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Abstract. A unified deep neural network, denoted the multi-scale CNN
(MS-CNN), is proposed for fast multi-scale object detection. The MS-
CNN consists of a proposal sub-network and a detection sub-network.
In the proposal sub-network, detection is performed at multiple output
layers, so that receptive fields match objects of different scales. These
complementary scale-specific detectors are combined to produce a strong
multi-scale object detector. The unified network is learned end-to-end, by
optimizing a multi-task loss. Feature upsampling by deconvolution is also
explored, as an alternative to input upsampling, to reduce the memory
and computation costs. State-of-the-art object detection performance,
at up to 15 fps, is reported on datasets, such as KITTI and Caltech,
containing a substantial number of small objects.
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1 Introduction

Classical object detectors, based on the sliding window paradigm, search for ob-
jects at multiple scales and aspect ratios. While real-time detectors are available
for certain classes of objects, e.g. faces or pedestrians [1, 2], it has proven diffi-
cult to build detectors of multiple object classes under this paradigm. Recently,
there has been interest in detectors derived from deep convolutional neural net-
works (CNNs) [3–7]. While these have shown much greater ability to address
the multiclass problem, less progress has been made towards the detection of
objects at multiple scales. The R-CNN [3] samples object proposals at multiple
scales, using a preliminary attention stage [8], and then warps these proposals
to the size (e.g. 224×224) supported by the CNN. This is, however, very inef-
ficient from a computational standpoint. The development of an effective and
computationally efficient region proposal mechanism is still an open problem.
The more recent Faster-RCNN [9] addresses the issue with a region proposal
network (RPN), which enables end-to-end training. However, the RPN gener-
ates proposals of multiple scales by sliding a fixed set of filters over a fixed set of
convolutional feature maps. This creates an inconsistency between the sizes of
objects, which are variable, and filter receptive fields, which are fixed. As shown
in Fig. 1, a fixed receptive field cannot cover the multiple scales at which objects
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Fig. 1. In natural images, objects can appear at very different scales, as illustrated by
the yellow bounding boxes. A single receptive field, such as that of the RPN [9] (shown
in the shaded area), cannot match this variability.

appear in natural scenes. This compromises detection performance, which tends
to be particularly poor for small objects, like that in the center of Fig. 1. In fact,
[4, 5, 9] handle such objects by upsampling the input image both at training and
testing time. This increases the memory and computation costs of the detector.

This work proposes a unified multi-scale deep CNN, denoted the multi-scale
CNN (MS-CNN), for fast object detection. Similar to [9], this network consists
of two sub-networks: an object proposal network and an accurate detection net-
work. Both of them are learned end-to-end and share computations. However,
to ease the inconsistency between the sizes of objects and receptive fields, ob-
ject detection is performed with multiple output layers, each focusing on objects
within certain scale ranges (see Fig. 3). The intuition is that lower network lay-
ers, such as “conv-3,” have smaller receptive fields, better matched to detect
small objects. Conversely, higher layers, such as “conv-5,” are best suited for the
detection of large objects. The complimentary detectors at different output lay-
ers are combined to form a strong multi-scale detector. This is shown to produce
accurate object proposals on detection benchmarks with large variation of scale,
such as KITTI [10], achieving a recall of over 95% for only 100 proposals.

A second contribution of this work is the use of feature upsampling as an
alternative to input upsampling. This is achieved by introducing a deconvolu-
tional layer that increases the resolution of feature maps (see Fig. 4), enabling
small objects to produce larger regions of strong response. This is shown to re-
duce memory and computation costs. While deconvolution has been explored
for segmentation [11] and edge detection [12], it is, as far as we know, for the
first time used to speed up and improve detection. When combined with efficient
context encoding and hard negative mining, it results in a detector that advances
the state-of-the-art detection on the KITTI [10] and Caltech [13] benchmarks.
Without image upsampling, the MS-CNN achieves speeds of 10 fps on KITTI
(1250×375) and 15 fps on Caltech (640×480) images.

2 Related Work

One of the earliest methods to achieve real-time detection with high accuracy
was the cascaded detector of [1]. This architecture has been widely used to im-
plement sliding window detectors for faces [1, 14], pedestrians [2, 15] and cars
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[16]. Two main streams of research have been pursued to improve its speed: fast
feature extraction [1, 2] and cascade learning [14, 17, 15]. In [1], a set of efficient
Haar features was proposed with recourse to integral images. The aggregate fea-
ture channels (ACF) of [2] made it possible to compute HOG features at about
100 fps. On the learning front, [14] proposed the soft-cascade, a method to trans-
form a classifier learned with boosting into a cascade with certain guarantees in
terms of false positive and detection rate. [17] introduced a Lagrangian formula-
tion to learn cascades that achieve the optimal trade-off between accuracy and
computational complexity. [15] extended this formulation for cascades of highly
heterogeneous features, ranging from ACF set to deep CNNs, with widely differ-
ent complexity. The main current limitation of detector cascades is the difficulty
of implementing multiclass detectors under this architecture.

In an attempt to leverage the success of deep neural networks for object clas-
sification, [3] proposed the R-CNN detector. This combines an object proposal
mechanism [8] and a CNN classifier [18]. While the R-CNN surpassed previous
detectors [19, 20] by a large margin, its speed is limited by the need for object
proposal generation and repeated CNN evaluation. [6] has shown that this could
be ameliorated with recourse to spatial pyramid pooling (SPP), which allows the
computation of CNN features once per image, increasing the detection speed by
an order of magnitude. Building on SPP, the Fast-RCNN [4] introduced the ideas
of back-propagation through the ROI pooling layer and multi-task learning of
a classifier and a bounding box regressor. However, it still depends on bottom-
up proposal generation. More recently, the Faster-RCNN [9] has addressed the
generation of object proposals and classifier within a single neural network, lead-
ing to a significant speedup for proposal detection. Another interesting work is
YOLO [21], which outputs object detections within a 7×7 grid. This network
runs at ∼40 fps, but with some compromise of detection accuracy.

For object recognition, it has been shown beneficial to combine multiple
losses, defined on intermediate layers of a single network [22, 23, 11, 12]. GoogLeNet
[22] proposed the use of three weighted classification losses, applied at layers of
intermediate heights, showing that this type of regularization is useful for very
deep models. The deeply supervised network architecture of [23] extended this
idea to a larger number of layers. The fact that higher layers convey more se-
mantic information motivated [11] to combine features from intermediate layers,
leading to more accurate semantic segmentation. A similar idea was shown use-
ful for edge detection in [12]. Similar to [22, 23, 11, 12], the proposed MS-CNN
is learned with losses that account for intermediate layer outputs. However, the
aim is not to simply regularize the learning, as in [22, 23], or provide detailed
information for higher outputs, as in [11, 12]. Instead, the goal is to produce a
strong individual object detector at each intermediate output layer.

3 Multi-scale Object Proposal Network

In this section, we introduce the proposed network for the generation of object
proposals.
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Fig. 2. Different strategies for multi-scale detection. The length of model template
represents the template size.

3.1 Multi-scale Detection

The coverage of many object scales is a critical problem for object detection.
Since a detector is basically a dot-product between a learned template and an
image region, the template has to be matched to the spatial support of the object
to recognize. There are two main strategies to achieve this goal. The first is to
learn a single classifier and rescale the image multiple times, so that the classifier
can match all possible object sizes. As illustrated in Fig. 2 (a), this strategy
requires feature computation at multiple image scales. While it usually produces
the most accurate detection, it tends to be very costly. An alternative approach
is to apply multiple classifiers to a single input image. This strategy, illustrated
in Fig. 2 (b), avoids the repeated computation of feature maps and tends to be
efficient. However, it requires an individual classifier for each object scale and
usually fails to produce good detectors. Several approaches have been proposed
to achieve a good trade-off between accuracy and complexity. For example, the
strategy of Fig. 2 (c) is to rescale the input a few times and learn a small number
of model templates [24]. Another possibility is the feature approximation of [2].
As shown in Fig. 2 (d), this consists of rescaling the input a small number of
times and interpolating the missing feature maps. This has been shown to achieve
considerable speed-ups for a very modest loss of classification accuracy [2].

The implementation of multi-scale strategies on CNN-based detectors is slightly
different from those discussed above, due to the complexity of CNN features. As
shown in Fig. 2 (e), the R-CNN of [3] simply warps object proposal patches
to the natural scale of the CNN. This is somewhat similar to Fig. 2 (a), but
features are computed for patches rather than the entire image. The multi-scale
mechanism of the RPN [9], shown in Fig. 2 (f), is similar to that of Fig. 2 (b).
However, multiple sets of templates of the same size are applied to all feature
maps. This can lead to a severe scale inconsistency for template matching. As
shown in Fig. 1, the single scale of the feature maps, dictated by the (228×228)
receptive field of the CNN, can be severely mismatched to small (e.g. 32×32) or
large (e.g. 640×640) objects. This compromises object detection performance.

Inspired by previous evidence on the benefits of the strategy of Fig. 2 (c)
over that of Fig. 2 (b), we propose a new multi-scale strategy, shown in Fig. 2
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Fig. 3. Proposal sub-network of the MS-CNN. The bold cubes are the output tensors
of the network. h × w is the filter size, c the number of classes, and b the number of
bounding box coordinates.

(g). This can be seen as the deep CNN extension of Fig. 2 (c), but only uses a
single scale of input. It differs from both Fig. 2 (e) and (f) in that it exploits
feature maps of several resolutions to detect objects at different scales. This is
accomplished by the application of a set of templates at intermediate network
layers. This results in a set of variable receptive field sizes, which can cover a
large range of object sizes.

3.2 Architecture

The detailed architecture of the MS-CNN proposal network is shown in Fig. 3.
The network detects objects through several detection branches. The results by
all detection branches are simply declared as the final proposal detections. The
network has a standard CNN trunk, depicted in the center of the figure, and a
set of output branches, which emanate from different layers of the trunk. These
branches consist of a single detection layer. Note that a buffer convolutional
layer is introduced on the branch that emanates after layer “conv4-3”. Since this
branch is close to the lower layers of the trunk network, it affects their gradients
more than the other detection branches. This can lead to some instability during
learning. The buffer convolution prevents the gradients of the detection branch
from being back-propagated directly to the trunk layers.

During training, the parameters W of the multi-scale proposal network are
learned from a set of training samples S = {(Xi, Yi)}Ni=1, where Xi is a train-
ing image patch, and Yi = (yi, bi) the combination of its class label yi ∈
{0, 1, 2, · · · ,K} and bounding box coordinates bi = (bxi , b

y
i , b

w
i , b

h
i ). This is achieved

with a multi-task loss

L(W) =
M∑

m=1

∑
i∈Sm

αmlm(Xi, Yi|W), (1)
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where M is the number of detection branches, αm the weight of loss lm, and
S = {S1, S2, · · · , SM}, where Sm contains the examples of scale m. Note that
only a subset Sm of the training samples, selected by scale, contributes to the
loss of detection layer m. Inspired by the success of joint learning of classification
and bounding box regression [4, 9], the loss of each detection layer combines these
two objectives

l(X,Y |W) = Lcls(p(X), y) + λ[y ≥ 1]Lloc(b, b̂), (2)

where p(X) = (p0(X), · · · , pK(X)) is the probability distribution over classes,

λ a trade-off coefficient, Lcls(p(X), y) = − log py(X) the cross-entropy loss, b̂ =

(b̂x, b̂y, b̂w, b̂h) the regressed bounding box, and

Lloc(b, b̂) =
1

4

∑
j∈{x,y,w,h}

smoothL1(bj , b̂j), (3)

the smoothed bounding box regression loss of [4]. The bounding box loss is only
used for positive samples and the optimal parameters W∗ = argminW L(W)
are learned by stochastic gradient descent.

3.3 Sampling

This section describes the assembly of training samples Sm = {Sm
+ , Sm

− } for each
detection layer m. In what follows, the superscript m is dropped for notional
simplicity. An anchor is centered at the sliding window on layer m associated
with width and height corresponding to filter size. More details can be found in
Table 1. A sample X of anchor bounding box b is labeled as positive if o∗ ≥ 0.5,
where

o∗ = max
i∈Sgt

IoU(b, bi). (4)

Sgt is the ground truth and IoU the intersection over union between two bound-
ing boxes. In this case, Y = (yi∗ , bi∗), where i∗ = argmaxi∈Sgt IoU(b, bi) and
(X,Y ) are added to the positive set S+. All the positive samples in S+ =
{(Xi, Yi)|yi ≥ 1} contribute to the loss. Samples such that o∗ < 0.2 are assigned
to a preliminary negative training pool, and the remaining samples discarded.
For a natural image, the distribution of objects and non-objects is heavily asym-
metric. Sampling is used to compensate for this imbalance. To collect a final
set of negative samples S− = {(Xi, Yi)|yi = 0}, such that |S−| = γ|S+|, we
considered three sampling strategies: random, bootstrapping, and mixture.

Random sampling consists of randomly selecting negative samples according
to a uniform distribution. Since the distribution of hard and easy negatives is
heavily asymmetric too, most randomly collected samples are easy negatives. It
is well known that hard negatives mining helps boost performance, since hard
negatives have the largest influence on the detection accuracy. Bootstrapping
accounts for this, by ranking the negative samples according to their object-
ness scores, and then collecting top |S−| negatives. Mixture sampling combines
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the two, randomly sampling half of S− and sampling the other half by boot-
strapping. In our experiments, mixture sampling has very similar performance
to bootstrapping.

To guarantee that each detection layer only detects objects in a certain range
of scales, the training set for the layer consists of the subset of S that covers the
corresponding scale range. For example, the samples of smallest scale are used
to train the detector of “det-8” in Fig. 3. It is possible that no positive training
samples are available for a detection layer, resulting in |S−|/|S+| ≫ γ. This
can make learning unstable. To address this problem, the cross-entropy terms of
positives and negatives are weighted as follows

Lcls =
1

1 + γ

1

|S+|
∑
i∈S+

− log pyi(Xi) +
γ

1 + γ

1

|S−|
∑
i∈S−

− log p0(Xi). (5)

3.4 Implementation Details

Data Augmentation In [4, 6], it is argued that multi-scale training is not
needed, since deep neural networks are adept at learning scale invariance. This,
however, is not true for datasets such as Caltech [13] and KITTI [10], where ob-
ject scales can span multiple octaves. In KITTI, many objects are quite small.
Without rescaling, the cardinalities of the sets S+ = {S1

+, S
2
+, · · · , SM

+ } are
wildly varying. In general, the set of training examples of largest object size
is very small. To ease this imbalance, the original images are randomly resized
to multiple scales.

Fine-tuning Training the Fast-RCNN [4] and RPN [9] networks requires large
amounts of memory and a small mini-batch, due to the large size of the input
(i.e. 1000×600). This leads to a very heavy training procedure. In fact, many
background regions that are useless for training take substantially amounts of
memory. Thus, we randomly crop a small patch (e.g. 448×448) around objects
from the whole image. This drastically reduces the memory requirements, en-
abling four images to fit into the typical GPU memory of 12G.

Learning is initialized with the popular VGG-Net [25]. Since bootstrapping
and the multi-task loss can make training unstable in the early iterations, a two-
stage procedure is adopted. The first stage uses random sampling and a small
trade-off coefficient λ (e.g. 0.05). 10,000 iterations are run with a learning rate of
0.00005. The resulting model is used to initialize the second stage, where random
sampling is switched to bootstrapping and λ = 1. We set αi = 0.9 for “det-8”
and αi = 1 for the other layers. Another 25,000 iterations are run with an initial
learning rate of 0.00005, which decays 10 times after every 10,000 iterations.
This two-stage learning procedure enables stable multi-task training.

4 Object Detection Network

Although the proposal network could work as a detector itself, it is not strong,
since its sliding windows do not cover objects well. To increase detection accu-
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racy, a detection network is added. Following [4], a ROI pooling layer is first
used to extract features of a fixed dimension (e.g. 7×7×512). The features are
then fed to a fully connected layer and output layers, as shown in Fig. 4. A
deconvolution layer, described in Section 4.1, is added to double the resolution
of the feature maps. The multi-task loss of (1) is extended to

L(W,Wd) =
M∑

m=1

∑
i∈Sm

αmlm(Xi, Yi|W) +
∑

i∈SM+1

αM+1l
M+1(Xi, Yi|W,Wd),

(6)
where lM+1 and SM+1 are the loss and training samples for the detection
sub-network. SM+1 is collected as in [4]. As in (2), lM+1 combines a cross-
entropy loss for classification and a smoothed L1 loss for bounding box regression.
The detection sub-network shares some of the proposal sub-network parameters
W and adds some parameters Wd. The parameters are optimized jointly, i.e.
(W∗,W∗

d) = argminL(W,Wd). In the proposed implementation, ROI pooling
is applied to the top of the “conv4-3” layer, instead of the “conv5-3” layer of [4],
since “conv4-3” feature maps performed better in our experiments. One possi-
ble explanation is that “conv4-3” corresponds to higher resolution and is better
suited for location-aware bounding box regression.

4.1 CNN Feature Map Approximation

Input size has a critical role in CNN-based object detection accuracy. Simply
forwarding object patches, at the original scale, through the CNN impairs per-
formance (especially for small ones), since the pre-trained CNN models have
a natural scale (e.g. 224×224). While the R-CNN naturally solves this prob-
lem through warping [3], it is not explicitly addressed by the Fast-RCNN [4]
or Faster-RCNN [9]. To bridge the scale gap, these methods simply upsample
input images (by ∼2 times). For datasets, such as KITTI [10], containing large
amounts of small objects, this has limited effectiveness. Input upsampling also
has three side effects: large memory requirements, slow training and slow test-
ing. It should be noted that input upsampling does not enrich the image details.
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Instead, it is needed because the higher convolutional layers respond very weakly
to small objects. For example, a 32×32 object is mapped into a 4×4 patch of the
“conv4-3” layer and a 2×2 patch of the “conv5-3” layer. This provides limited
information for 7×7 ROI pooling.

To address this problem, we consider an efficient way to increase the resolu-
tion of feature maps. This consists of upsampling feature maps (instead of the
input) using a deconvolution layer, as shown in Fig. 4. This strategy is similar to
that of [2], shown in Fig. 2 (d), where input rescaling is replaced by feature rescal-
ing. In [2], a feature approximator is learned by least squares. In the CNN world,
a better solution is to use a deconvolution layer, similar to that of [11]. Unlike
input upsampling, feature upsampling does not incur in extra costs for memory
and computation. Our experiments show that the addition of a deconvolution
layer significantly boosts detection performance, especially for small objects. To
the best of our knowledge, this is the first application of deconvolution to jointly
improve the speed and accuracy of an object detector.

4.2 Context Embedding

Context has been shown useful for object detection [7, 5, 26] and segmentation
[27]. Context information has been modeled by a recurrent neural network in [26]
and acquired from multiple regions around the object location in [7, 5, 27]. In this
work, we focus on context from multiple regions. As shown in Fig. 4, features
from an object (green cube) and a context (blue cube) region are stacked together
immediately after ROI pooling. The context region is 1.5 times larger than the
object region. An extra convolutional layer without padding is used to reduce the
number of model parameters. It helps compress redundant context and object
information, without loss of accuracy, and guarantees that the number of model
parameters is approximately the same.

4.3 Implementation Details

Learning is initialized with the model generated by the first learning stage of the
proposal network, described in Section 3.4. The learning rate is set to 0.0005, and
reduced by a factor of 10 times after every 10,000 iterations. Learning stops after
25,000 iterations. The joint optimization of (6) is solved by back-propagation
throughout the unified network. Bootstrapping is used and λ = 1. Following [4],
the parameters of layers“conv1-1” to “conv2-2” are fixed during learning, for
faster training.

5 Experimental Evaluation

The performance of the MS-CNN detector was evaluated on the KITTI [10] and
Caltech Pedestrian [13] benchmarks. These were chosen because, unlike VOC
[28] and ImageNet [29], they contain many small objects. Typical image sizes
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Table 1. Parameter configurations of the different models.

det-8 det-16 det-32 det-64 ROI FC

car
filter 5x5 7x7 5x5 7x7 5x5 7x7 5x5 7x7 4096
anchor 40x40 56x56 80x80 112x112 160x160 224x224 320x320

ped/cyc
filter 5x3 7x5 5x3 7x5 5x3 7x5 5x3 7x5 2048
anchor 40x28 56x36 80x56 112x72 160x112 224x144 320x224

caltech
filter 5x3 7x5 5x3 7x5 5x3 7x5 5x3 8x4 2048
anchor 40x20 56x28 80x40 112x56 160x80 224x112 320x160

Table 2. Detection recall of the various detection layers on KITTI validation set (car),
as a function of object hight in pixels.

det-8 det-16 det-32 det-64 combined

25≤height<50 0.9180 0.3071 0.0003 0 0.9360
50≤height<100 0.5934 0.9660 0.4252 0 0.9814
100≤height<200 0.0007 0.5997 0.9929 0.4582 0.9964

height≥200 0 0 0.9583 0.9792 0.9583
all scales 0.6486 0.5654 0.3149 0.0863 0.9611

are 1250×375 on KITTI and 640×480 on Caltech. KITTI contains three ob-
ject classes: car, pedestrian and cyclist, and three levels of evaluation: easy,
moderate and hard. The “moderate” level is the most commonly used. In to-
tal, 7,481 images are available for training/validation, and 7,518 for testing.
Since no ground truth is available for the test set, we followed [5], splitting the
trainval set into training and validation sets. In all ablation experiments, the
training set was used for learning and the validation set for evaluation. Follow-
ing [5], a model was trained for car detection and another for pedestrian/cyclist
detection. One pedestrian model was learned on Caltech. The model configu-
rations for original input size are shown in Table 1. The detector was imple-
mented in C++ within the Caffe toolbox [30], and source code is available at
https://github.com/zhaoweicai/mscnn. All times are reported for implementa-
tion on a single CPU core (2.40GHz) of an Intel Xeon E5-2630 server with 64GB
of RAM. An NVIDIA Titan GPU was used for CNN computations.

5.1 Proposal Evaluation

We start with an evaluation of the proposal network. Following [31], oracle recall
is used as performance metric. For consistency with the KITTI setup, a ground
truth is recalled if its best matched proposal has IoU higher than 70% for cars,
and 50% for pedestrians and cyclists.
The roles of individual detection layers Table 2 shows the detection accu-
racy of the various detection layers as a function of object height in pixels. As
expected, each layer has highest accuracy for the objects that match its scale.
While the individual recall across scales is low, the combination of all detectors
achieves high recall for all object scales.
The effect of input size Fig. 5 shows that the proposal network is fairly robust
to the size of input images for cars and pedestrians. For cyclist, performance
increases between heights 384 and 576, but there are no gains beyond this. These
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Fig. 5. Proposal recall on the KITTI validation set (moderate). “hXXX” refers to input
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results show that the network can achieve good proposal generation performance
without substantial input upsampling.

Detection sub-network improves proposal sub-network [4] has shown
that multi-task learning can benefit both bounding box regression and clas-
sification. On the other hand [9] showed that, even when features are shared
between the two tasks, object detection does not improve object proposals too
much. Fig. 5 shows that, for the MS-CNN, detection can substantially benefit
proposal generation, especially for pedestrians.

Comparison with the state-of-the-art Fig. 6 compares the proposal gen-
eration network to BING [32], Selective Search [8], EdgeBoxes [33], MCG [34],
3DOP [5] and RPN [9]. The top row of the figure shows that the MS-CNN
achieves a recall about 98% with only 100 proposals. This should be compared
to the ∼2,000 proposals required by 3DOP and the ∼10,000 proposals required
by EdgeBoxbes. While it is not surprising that the proposed network outper-
forms unsupervised proposal methods, such as [8, 33, 34], its large gains over
supervised methods [32, 5], that can even use 3D information, are significant.
The closest performance is achieved by RPN (input upsampled twice), which
has substantially weaker performance for pedestrians and cyclists. When the in-
put is not upsampled, RPN misses even more objects, as shown in Fig. 5. It
is worth mentioning that the MS-CNN generates high quality proposals (high
overlap with the ground truth) without any edge detection or segmentation. This
is evidence for the effectiveness of bounding box regression networks.

5.2 Object Detection Evaluation

In this section we evaluate object detection performance. Since the performance
of the cyclist detector has large variance on the validation set, due to the low
number of cyclist occurrences, only car and pedestrian detection are considered
in the ablation experiments.

The effect of input upsampling Table 3 shows that input upsampling can
be a crucial factor for detection. A significant improvement is obtained by up-
sampling the inputs by 1.5∼2 times, but we saw little gains beyond a factor of
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Fig. 6. Proposal performance comparison on KITTI validation set (moderate). The
first row is proposal recall curves and the second row is recall v.s. IoU for 100 proposals.

Table 3. Results on the KITTI validation set. “hXXX” indicates an input of height
“XXX”, “2x” deconvolution, “ctx” context encoding, and “c” dimensionality reduction
convolution. In columns “Time” and “# params”, entries before the “/” are for car
model and after for pedestrian/cyclist model.

Model Time # params
Cars Pedestrians

Easy Mod Hard Easy Mod Hard
h384 0.11s/0.09s 471M/217M 90.90 80.63 68.94 73.70 68.37 60.72
h576 0.22s/0.19s 471M/217M 90.42 88.14 73.44 75.35 70.77 63.07
h768 0.41s/0.36s 471M/217M 89.84 88.88 75.78 76.38 72.26 64.08

h576-random 0.22s/0.19s 471M/217M 90.94 87.50 71.27 70.69 65.91 58.28
h576-mixture 0.22s/0.19s 471M/217M 90.33 88.12 72.90 75.09 70.49 62.43

h384-2x 0.12s/0.10s 471M/217M 90.55 87.93 71.90 76.01 69.53 61.57
h576-2x 0.23s/0.20s 471M/217M 94.08 89.12 75.54 77.74 72.49 64.43
h768-2x 0.43s/0.38s 471M/217M 90.96 88.83 75.19 76.33 72.71 64.31
h576-ctx 0.24s/0.20s 863M/357M 92.89 88.88 74.34 76.89 71.45 63.50
h576-ctx-c 0.22s/0.19s 297M/155M 90.49 89.13 74.85 76.82 72.13 64.14

proposal network (h576) 0.19s/0.18s 80M/78M 82.73 73.49 63.22 64.03 60.54 55.07

2. This is smaller than the factor of 3.5 required by [5]. Larger factors lead to
(exponentially) slower detectors and larger memory requirements.

Sampling strategy Table 3 compares sampling strategies: random (“h576-
random”), bootstrapping (“h576”) and mixture (“h576-mixture”). For car, these
three strategies are close to each other. For pedestrian, bootstrapping and mix-
ture are close, but random is much worse. Note that random sampling has many
more false positives than the other two.

CNN feature approximation Three methods were attempted for learning
the deconvolution layer for feature map approximation: 1) bilinearly interpo-
lated weights; 2) weights initialized by bilinear interpolation and learned with
back-propagation; 3) weights initialized with Gaussian noise and learned by back-
propagation. We found the first method to work best, confirming the findings
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Fig. 7. Comparison to the state-of-the-art on KITTI benchmark test set (moderate).

Table 4. Results on the KITTI benchmark test set (only published works shown).

Method Time
Cars Pedestrians Cyclists

Easy Mod Hard Easy Mod Hard Easy Mod Hard
LSVM-MDPM-sv [35] 10s 68.02 56.48 44.18 47.74 39.36 35.95 35.04 27.50 26.21
DPM-VOC-VP [36] 8s 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

SubCat [16] 0.7s 84.14 75.46 59.71 54.67 42.34 37.95 - - -
3DVP [37] 40s 87.46 75.77 65.38 - - - - - -
AOG [38] 3s 84.80 75.94 60.70 - - - - - -

Faster-RCNN [9] 2s 86.71 81.84 71.12 78.86 65.90 61.18 72.26 63.35 55.90
CompACT-Deep [15] 1s - - - 70.69 58.74 52.71 - - -

DeepParts [39] 1s - - - 70.49 58.67 52.78 - - -
FilteredICF [40] 2s - - - 67.65 56.75 51.12 - - -
pAUCEnsT [41] 60s - - - 65.26 54.49 48.60 51.62 38.03 33.38
Regionlets [20] 1s 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83

3DOP [5] 3s 93.04 88.64 79.10 81.78 67.47 64.70 78.39 68.94 61.37
SDP+RPN [42] 0.4s 90.14 88.85 78.38 80.09 70.16 64.82 81.37 73.74 65.31

MS-CNN 0.4s 90.03 89.02 76.11 83.92 73.70 68.31 84.06 75.46 66.07

of [11, 12]. As shown in Table 3, the deconvoltion layer helps in most cases. The
gains are larger for smaller input images, which tend to have smaller objects.
Note that the feature map approximation adds trivial computation and no pa-
rameters.
Context embedding Table 3 shows that there is a gain in encoding context.
However, the number of model parameters almost doubles. The dimensionality
reduction convolution layer significantly reduces this problem, without impair-
ment of accuracy or speed.
Object detection by the proposal network The proposal network can work
as a detector, by switching the class-agnostic classification to class-specific. Ta-
ble 3 shows that, although not as strong as the unified network, it achieves
fairly good results, which are better than those of some detectors on the KITTI
leaderboard1.
Comparison to the state-of-the-art The results of model “h768-ctx-c” were
submitted to the KITTI leaderboard. A comparison to previous approaches is
given in Table 4 and Fig. 7. The MS-CNN set a new record for the detection of
pedestrians and cyclists. The columns “Pedestrians-Mod” and “Cyclists-Mod”
show substantial gains (6 and 7 points respectively) over 3DOP [5], and much
better performance than the Faster-RCNN [9], Regionlets [20], etc. We also led a

1 http://www.cvlibs.net/datasets/kitti/
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Fig. 8. Comparison to the state-of-the-art on Caltech.

nontrivial margin over the very recent SDP+RPN [42], which used scale depen-
dent pooling. In terms of speed, the network is fairly fast. For the largest input
size, the MS-CNN detector is about 8 times faster than 3DOP. On the original
images (1250×375) detection speed reaches 10 fps.
Pedestrian detection on Caltech The MS-CNN detector was also evalu-
ated on the Caltech pedestrian benchmark. The model “h720-ctx” was com-
pared to methods such as DeepParts [39], CompACT-Deep [15], CheckerBoard
[40], LDCF [43], ACF [2], and SpatialPooling [41] on three tasks: reasonable,
medium and partial occlusion. As shown in Fig. 8, the MS-CNN has state-of-
the-art performance. Fig. 8 (b) and (c) show that it performs very well for small
and occluded objects, outperforming DeepParts [39], which explicitly addresses
occlusion. Moreover, it misses a very small number of pedestrians, due to the
accuracy of the proposal network. The speed is approximately 8 fps (15 fps) on
upsampled 960×720 (original 640×480) Caltech images.

6 Conclusions

We have proposed a unified deep convolutional neural network, denoted the MS-
CNN, for fast multi-scale object detection. The detection is preformed at various
intermediate network layers, whose receptive fields match various object scales.
This enables the detection of all object scales by feedforwarding a single input
image through the network, which results in a very fast detector. CNN feature
approximation was also explored, as an alternative to input upsampling. It was
shown to result in significant savings in memory and computation. Overall, the
MS-CNN detector achieves high detection rates at speeds of up to 15 fps.
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