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Minimum Probability of Error Image Retrieval
Nuno Vasconcelos, Member, IEEE

Abstract—We address the design of optimal architectures for
image retrieval from large databases. Minimum probability of
error (MPE) is adopted as the optimality criterion and retrieval
formulated as a problem of statistical classification. The proba-
bility of retrieval error is lower- and upper-bounded by functions
of the Bayes and density estimation errors, and the impact of
the components of the retrieval architecture (namely, the feature
transformation and density estimation) on these bounds is char-
acterized. This characterization suggests interpreting the search
for the MPE feature set as the search for the minimum of the
convex hull of a collection of curves of probability of error versus
feature space dimension. A new algorithm for MPE feature design,
based on a dictionary of empirical feature sets and the wrapper
model for feature selection, is proposed. It is shown that, unlike
traditional feature selection techniques, this algorithm scales
to problems containing large numbers of classes. Experimental
evaluation reveals that the MPE architecture is at least as good as
popular empirical solutions on the narrow domains where these
perform best but significantly outperforms them outside these
domains.

Index Terms—Bayesian methods, color and texture, expec-
tation–maximization, feature selection, image retrieval, image
similarity, minimum probability of error, mixture models, mul-
tiresolution, optimal retrieval systems, wrapper methods.

I. INTRODUCTION

G IVEN its dependence on text-based data-structures, ex-
isting database technology faces a new and difficult chal-

lenge with the ubiquitous emergence of multimedia databases.
Because the automatic generation of natural language descrip-
tors for multimedia signals is still beyond the reach of signal
understanding technology, an entirely new database search par-
adigm has been advocated by various researchers over the last
decade [1]–[5]. This new paradigm, which is commonly referred
to as content-based retrieval, augments traditional text-based
search with the ability to query by example: Users express their
queries by providing examples of what they are looking for,
and the target database items are retrieved by similarity to these
user-provided examples.

While significant progress has been achieved, over the last
decade, in various areas of the content-based retrieval problem,
e.g., see [4]–[6] for extensive reviews of the literature, it is still
not well understood how to design retrieval architectures that are
optimal in an end-to-end sense, i.e., where all components are
jointly optimized with respect to an overall optimality criterion
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or cost. Since, in the absence of a reason to favor certain types of
errors, the natural goal of any retrieval system is to be correct as
often as possible, it seems sensible to adopt, as optimality crite-
rion, the minimization of the probability of retrieval error.1 The
retrieval problem is, in this way, formalized as one of supervised
learning, or classification, and a vast body of existing knowledge
in statistical learning becomes applicable to the design of op-
timal retrieval architectures. However, while statistical learning
has been most successful in the context of relatively small clas-
sification problems (i.e., problems involving a small number of
classes, typically two, and relatively small amounts of data per
class), signal databases can easily contain thousands of classes
and invariably generate large quantities of data per class. Due to
this, many of the state-of-the-art solutions for problems such as
classifier design or feature selection do not scale well enough to
be applicable in the retrieval context.

In this work, we study the design of architectures for the eval-
uation of image similarity that are scalable and optimal with re-
spect to the joint design of minimum probability of error (MPE)
similarity functions, feature spaces, and density models. We
consider lower and upper bounds on the probability of error of a
retrieval system and study their dependence on these elements.
The resulting theoretical characterization suggests interpreta-
tion of a feature transformation as a curve of probability of error
versus feature space dimension, and the MPE solution as the
minimum of the convex hull of all such curves. The analytical
derivation of this minimum is, however, a difficult problem, be-
cause it depends on the particular classifier implementation. We
propose a new algorithmic solution that combines the wrapper
model for automated feature selection (FS) [7], [8] and prior
knowledge about what are good features for various image do-
mains.

We start from a dictionary of empirical feature transforma-
tions, i.e., transformations that have consistently met the chal-
lenge of extensive evaluation in specific image domains and use
cross-validation to select the best feature subset for the target
database. We then show that the wrapper approach to feature
subset selection can be performed efficiently when all densities
are modeled as Gauss mixtures and all feature transformations
are linear and invertible. More precisely, we derive efficient re-
cursive procedures for computing both model parameters and
query similarity scores over sequences of embedded subspaces
of the different feature transforms in the dictionary. It is shown
that for databases with large numbers of image classes, the re-
sulting MPE-retrieval architecture has complexity that is equiv-
alent to that of a suboptimal retrieval system based on an arbi-
trarily chosen feature space of the same dimension.

1This formulation can also be easily extended to the case where there is a
preference for certain types of errors, even though the issue is not addressed in
this work.
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Experimental evaluation on an image collection, containing
diverse types of imagery and a large number of image classes,
supports three main conclusions. First, the MPE feature space
for a given database can be dramatically superior, in terms
of probability of error, to an arbitrarily chosen space. This
holds even when the latter is chosen from the same dictionary
as the former or when the two are subspaces of the same
feature space. Second, different feature transforms perform
best on different databases, and a given feature transformation
can have significant variations in probability of error when
applied to different types of imagery. Third, the MPE-retrieval
architecture performs at least as well as the empirical methods
that are most popular in the retrieval literature on the databases
containing imagery of the narrow domains for which they were
proposed. On the other hand, for databases containing generic
imagery, MPE retrieval achieves significant gains over these
narrow-scope methods.

The paper is organized as follows. In Section II, we formu-
late the retrieval problem as one of supervised learning and re-
view relevant results from learning theory. Section III addresses
the issue of MPE image representation. The probability of error
of a retrieval system is shown to be bounded by two functions
of this representation, and the dependence of these bounds on
the dimension of the space is characterized. The new MPE re-
trieval architecture is proposed in Section IV, where we discuss
the merits of feature subset selection and derive the efficient
wrapper algorithm for its implementation. Finally, experimental
results are presented in Section V.

II. MPE RETRIEVAL SYSTEMS

A retrieval system is a mapping

from a feature space to the index set of the classes
in the database. The retrieval system is optimal, under some
suitable cost, if and the similarity function are jointly
optimized with respect to that cost. In this work, we adopt the
minimization of the probability of retrieval error as the goal for
this optimization.

Definition 1: An MPE retrieval system is the mapping

that, for all and , minimizes

where is the random variable from which the feature vector
is drawn, and is the random variable that assigns to its

database class.
It follows from this definition that an MPE retrieval system

is an example of the classical Bayes classification problem
[9]–[12]. While this makes various known classification results
applicable to the retrieval problem, it should be pointed out
that a retrieval system is not a standard classifier. Because, in
the retrieval problem, the ultimate set of class-labels (relevant
versus irrelevant to the query) is user and query dependent,

these class labels are not known in advance of the classification
operation. Hence, it is impossible to train a classifier that
determines what is relevant to the user. An alternative solution,
that we adopt in this work, is to assume that the class structure
is an intrinsic property of the database. In particular, we assume
that each image in the database is a class by itself. This is a
solution of least commitment that enables the treatment of the
problem in the traditional classification framework. It is also in
line with various previous formulations of the problem, that by
posing retrieval as some form of image matching (or matching
of image descriptors such as histogram, feature vectors, etc.),
[1], [2], [13]–[23] implicitly adopt the same strategy. The
formulation, and all the algorithms presented in this work,
are equally valid when the images are grouped according to
some other predefined class structure (see, e.g., [24]). Finally,
the ranking of images according to relevance/irrelevance to a
particular user can still be implemented, for each query, with
recourse to relevance feedback algorithms, e.g., as discussed
in [25]. In this paper, we concentrate on the theoretical and
algorithmic aspects of the basic classifier architecture.

A. MPE Classifiers

We start with a brief review of some known results on MPE
classification; see, e.g., [12] for proofs.

Theorem 1: Consider an -ary classifier of feature vec-
tors drawn from a random variable in a feature space .
The probability of error of is lower bounded by the Bayes
error

(1)

where means expectation with respect to , and
is the posterior probability of class given .

It follows that the Bayes error (BE) is the fundamental limit to
the performance of MPE retrieval systems. It is also well known
that this bound is tight, in the sense that there is always a clas-
sifier that achieves it.

Theorem 2: Given a feature space and query feature vector
, the similarity function that minimizes the probability of re-

trieval error is the Bayes classifier

(2)

The probability of error of the Bayes classifier is the BE.
The two theorems establish the Bayes classifier as the op-

timal similarity function for MPE retrieval systems. This, how-
ever, assumes the knowledge of the class-posterior probabilities

, which are usually not available and must be esti-
mated from a finite training sample. One popular solution is to
rely on Bayes’ rule

(3)

where is the probability density for the feature vec-
tors drawn from the th class, and is the prior probability
for that class, and approximate the optimal decision rule by

(4)
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where and are estimates of the quantities in (3).
If there is no a priori reason to favor any of the image classes
in the database, it is acceptable to assume that the class priors

are known and uniform, i.e., .
This leads to a decision function that depends only on estimates
for the class-conditional densities

(5)

Because these class-conditional densities can be estimated inde-
pendently for each class, the overall training complexity scales
linearly in the number of classes, making this classifier archi-
tecture particularly appealing for problems such as image re-
trieval or speech recognition [26], where that number is large.
On the other hand, it should be emphasized that (5) is optimal,
in the MPE sense, only insofar as the probability estimates are
error-free. This is a requirement that is never met in practice,
where density estimates are based on a finite data sample and,
therefore, have nonzero variance. In fact, when the feature space

is high dimensional, the density estimation error can be sub-
stantial.

Theoverallprobabilityofretrievalerror thereforehas twocom-
ponents:1) theBE that, as shownby(1),only dependson and2)
thedensityestimationerror thatdependsboth on and theproce-
dure used to obtain the density estimates. In Section III, we study
the problem of achieving the optimal balance, in the MPE sense,
between the two sources of error. For now, we assume the exis-
tence of a space of observations , e.g., the space of image
blocks, and investigate the benefits of introducing a feature trans-
formation . The following theorem provides some
insight on how the selection of affects the BE.

Theorem 3: Given a retrieval system with observation space
and a feature transformation

then

(6)

where and are, respectively, the BEs on and . Fur-
thermore, equality is achieved if and only if is an invertible
transformation.

Proof: See [12] for the case of two-class problems and
[27] for an extension to multiple classes.

III. MPE SIGNAL REPRESENTATION

The design of MPE retrieval systems requires a good under-
standingofhowtheselectionofboththefeaturespaceandtheprob-
ability models used for density estimation affect the probability
of error. This question can be decomposed into two simpler prob-
lems: 1) how the representation components affect the Bayes and
estimation errors and 2) the impact of these errors on the proba-
bility of error. We start by addressing the second question.

A. Impact of Bayes and Estimation Errors on the Probability
of Error

We have already seen that the BE is a lower bound on the
probability of error. Furthermore, when the density estimation

error is null, (5) is equivalent to the Bayes classifier, and there-
fore, the probability of error is equal to the BE. Intuitively, the
impact of poor density estimates should be to increase the differ-
ence between these two quantities. This intuition is quantified
by the following theorem.

Theorem 4: Consider a retrieval problem with equiprobable
classes , , a feature space , unknown class
conditional densities , and the decision function of
(5). For such a retrieval problem, the difference between the
probability of error and the BE is upper bounded by

(7)

where

KL (8)

is the density estimation error, and

KL

(9)
is the Kullback–Leibler (KL) divergence [28] between the true

and estimated densities for class .
Proof: See Appendix A.

We note that this is a bound on the distance between the ac-
tual probability of error and the Bayes error and is substantially
different from various bounds available in the information theo-
retic literature (see, e.g., [29] and [30]) that relate BE to the KL
divergence between class densities. In these bounds, the KL di-
vergence appears as a measure of discrimination, and the bounds
formalize the intuition that the BE decreases when the separa-
tion between class-conditional densities increases, i.e., with the
increase of the KL divergence between classes. In the theorem
above, the KL divergence does not take the role of a measure
of discrimination, but instead, it appears as a measure of den-
sity estimation error. In particular, instead of the KL divergence
between class-conditional densities, (7) is a function of the KL
divergence between the true class-conditional densities and their
estimates. It quantifies the statement that the probability of error
is lower bounded by the BE and upper bounded by the sum of
the BE and the estimation error.

B. Impact of the Representation Components on the Bayes
and Estimation Errors

The components of signal representation affect the Bayes and
estimation errors in very distinct ways. Since the BE only de-
pends on the true densities and not their estimates, the only im-
pact of the density model is on the estimation error. The rela-
tionships between these two quantities have been extensively
studied in the statistics literature and are fairly well understood
[11], [31]–[33]. We will not review them here but will simply
select, in Section IV, a model that is well suited to the retrieval
problem. For now, we concentrate on the dependence of the
Bayes and estimation errors on the feature transformation.

1) Embedded Feature Spaces: We start by considering se-
quences of nested vector spaces of increasing dimension, which
are also known as sequences of embedded vector spaces [34].
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Definition 2: A sequence of vector spaces ,
such that , is called embedded if there
exists a sequence of one-to-one mappings

(10)

such that .
The concept of a sequence of embedded feature spaces plays

a central role in this work for two main reasons. The first is the-
oretical and will be addressed in the remainder of this section.
It motivates the search for the MPE feature transformation as
the search for the minimum of the convex hull of a series of
curves of probability of error, which is the basis for the feature
selection algorithms introduced in Section IV. The second is al-
gorithmic and will be discussed in Section IV. It resides in the
fact that, for certain parametric probabilistic models, parameter
estimates in all the embedded subspaces of a given vector space
can be obtained in closed form once the parameter estimates are
available for that space. This enables very large computational
savings over the alternative of estimating parameters in all sub-
spaces and makes the search for the minimum of the convex
hull of probability of error feasible from a computational point
of view.

2) Tradeoff Between Bayes and Estimation Errors: We start
with the theoretical motivation.

Theorem 5: Let

be a linear feature transformation, and

(11)

where , which
is the projection of the Euclidean space along the coordinate
axes. Then

(12)

is a sequence of embedded feature spaces such that

(13)

Furthermore, if is a sequence or random
variables such that

(14)

and is a sequence of decision functions

(15)

then

(16)

Proof: See Appendix B.
The theorem shows that any linear feature transformation

originates a sequence of embedded vector spaces with mono-
tonically decreasing Bayes error and monotonically increasing
estimation error. It follows that it is impossible to find a feature
transformation that can minimize the Bayes and estimation er-
rors simultaneously. On one hand, given a feature space , it

Fig. 1. (Left) Upper bound, lower bound, and probability of error as a function
of subspace dimension. (Right) Curves of probability of error associated with
three feature transformations. The convex hull is shown in dark, and its
minimum value is p .

is possible to find a subspace where density estimates are more
accurate. On the other hand, the projection onto this subspace
will increase the BE. The practical result is that for any feature
transform used in a retrieval system, there is a need to reach a
compromise between the two sources of error. This is illustrated
by the left plot of Fig. 1, which shows the typical evolution of
the upper and lower bounds on the probability of error as one
considers successively higher dimensional subspaces of a fea-
ture space . Since accurate density estimates can usually be
obtained in low-dimensional spaces, the two bounds tend to be
close when the subspace dimension is small. In this case, the
probability of error is dominated by the BE. For higher dimen-
sional subspaces, the decrease in BE is canceled by an increase
in estimation error, and the actual probability of error increases.
Overall, the curve of the probability of error exhibits the convex
shape depicted in the figure, where an inflection point marks the
subspace dimension for which BE ceases to be dominant. Dif-
ferent feature transforms will originate different curves, and to
achieve optimality, in the MPE sense, a retrieval system must
operate on the minimum of the convex hull of all these curves.
This is illustrated by the right plot of Fig. 1 and motivates the
MPE retrieval architecture introduced in Section IV.

3) Relationship to Structural Risk Minimization: Before
presenting the details of this architecture, we note that the
combination of the construct of a sequence of embedded spaces
(Theorem 5) and the search for the MPE embedded subspace of
a given feature space are an implementation of the principle of
structural risk minimization (SRM) for the design of learning
machines [35]. The SRM principle relies on a nested subset of
decision functions and chooses the decision
function that minimizes the classification error on a training
set (usually referred to as empirical risk) from the subset that
provides the best guarantees in terms of the actual probability
of error. These guarantees are given in the form of bounds of
the type

(17)

where , denotes the true probability, the em-
pirical estimate obtained from a training set of size , and
is confidence interval, which is usually closely related to an
upper bound of the supremum of the error within the class .
While various bounds are possible (see, e.g., the discussion in
[36]), the most popular are based on the Vapnik–Chervonenkis
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(VC) dimension of the subset [35]. In this case, the SRM
principle trades the quality of the approximation of the training
data with the complexity of the approximating function, as mea-
sured by the VC dimension; for larger , while the minimum

decreases, increases. The comparison of
(17) with (7) reveals a similarity of roles for the terms 1)
and and 2) and , which make
the search for the MPE subspace of a form of SRM. The at-
tractive property of Theorem 5 is that, unlike for example the
bounds based on the VC dimension, it depends directly on the
dimension of the space. It therefore makes a strong argument for
relying on the dimensionality of the space as the parameter that
controls the actual probability of error. In the following section,
we introduce a retrieval architecture based on this principle.

IV. RETRIEVAL ARCHITECTURE

The implementation of the MPE retrieval architecture re-
quires the design of a density estimation and a feature selection
module.

A. Density Estimation

Density estimates are typically obtained by fitting a para-
metric model to a training sample, usually by finding the set of
parameters of maximum likelihood with respect to the training
sample. We adopt this framework and rely on the popular family
of Gauss mixture densities [11], [37] to obtain all parameter es-
timates.

Definition 3: A Gauss mixture is a density of the form

(18)

where

(19)

is a Gaussian component of mean and nonsingular covariance

(20)

and is the probability of the th component .
The Gauss mixture is appealing as a probabilistic model for

retrieval since it provides a description of the true density that
is compact enough to lead to a similarity function with tractable
complexity, is tractable in high-dimensional spaces, and can ap-
proximate multimodal densities.

B. Feature Extraction and Selection

We start with a brief review of the predominant strategies
for finding optimal features. Feature extraction (FE) techniques
pose the problem as that of finding the optimal feature trans-
formation directly from training data. This is usually done
through an optimization procedure, e.g., gradient descent on the
space of matrices when is a linear mapping from to

. FS techniques assume that the optimal features are avail-
able but included in a larger set that is highly redundant. Given a

collection of features, the problem is to select the best subset
of cardinality .

Both strategies suffer from significant limitations. Since the
space of transform matrices is high-dimensional, the optimiza-
tion problem of FE is usually quite difficult to solve, in terms
of the computation required, the ability to escape local minima,
and the availability of sufficient training data to guarantee gen-
eralization. All these limitations are magnified by classification
problems containing large numbers of classes, such as retrieval.
Globally optimal FS is equally intractable since it requires the
evaluation of the cost for all possible -subsets of the fea-
tures [40]. The most popular alternative is to rely on greedy,
or sequential, search procedures [38] that attain locally optimal
solutions. These solutions are frequently better than the local
minima in which FE tends to get trapped. Nevertheless, FS so-
lutions can also be quite suboptimal. For example, highly dis-
criminant linear combinations of feature are, in general, quite
difficult to detect. Finally, the complexity of FS is usually in-
tractable in the context of large-scale classification problems,
even when sequential search methods are used [39].

One solution that is popular in the retrieval literature is to dis-
regard optimality and adopt what we denote by empirical fea-
ture transformations. These are transformations that 1) at some
intuitive level have good properties for the classification task at
hand and 2) have met the challenge of extensive empirical eval-
uation in certain image domains. For example, the coefficients
of an autoregressive model have been shown to perform well on
texture databases [41], color histograms have been quite suc-
cessful in various object recognition tasks [13], principal com-
ponent analysis representations are widely used for face recog-
nition [42], edge-based features have been proposed for shape
databases [17], and Haar wavelets have worked well for pedes-
trian detection [43]. This strategy eliminates the complexity of
determining the optimal set of features, and the resulting classi-
fiers usually work quite well in the database domains for which
they were designed. The main limitation is, however, an obvious
lack of generalization (e.g., auto-regressive models tend not to
work well on face databases, color histograms fail on texture
databases, and so forth).

In this work, we propose an alternative strategy that combines
aspects from the empirical and FS approaches and is motivated
by Fig. 1. Since FS performs a search over the set of all combi-
nations of features, it solves the discrete optimization problem
of selecting the curve, among those associated with all the com-
binations, that touches the convex hull of the probability of error
in the point closest to . However, because many feature com-
binations originate curves of probability of error that never come
close to the convex hull, FS is highly inefficient: The optimizer
has to sort through many poor feature groupings in order to be
able to find the few ones that are real candidates for the best
transformation. It would be desirable to restrict the search to
those feature combinations that do come close to the convex
hull.

The empirical strategy is a limiting case of this approach:
Because empirical transformations achieve near-optimal perfor-
mance on some database classes, their curves of probability of
error must indeed be close to the convex hull in some set of
points. However, this set is usually small, and the resulting re-
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trieval system does not generalize well. Nevertheless, the fact
that it is usually possible to find an empirical transformation that
performs well for any type of database suggests that by taking
the union of all such transformations, it should be possible to
construct a feature set capable of achieving a probability of error
that is close to the convex hull for most databases of practical
interest. In fact, this should be possible without an exhaustive
search within the set of empirical features since these already
come grouped into feature transformations that perform well in
different regions of the convex hull.

This observation suggests a strategy consisting of 1) the
adoption of a dictionary of empirical feature transforms and 2)
a search for the best transform for each target database. This
strategy is significantly simpler than the search for the best
arbitrary combination of features performed by traditional FS.
If, for example, there are transformations and each produces

features, the number of possible solutions decreases from

to We next investigate how to implement this strategy.

C. MPE Basis Selection

We start by recalling that for any invertible linear feature
transformation , it is possible to define an inverse,
reconstruction, mapping

The columns of the associated matrix are called basis func-
tions, and is the basis matrix for . The rows of are called
the filter functions, or filters, of the transformation. They are
the same as the basis functions when the transformation is or-
thonormal. Since there is a one-to-one mapping between invert-
ible linear feature transformations and their bases, we will use
the two terms indiscriminately.

Definition 4: A bases dictionary is a set
of invertible linear transformations.

is the MPE basis in the dictionary for a given database if it
achieves smaller probability of error in that database than all
other bases in .

Clearly, the search for the MPE basis requires a strategy for
evaluating the probability of error of a given basis. Since the
latter depends, in nontrivial ways, on both the basis and the
classifier, this requires cross-validation. Cross-validation is a
well-established procedure in the statistical literature (see, e.g.,
[44]) that relies on the training set itself to evaluate classification
performance. While many variations are possible, it always con-
sists of removing a subset of examples (the cross-validation set)
from the training set, designing a classifier with the remaining
ones, and estimating the classification rate by that obtained on
the cross-validation set. The process is usually repeated with
different subsets of training examples as cross-validation sets.

The idea of using classification performance (measured with
cross-validation) as the criterion for FS, by including the clas-
sifier in the FS loop, is a popular one in the machine learning
literature, where the procedure is commonly referred to as the

wrapper model for FS [7], [8]. However, the straightforward
application of this model would add a significant computational
burden to the design of a retrieval system since it requires
redesigning the classifier and evaluating all cross-validation
queries on all feature subspaces associated with all transforma-
tions in . In the remainder of this section, we show that an
efficient implementation of the wrapper model exists when the
retrieval architecture follows the probabilistic retrieval model,
all densities are Gauss mixtures, and all feature transformations
are linear and invertible. The starting point is the following
property of the Gauss mixture.2

Property 1: If is a linear feature transformation
and are two random variables such that is

distributed according to (18) and , then

(21)

D. MPE Subspace Selection and Embedded Mixture Models

Consider a linear transformation and associated feature
space . From Theorem 5, the sequence is
a sequence of embedded subspaces of . As discussed in Sec-
tion III, the characterization of the probability of error achiev-
able with requires the determination of its MPE subspace.
Denoting by the projection matrix associated with , i.e.,

, where is the identity matrix of order and
the zero matrix, it follows from the property above

that if is distributed according to (18), the random vari-
ables are distributed according to

(22)

The collection of densities in (22) is the family of embedded
mixture models associated with . It has two properties of sig-
nificant practical interest. The first is that once an estimate is
available for , the parameters of can be ob-
tained for any by simply extracting the first components of
the mean vectors and the upper-left submatrix of the co-
variances . This implies that it is not necessary to repeat the
density estimation for each of the subspace dimensions under
consideration. Hence, the complexity of estimating all
is the same as that of estimating . The second is a sim-
ilar result for the complexity of evaluating the queries in the
cross-validation set. It is based on the fact that the complexity
of (18) is dominated by the computation of and .

Lemma 1: Consider the contribution to ,
of a mixture component with mean and

covariance . The terms
and are given by the following recursion.

Initial conditions: ,

Recursion:

(23)

(24)

2This property follows trivially from the equivalent, and well-known, prop-
erty for Gaussian random variables.
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(25)

(26)

(27)

where is a mapping that adds to matrix a row and a column
(which become the last row and column, respectively) of zeros,

, is the th element of , and
the vector containing the first elements

of the th column of . The complexity of evaluating all
and is .

Proof: See Appendix C.
It follows from this lemma that the complexity of evaluating

all is , and since this is also the cost of com-
puting , this complexity is the same as that required to com-
pute . Hence, the search for the MPE subspace of a query

does not impose any increase in complexity over the simple
evaluation of the similarity score for that query. It should
be noted that the lemma assumes the knowledge of the MPE or-
dering of the embedded subspaces, without which, a combinato-
rial search for the optimal subspace ordering would be required.
While, in practice, the optimal subspace ordering is not known,
an empirical ordering that works well in the target domain is
usually available for any given empirical feature transformation.
We will return to this topic in Section IV-F.

E. Selection of the Optimal Feature Transform

The following theorem extends the results of the previous
section to the case where the goal is to find the MPE-subspace
among all transformations in a basis dictionary.

Theorem 6: Consider a basis dictionary and the random
variable associated with , which is the range space of
the feature transformation . Let be distributed ac-
cording to a Gauss mixture of parameters . Then, for
any , the random variables
are distributed according to a sequence of embedded Gauss mix-
tures of the form

(28)

where . Furthermore, the con-
tribution to , of a

mixture component of mean and covariance
can be computed recur-

sively. Letting and

, the recursion is as follows.

Initial conditions:

Recursion:

where is a mapping that adds to matrix a row and a column
(which become the last row and column, respectively) of zeros,

, is the element of ,

and the vector containing the first elements of the
th column of this matrix. Given , the complexity of evaluating

all and is .
Proof: See Appendix D.

The procedure required to 1) map the parameters of a mix-
ture component from a reference space to the
embedded subspaces of all other associated with and
2) recursively computing all terms required for evaluating the
contribution of that component to the similarity score of a query

in all these subspaces is illustrated in Fig. 2. The basic
building block is a downward projection of the parameters of
the mixture component, followed by the recursion that propa-
gates and from the lowest dimensional subspace
to the full space. This building block is replicated for each or
the feature transformations in .

Theorem 6 characterizes the computational cost of cross-val-
idation in terms of both density estimation and query evaluation.
With respect to the former, the theorem shows that given the pa-
rameters associated with one of the transforms in

, it is straightforward to obtain the parameters associated with
all other transforms in the dictionary. Hence, the complexity of
estimating densities on all feature spaces is equal to that re-
quired to estimate them in only one space. This implies that
designing all classifiers necessary for MPE feature subset selec-
tion by cross-validation does not require more computation than
the suboptimal approach of designing a single classifier on an
arbitrarily chosen feature space. With respect to the complexity
of query evaluation, the theorem shows that the complexity of
searching for the MPE subspace of the entire dictionary is equiv-
alent to that of performing queries on a suboptimal system
with an arbitrarily chosen feature space, where is the total
number of images that are used in the cross-validation set.

Overall, when both density estimation and the evaluation of
the cross-validation queries are accounted for, the training time
of the MPE architecture now proposed is equal to the sum of the
training time required by a suboptimal retrieval system on an ar-
bitrary feature space plus the time required by such a system
to evaluate queries . When the image database on which
the retrieval system will operate has a large number of classes,
the former is dominant, and the training time is, therefore,
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Fig. 2. Recursive algorithm for 1) propagating the parameters f���;���g of a mixture component in a reference spaceX to all other features subspaces associated
with T and 2) computing the components D and M of the similarity function on all feature subspaces. 	 is the mapping that implements (23)–(27).

not substantially affected by cross-validation. Note that once the
MPE-feature space is found, the complexity of query evaluation
is exactly the same as that of a suboptimal retrieval system (since
theotherbases in thedictionaryareno longerconsidered).Hence,
there is no increase in retrieval time or in the time required by op-
erations other than training, e.g., building indexes.

F. Embedded Multiresolution Mixture Models

One interesting question is whether the restriction to the set
of linear transforms will significantly reduce the performance of
the resulting MPE-retrieval systems. After all, empirical trans-
forms such as the set of coefficients of a multiresolution simul-
taneous auto-regressive (MRSAR) model [45], which is quite
popular in the texture retrieval literature [18], [22], [23], are not
linear. While absolute conclusions can only be reached by ex-
perimental evaluation, we believe that the linear restriction is
not necessarily a major limitation.

There are a few reasons for this. The first is that many of the
empirical transformations that have been proposed in the litera-
ture are indeed linear. Examples include all wavelet decomposi-
tions, principal component analysis, Fourier transforms, Gabor
functions, and various others. The second is the biological plau-
sibility of linear transformations. Ever since the work of Hubel
and Wiesel [46], it has been established that 1) human visual

processing is local, and 2) different groups in primary visual
cortex (i.e. area V1) are tuned for detecting different types of
stimulus (e.g. bars, edges, and so on). This indicates that at the
lowest level, the architecture of the human visual system can
be well approximated by a multiresolution representation local-
ized in space and frequency, and several “biologically plausible”
models of early vision are based on this principle [47]–[52].
More recently, it has been shown that filters remarkably sim-
ilar to the receptive fields of cells found in V1 [53], [54] can
be learned from training images by imposing requirements of
sparseness [53], [55] or independence [54] to a linear transfor-
mation. It is unlikely that biological vision would select linear
filters for the early stages of processing if linearity were, by it-
self, an undesirable property.

The third reason for our belief that linearity is not a major
limitation is the problem of invariance. When the feature trans-
form is a multiresolution decomposition, embedded mixture
densities have an interesting interpretation as families of densi-
ties defined over multiple image scales, each adding higher res-
olution information to the characterization provided by those
before it. In fact, disregarding the dimensions associated with
high-frequency basis functions is equivalent to modeling densi-
ties of lowpass filtered images. In the extreme case where only
the first, or dc, coefficient is considered, the representation is
equivalent to the histogram of a smoothed version of the orig-
inal image. This is illustrated in Fig. 3.
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Fig. 3. (Top left) Image from the Corel database, (top right) its histogram,
(bottom left) projection of the corresponding 64-dimensional embedded mixture
onto the DC subspace, and (bottom right) projection onto the subspace of the two
lower frequency coefficients. The embedded mixture describes the probability
density of the discrete cosine transform coefficients derived from a collection
of 8 � 8 blocks extracted from the image.

Fig. 4. Two images that, although visually very dissimilar, have the same color
histogram.

This observation suggests that a natural ordering for the
subspaces generated by a multiresolution decomposition is by
increasing frequency of the basis functions associated with
those subspaces. The resulting embedded multiresolution mix-
ture (EMM) model (embedded mixtures on a multiresolution
feature space) is a generalization of the color histogram, where
the additional dimensions capture the spatial dependencies that
are crucial for fine image discrimination. Fig. 4 illustrates this
point by presenting two images that have the exact same color
histogram but are perceptually quite distinct. The advantage of
the EMM generalization is that it enables fine control over the
invariance properties of the representation. Since the histogram
is approximately invariant to scaling, rotation, and translation,
when only the DC subspace is considered the EMM represen-
tation is also invariant to all these transformations. However,
by including high-frequency coefficients, it is possible to trade
off invariance for Bayes error. Under this interpretation, the
search for the MPE subspace of the previous section is a search
for the subspace that achieves the optimal balance between the
level of image detail required for recognition and that which
starts to compromise invariance. There is, however, one slight
limitation to the ordering by frequency, namely, that it is not
straightforward to determine it for bases that are learned from
training data. One well-known approximation that is popular
in the retrieval literature [14], [20], [56] is to order the features
by decreasing feature variance. Preliminary experiments, with
transformations where the two orderings are easily determined,

revealed no significant loss associated with this approximation,
and we, therefore, adopt it in our implementation.

G. Multiresolution Feature Transforms

In this section, we briefly review the multiresolution feature
transformations considered in the experimental section.

Definition 5: The discrete cosine transform (DCT) [57] of
size is the orthogonal transform whose basis functions are
defined by

(29)

where for , and otherwise.
The DCT is widely used in image compression, and previous

recognition experiments have shown that DCT features can lead
to recognition rates comparable to those of many features pro-
posed in the recognition literature [27]. It is also possible to
show that for certain classes of stochastic processes, the DCT
converges asymptotically to the following transform [57].

Definition 6: Principal components analysis (PCA) is the or-
thogonal transform defined by

(30)

where is the eigenvector decomposition of the covari-
ance matrix .

It is well known (and straightforward to show) that PCA gen-
erates uncorrelated features, i.e., . In this context,
PCA is the optimal redundancy reduction transform, i.e., the one
that produces the most parsimonious description of the input ob-
servations. For this reason, PCA has been widely used in both
compression and recognition [42], [58].

Definition 7: A wavelet transform (WT) [59] is the orthog-
onal transform whose basis functions are defined by

(31)

where is a function (wavelet) that integrates to zero.
Like the DCT, wavelets have been shown empirically to

achieve good decorrelation. However, natural images exhibit
a significant amount of higher order dependencies that cannot
be captured by orthogonal components [53]. Eliminating such
dependencies is the goal of independent component analysis
(ICA).

Definition 8: ICA [60] is a feature transform such that

(32)

where is the random process from which
feature vectors are drawn.

The exact details of ICA depend on the particular algorithm
used to learn the basis from a training sample. Since indepen-
dence is usually difficult to measure and enforce if is large,
ICA techniques tend to settle for less ambitious goals. The most
popular solution is to minimize a contrast function that is guar-
anteed to be zero if the inputs are independent. Examples of
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such contrast functions are higher order correlations and in-
formation-theoretic objective functions [60]. In this work, we
consider representatives from the two types: the method devel-
oped by Comon [61], which uses a contrast function based on
high-order cumulants, and the FastICA algorithm [62], which
relies on the negative entropy of the features.

V. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of the
MPE retrieval architecture and compare it against various em-
pirical retrieval techniques in common use.

A. Experimental Setup

In the retrieval context, it is desirable to rely on a generic
representation that can achieve equally good performance for
diverse types of imagery. For this reason, we conducted exper-
iments on three different databases: the Brodatz texture data-
base, the Columbia object database, and a subset of the Corel
database of stock photography. While Brodatz provides a good
testing ground for texture retrieval, color-based methods tend to
do well on Columbia. Corel contains generic imagery and re-
quires retrieval algorithms that can account for both color and
texture. In each case, we surveyed the literature to identify an
empirical technique that is commonly used in each retrieval do-
main and compared its performance with that of MPE retrieval.
The implementation of the latter was as follows.

All images were normalized to the sizes 240 360 or 360
240. On databases containing color images, these were con-

verted from the original RGB to the YBR color space. The
image observations were 8 8 patches obtained with a sliding
window moved by two pixels in a raster scan fashion (with
a vertical interval of two lines), leading to a sample of about
20 000 observations per image. A PCA was applied to each
color channel, the resulting 64 features ordered by decreasing
variance, features from the different channels interleaved ac-
cording to the pattern YBRYBR , and the first 64 features
of this pattern were kept, resulting in a 64-dimensional feature
space (all 64 features were kept on Brodatz, where all images
are grayscale). Mixtures of eight Gaussians with diagonal co-
variance were learned for all images with the EM algorithm [63]
initialized with the generalized Loyd algorithm [64] according
to the codeword splitting procedure discussed in [65]. After
learning the initial set of means, all the vectors in the training
set were assigned to the closest (in the Euclidean sense) mean
vector, the sample covariances resulting from this assignment
were used as initial estimate for the covariances, and the rela-
tive frequencies of the assignments were used as initial estimates
for the mixture probabilities. Each image in the retrieval data-
base was considered as a different class, leading to
classes on Brodatz, on Corel, and on Co-
lumbia. Note that these are large-scale classification problems
that simply cannot be handled by many of the existing super-
vised learning or feature selection techniques.

To evaluate the retrieval performance, we relied on standard
precision/recall curves. In all the databases considered, there
is clear ground truth regarding which images are relevant to
a given query (e.g., images labeled as belonging to the same

concept on Corel or different views of the same object on Co-
lumbia), and we used it to measure precision and recall. Each
database was split into a training and test set, the images in the
test set serving as queries for performance evaluation. We refer
to this set as the query database. For the cross-validation pro-
cedure required by FS, the training set was further split into a
training set, the retrieval database, and a set of cross-valida-
tion images (the cross-validation database). This split was per-
formed in a manner similar to that of -fold cross-validation [7],
but to limit the computation, we did not iterate over different
cross-validation sets. The whole process can be summarized
as follows. For training, we considered only the retrieval and
cross-validation databases, and the procedures of Section IV-E
were used to determine the MPE feature subspace. The query
and retrieval databases were then used to compare the perfor-
mance of MPE retrieval with that of the competing techniques
selected from the literature.

The specific organization of the databases and the empirical
techniques against which MPE retrieval was compared for each
database were as follows. The 1008 images in Brodatz were di-
vided into a query database of 112, a cross-validation database
of 112, and a retrieval database of 784 images. Various previous
studies have identified the combination of 1) the coefficients of
the least squares fit of an MRSAR model to each texture and
2) the Mahalanobis distance, as a top performer in this data-
base [18], [22], [41]. We followed closely the implementation
of [18], [22], [41], but preliminary experiments revealed that the
performance of the MRSAR is significantly dependent on the
modeling of the full covariance matrix. Hence, we have used
full covariance matrices in all cases where the feature set was
MRSAR.

The Columbia database was also split into three subsets: a
query and a cross-validation database containing a single view
of each of the 100 objects available and a retrieval database
containing nine views (separated by 40 ) of each object. It
was chosen because it is a database where the histogram-based
methods that are very popular in the retrieval literature [4]
tend to perform well, allowing a comparison of MPE re-
trieval against these techniques. For color histogramming,
the three-dimensional color space was quantized by finding
the bounding box for all the points in the query and retrieval
databases and then dividing each axis in bins. This leads to
cells. Experiments were performed with different values of .
Retrieval was based on the widely used histogram intersection
(HI) metric, following the implementation of [13].

From Corel we selected 15 concepts3 leading to a total of
1 500 images. Of these, 10% were used on the query database
and 10% on the cross-validation, leaving the remaining 80%
for retrieval database. In addition to the texture and color-based
approaches, this database allowed the comparison of MPE
retrieval against a popular empirical approach that jointly
models the two attributes: the color correlogram proposed in
[66], whose implementation was replicated in the experiments
below.

3“Arabian horses,” “auto racing,” “coasts,” “divers and diving,” “English
country gardens,” “fireworks,” “glaciers and mountains,” “Mayan and Aztec
ruins,” “oil paintings,” “owls,” “land of the pyramids,” “roses,” “ski scenes,”
“religious stained glass.”
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Fig. 5. (Top) Precision, at 30% recall on Brodatz. (Bottom) Precision, at 10%
recall, on Corel.

B. Feature Transformation

We start with a set of results that illustrate 1) the importance of
relying on a diverse dictionary of feature transforms as a means
to achieve high retrieval accuracy over a diverse set of databases
and 2) how the performance of a given transform can vary signif-
icantly with both the type of database and the selected subspace
dimension. These results were obtained during the cross-valida-
tion stage, i.e., using the images in the cross-validation database
as queries. For each query, we measured precision at various
levels of recall. The precision/recall (PR) curves were then av-
eraged over all queries to generate an average PR curve for each
feature transform. Fig. 5 presents the curves of precision, as a
function of subspace dimension, at 30% recall on Brodatz and
10% recall on Corel (the relative precision values obtained with
the various transformations did not vary significantly with the
level of recall).

The precision curves comply with the theoretical arguments
of Section III-B1. Since precision is inversely proportional to the
probability of error, one would expect, from those arguments,
the precision curves to be concave. This is indeed the case for
all transformations (there is a large increase in precision from

one to eight dimensions on both cases that we omit for clarity
of the graph). Other than this, there are two other interesting ob-
servations. The first is that for a given database, a poor choice
of transformation can lead to significant degradation of retrieval
performance. For example, the peak precision of the worst trans-
formation (wavelet) on Brodatz is 10% below that of the best
(DCT), and on Corel, the variation is almost 20%. Furthermore,
while the wavelet basis has the worst performance on Brodatz,
it is one of the top two feature sets on Corel. On the other hand,
ICA does better on Brodatz than on Corel. These are drastic vari-
ations in retrieval accuracy, which would be difficult to antici-
pate in the absence of this cross-validation stage. Second, even
for a given feature transformation, precision can vary dramati-
cally with the number of embedded subspaces. For example, the
precision of the DCT features on Brodatz drops from the peak
value of about 92% to about 62% when all the subspaces are in-
cluded. Overall, these observations emphasize the importance
of relying on an optimal feature selection algorithm (under an
optimality criterion that is sensible for retrieval) when the goal
is to design robust retrieval systems applicable to a large range
of image databases.

C. Comparison to Standard Solutions

In this section, we compare the performance of the MPE
retrieval architecture proposed in this work with those of two
empirical techniques discussed above (MRSAR and HI) in the
specific databases where the latter work best: texture (Brodatz)
for MRSAR and color (Columbia) for HI. Fig. 6 presents
the resulting PR curves, showing that MPE retrieval achieves
equivalent performance or actually outperforms the best of the
two other approaches in each image domain. This indicates
that the MPE architecture performs well for both color and
texture and should therefore do well on a large spectrum of
databases. Visual inspection of the retrieval results suggests
that, also along the dimension of perceptual relevance, MPE
retrieval clearly outperforms the MRSAR and histogram-based
approaches. Fig. 7 presents representative examples of the three
of major advantages of the MPE retrieval system:

1) When it makes errors, these tend to be perceptually less
disturbing than those of the other approaches.

2) When there are several visually similar classes in the data-
base, images from these classes tend to be retrieved to-
gether.

3) Even when the performance is worse than that of the
other approaches in terms of PR, the results are frequently
better from a perceptual standpoint.

The two pictures on the left column exemplify how MPE re-
trieval can lead to perceptually pleasing retrieval results, even
when the PR performance is only mediocre. In this case, while
HI retrieves several objects unrelated to the query, MPE only
returns objects that, like the query, are made of wood blocks.
This is due to the fact that by relying on features with spatial
support, the embedded multiresolution mixture representation is
able to capture the local appearance of the object surface. Hence,
it tends to match surfaces with the same shape, texture, and re-
flection properties. This is not possible with color histograms.
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Fig. 6. PR measured for the MPE, MRSAR, and HI retrieval architectures. (Left) Curves from Brodatz, where the best results for HI (which are shown) were
obtained with histograms of 192 bins. The features selected by MPE were the DCT set with 32 subspaces. (Right) Curves from Columbia where best HI results
were obtained with histograms of 1728 bins. There was, however, a wide range of the number of bins where the performance was nearly constant, as illustrated by
the second curve, which was obtained with histograms of 512 bins. The features selected by MPE were the DCT set with 48 subspaces.

Fig. 7. (Top) Comparison of MPE retrieval results with (bottom) those of HI on Columbia and MRSAR on Brodatz.

The two images on the center exemplify situations where both
approaches perform perfectly in terms of PR, yet the perceptual
retrieval quality is very different. MRSAR ranks all the images
in the query class at the top but produces poor matches after
that. On the other hand, MPE retrieves images that are visually
similar to the query after all the images in its class are exhausted.
This observation is frequent and derives from the fact that the
MRSAR features have no perceptual justification. On the other
hand, because a good match under MPE retrieval implies that
the query and retrieved images should populate the space of
spatial frequencies in a similar fashion, this approach tends to
group images that have energy along the same orientations and a
frequency spectrum with the same types of periodicities. These
characteristics are known to be relevant for human judgments
of similarity [22].

Finally, the pictures on the right column illustrate how, even
when it has higher PR, HI can lead to perceptually poorer results
than the MPE approach. In this case, images of a pear and a duck
are retrieved by HI after the images in the right class (“Advil
box”), even though there are several boxes with colors similar
to those of the query in the database. On the other hand, MPE
retrieval only retrieves boxes, although not in the best possible
order.

D. Generic Retrieval Solutions

We finalize with results from the Corel database. Fig. 8
presents a comparison, in terms of PR, of MRSAR, HI, the
color correlogram, and MPE retrieval. It is clear that the texture
model alone performs very poorly, color histogramming does
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Fig. 8. PR on Corel for MRSAR, HI (512 bin histograms), color correlogram
(CAC), and MPE retrieval. The features selected by MPE were the DCT set with
46 subspaces.

significantly better, and the correlogram further improves per-
formance by about 5%. However, all the empirical approaches
are significantly less effective than MPE retrieval.

APPENDIX

A. Proof of Theorem 4

Proof: The theorem follows from the application of two
bounds. The first is that for a problem with class conditional
densities , equiprobable classes , ,
class-conditional density estimates , and a feature
space

See [12] for the case where and [27] for an exten-
sion to multiple classes. The second is a well-known bound in
information theory, which is usually referred to as Pinsker’s in-
equality; see, e.g., [28, Lemma 12.6.1] or [30, Th. 7.11.1]

B. Proof of Theorem 5

Proof: The fact that the sequence of vector spaces is em-
bedded follows from (12) since,

(33)

and consequently, there is a sequence of one-to-one mappings

(34)

for which

(35)

Inequality (13) then follows from (33), (6), and the fact that
the mappings are noninvertible. To prove (16), we start
from Theorem 4, i.e.,

(36)
where is the class-conditional likelihood function
for under class . Since, from (33), ,
where is the th coordinate of , we have

KL

KL

KL

KL

where we have used the nonnegativity of the KL divergence
[28]. It follows from the fact that the square root is a mono-
tonically increasing function that

KL

KL

which, combining with (36), leads to (16).

C. Proof of Lemma 1

Proof: From the properties of symmetric block matrices
[67], it is known that if

where and are symmetric matrices, then

(37)

(38)

and with
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and . Hence, for any vector ,
where and have the appropriate lengths for to make
sense

(39)

Using the decomposition

where is the th vector of the canonical basis of ( th co-
ordinate equal to 1, all others to 0), and defining ,
it follows that

and

where is the th element of . Making , ,
, , and defining , and , it

follows that

Letting , , , and applying (39)

Since , this leads to (23)–(26). Furthermore,
from , it follows that , which
leads to (27). Finally, since the steps of (23)–(27) have com-
plexity or , the overall complexity is

D. Proof of Theorem 6

Proof: Since all transformations in are invertible, for
any pair , where and

, the transformation
maps into . It follows from Property 1 that if

is distributed according to a Gauss mixture
with parameters , then is
distributed according to a Gauss mixture with parameters

. From Theorem 5, the
sequence is a sequence of embedded
spaces, and (28) follows from Property 1. The recursion for
the computation of , follows

directly from Lemma 1 by making the change of variables
, , and .

Finally, since for each the cost of the recursion is as
well as for the basis, the overall cost is .
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