the accuracy of the predicted subject identity.

It can be seen that the PPDN achieves considerable improvements over “GoogLeNet
(baseline)” for the testing images of hard poses (i.e., −45◦ and 45◦) in both “setting 1”
and “setting 2”. Significant improvements over “GoogLeNet (baseline)” are also ob-
served for the average over all poses (97.98% vs 95.99% under “setting 1” and 83.22%
vs 74.84% under “setting 2”). The PPDN also beats all baselines by 2.52% under “set-
ting 2”. This supports the conclusion that the PPDN can be effectively generalized to
face recognition tasks, which benefit from embedding the evolution from hard to easy
samples into the network parameters.

5 Conclusions

In this paper, we propose a novel peak-piloted deep network for facial expression recog-
nition. The main novelty is the embedding of the expression evolution from non-peak
to peak into the network parameters. PPDN jointly optimizes an L2-norm loss of peak-
piloted feature transformation and the cross-entropy losses of expression recognition.
By using a special-purpose back-propagation procedure (PGS) for network optimiza-
tion, the PPDN can drive the intermediate-layer features of the non-peak expression
sample towards those of the peak expression sample, while avoiding the inverse.
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Appendix

The loss

J1 =

N∑
i=1

∑
j∈Ω
‖fj(xpi ,W )− fj(xni ,W )‖2 (A-1)

has gradient

∇WJ1 = 2

N∑
i=1

∑
j∈Ω

(fj(x
p
i ,W )− fj(xni ,W ))∇W fj(xni ,W )

+ 2

N∑
i=1

∑
j∈Ω

(fj(x
p
i ,W )− fj(xni ,W ))∇W fj(xpi ,W ).

(A-2)

The PGS is

∇̃WJ1 = 2

N∑
i=1

∑
j∈Ω

(fj(x
p
i ,W )− fj(xni ,W ))∇W fj(xni ,W ) (A-3)

Defining

A =

N∑
i=1

∑
j∈Ω

(fj(x
p
i ,W )− fj(xni ,W ))∇W fj(xni ,W ) (A-4)

and

B =

N∑
i=1

∑
j∈Ω

(fj(x
p
i ,W )− fj(xni ,W ))∇W fj(xpi ,W ) (A-5)

it follows that

< ∇WJ1, ∇̃WJ1 > = −4 < A,B > +4‖A‖2 (A-6)

or

< ∇WJ1, ∇̃WJ1 > = −4‖A‖‖B‖ cos θ + 4‖A‖2 (A-7)

where θ is angle between A and B. Hence, the dot-product is greater than zero when

‖B‖ cos θ < ‖A‖. (A-8)

This holds for sure as ∇W fj(xni ,W ) converges to ∇W fj(xpi ,W ) which is the goal of
optimization, but is generally true if the sizes of gradients∇W fj(xni ,W ) and∇W fj(xpi ,W )

are similar on average. Since the dot-product is positive, ∇̃WJ1 is a descent (although
not a steepest descent) direction for the loss function J1. Hence, the PGS is a descent
direction for the total loss. Note that, because there are also the gradients of J2 and J3,
this can hold even when (A-8) is violated, if the gradients of J2 and J3 are dominant.
Hence, the PGS is likely to converge to a minimum of the loss.
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