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Nuno Vasconcelos
University of California,
San Diego I n August 2006, Nielsen//NetRatings announced that five of the 10 fastest grow-

ing Web brands were user-generated content sites—platforms for photo or
video sharing and blogs (www.nielsen-netratings.com/pr/PR_060810.PDF).
Earlier statistics revealed that in April 2006 alone, the top five photo-sharing
sites received close to 34 million unique US users (http://pic.photobucket.

com/press/2006-06-PopPhoto.pdf). 
These numbers illustrate a well-known corollary of the information revolu-

tion: the shift from passive users content with tuning in to rigidly formatted
broadcast services to active users who demand ownership of the medium and
become publishers. Technological advances in digital imaging, broadband net-
working, and data storage are motivating millions of ordinary people to com-
municate with one another and express themselves by sharing images, video, and
other forms of media online.

However, certain capabilities are still lacking. In the context of image retrieval,
acquiring, storing, and transmitting photos is now trivial, but it is significantly
harder to manipulate, index, sort, filter, summarize, or search through them.
Modern search engines and their image/video search offsprings have enabled sig-
nificant progress in domains where visual content is tagged with text descrip-
tions, but they only analyze metadata, not the images per se, and thus are of
limited use in many practical scenarios. 

For example, I can use one of the major image search engines to download
17,700 images of “kids playing soccer,” most served from Internet sites across
the world. Yet these are all useless to me when I am looking for pictures of my
kids playing soccer. Although the latter are stored in my computer’s hard drive,
literally at hand’s reach, they are inaccessible in any organized manner. I could,
of course, manually label them, enabling my computer to perform more effective
searches, but this feels wrong. After all, the machine should be working for me,
not the other way around.

From Pixels to Semantic
Spaces: Advances 
in Content-Based 
Image Retrieval

The paradigm for image retrieval has evolved from low-level

image representations to semantic concept models to higher-

level semantic inferences. UCSD’s Statistical Visual Computing

Laboratory has developed effective techniques for each

paradigm that equate retrieval with classification and strive 

for minimum-probability-of-error optimality.
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The Statistical Visual Computing Laboratory at the
University of California, San Diego (www.svcl.ucsd.
edu), has been considering the problem of content-based
image retrieval for several years. One of SVCL’s goals is
to develop systems capable of retrieving images because
they understand them and are thus able to represent
their content in a form intuitive to humans. Drawing
strongly on computer-vision and machine-learning
research, this effort explores many issues in image rep-
resentation and intelligent system design including the
evaluation of image similarity, the automatic annota-
tion of images with descriptive captions, the ability to
understand user feedback during image search, and 
the design of indexing structures that can be searched
efficiently. 

QUERY BY VISUAL EXAMPLE
The classical paradigm for content-based image

retrieval is query by visual example. QBVE retrieves
images using strict visual matching, ranking database
images by similarity to a user-provided query image.
The system extracts a signature from the query, com-
pares this signature to those previously computed for
the images in the database, and returns the closest
matches. 

There are many ways to compose image signatures or
evaluate their similarity.1 While early solutions, includ-
ing the pioneering query by image content system,2 relied
on very simple image-processing techniques, such as
matching histograms of image colors, modern systems
rely on more sophisticated representations and aim for
provably optimal retrieval performance.

Minimum probability of error retrieval
SVCL’s minimum probability of error retrieval system

illustrates this evolution. In developing this system, we
formulated the retrieval problem as one of classification
and designed all system components to achieve opti-
mality in the MPE sense. 

As Figure 1a shows, the system decomposes images
into bags of local features that measure properties such
as texture, edginess, and color and then learns a
Gaussian mixture model (GMM) from each bag. An
image signature is thus a compact probabilistic repre-
sentation of how the image populates the feature space.
When faced with a query, the system extracts a bag of
features from it and computes how well each GMM in
the database explains this bag. In particular, the system
ranks the database models according to their posterior
probability of having generated the query features. This
can be shown to be MPE optimal.3

In addition to finding the closest matches, the system
assigns a match probability to all images in the database.
This lets the system combine visual matches with other
sources of information that might impact the relevance
of each database image—for example, the text in an
accompanying Web page, how well the image matches
previous queries, and external events that could increase
the relevance of certain images on certain days, such as
high demand for football photos on Sunday night. By
supporting probabilistic information fusion, the retrieval
system is automatically compatible with most state-of-
the-art techniques for intelligent system design.

The MPE retrieval system is currently among the top
QBVE performers. Like most QBVE systems, it is most

Figure 1. Minimum probability of error retrieval. (a) MPE retrieval architecture. The system decomposes images into bags of

local features and characterizes them by their distributions on the feature space. Database images are ranked by posterior

probability of having generated the query features. (b) Retrieval results. Each column shows the three best matches (among

1,500) to the query image shown at the top.

(b)(a)
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accurate when similarity of visual appearance correlates
with human judgments of similarity.3 This is illustrated
by Figure 1b, which presents the top matches from a
database of 1,500 images to three queries. Note that the
database is quite diverse, and the images are basically
unconstrained in terms of lighting conditions, object
poses, and so on (although all are good-quality images
taken by professional photographers). The system can
identify the different visual attributes that, in each case,
contribute to the percept of image similarity. For exam-
ple, similar color distributions seem to determine the
matches of the first column, while texture appears to
play a more significant role in the second column, and
shape (of the flower petals) is probably the strongest cue
for the third column’s results.

Semantic gap
There are, nevertheless, many queries for which visual

similarity does not correlate strongly with human sim-
ilarity judgments. This can lead to a semantic gap
between user and machine. 

Figure 2a presents a subtle example of how people
frequently discard strong visual cues in their similar-
ity judgments. The “train” query contains a predomi-
nant arch-like structure that, from a strictly visual
standpoint, makes the query highly compatible with
concepts such as “bridge” or “arch.” A QBVE system
will return as top matches images like the four shown,
three of which indeed contain bridges or archlike 
structures. However, people expect images of trains
among the retrieved results and assign little probabil-
ity to alternative interpretations, such as “bridge” or
“arch.” They seem to decide first that the image is
about trains, and then use “train-ness” as the dimen-
sion that determines image similarity. Whether other
trains are visually similar to what the query depicts—
for example, in terms of colors, shape, or size—is rel-
atively unimportant.

This mismatch between the similarity judgments can
make user interaction with a QBVE system extremely
frustrating. Most people would not be able to justify the
matches returned in Figure 2a, despite the obvious sim-
ilarities of the visual stimuli. This is the nightmare sce-
nario for image retrieval, leaving users both unhappy
with the retrieval results and convinced that the system
“doesn’t get it.” 

IMAGE ANNOTATION AND SEARCH
In recent years, the semantic gap between user and

machine has motivated significant interest in semantic
image retrieval. A semantic retrieval system aims for two
complementary goals: image annotation and search. 

Semantic labeling
The starting point for a semantic retrieval system is a

training database of images, each annotated with a nat-
ural-language caption. From this database, the system
learns to create a mapping between words and visual
features. The system then uses this mapping to

• annotate unseen images with the captions that best
describe them, and 

• find the database images that best satisfy a natural-
language query. 

Usually, the training corpus is weakly labeled, mean-
ing that 

• the absence of a label from a caption does not nec-
essarily mean that the associated visual concept is
absent from the image, and

• it is not known which image regions are associated
with each label. 

For example, an image containing “sky” might not be
explicitly annotated with that label and, when it is, no

Figure 2. Closing the semantic gap. (a) People frequently discard strong visual cues in their similarity judgments, which can lead to

severe query-by-visual-example errors such as retrieving bridges in response to a “train” query. (b) Because good matches require

agreement along various dimensions of the semantic space, query by semantic example (QBSE) is significantly less prone to errors

than QBVE.

(b)(a)
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“woman.” In fact, it has learned that these classes can
exhibit varying visual patterns—for example, that smoke
can be white, black, or gray; that both blooms and
humans can come in multiple colors, sizes (depending on
image scale), and poses; or that “pool” can be about
water, people (swimmers), or both. This type of general-
ization is impossible for QBVE systems, which model
each image independently of the others.

The annotation results of Figure 4b illustrate a sec-
ond form of generalization, based on contextual rela-
tionships, that humans also regularly exploit. For
example, the fact that stores usually contain people
makes us more prone to label an image of a store where
no people are visible with the “people” keyword than an
image depicting an animal in the wild. An MPE seman-
tic retrieval system’s errors likewise tend to involve
improper contextual associations. Note, for example,
that the system erroneously associates the concept
“prop” with a jet fighter, the concept “leaf” with grass,
the concepts “people” and “skyline” with a store dis-
play, and so on. Of course, in many situations such asso-
ciations enable the system to correctly identify concepts
that would otherwise be difficult to detect due to occlu-
sion, poor imaging, and other factors.

The system’s ability to make contextual generaliza-
tions stems from the weak labeling of its training cor-
pus. Because the system learns concept models from
unsegmented images, most positive examples of
“shop” are also part of the positive set for “people,”
although the latter will include many non-shopping-
related images as well. Thus, an image of a shop will
elicit some response from the “people” model even if
it does not contain people. This response will be
weaker than that of an image of a shop that contains
people but stronger than the response of the “shop”
model to a picture of people in a nonshopping context,
such as fishing at a lake. 

These asymmetries are routine in human reasoning
and thus appear natural to users, making an MPE seman-
tic retrieval system’s errors less annoying than those of its

indication is available regarding which image pixels actu-
ally depict sky. A semantic retrieval system also does not
require individual users to label training images. While
this can certainly be supported to personalize the vocab-
ulary, the default is to rely on generic vocabularies shared
by many systems.

Under the MPE framework, a semantic retrieval sys-
tem is a simple extension of a QBVE system. As Figure
3a shows, an MPE semantic retrieval system learns prob-
abilistic models from image sets instead of single images.
In particular, the system uses the set of training images
labeled with a particular keyword—in this case, “moun-
tain”—to learn the model for the associated visual con-
cept. This procedure can be shown to converge to the
true concept distribution, plus a background uniform
component with small amplitude, if the set of training
images is diverse.4

Given a set of models for different visual concepts, the
system can optimally label any image in the MPE sense
by computing how well each model explains its features.
In particular, the system orders concepts by posterior
probability, given the image, and annotates the image
with the concepts of largest probability. Figure 3b shows
how, among a vocabulary of more than 350 semantic
concepts, an image of a country house receives as most
likely the labels “tree,” “garden,” and “house.”

Generalization
An MPE semantic retrieval system can learn semantic

models very efficiently when individual image models
are already available—that is, when the system also sup-
ports QBVE. In fact, an MPE semantic retrieval system’s
design has complexity equivalent to that of an MPE sys-
tem that only supports QBVE. While simple, this seman-
tic retrieval architecture currently achieves the best
published results for both retrieval and annotation on a
collection of standard retrieval benchmarks.4,5

Figure 4a shows some examples of MPE semantic
retrieval. Note that the system recognizes concepts as
diverse as “blooms,” “mountain,” “pool,” “smoke,” and

Figure 3. Semantic labeling. (a) An MPE semantic retrieval system groups images by semantic concept and learns a probabilistic

model for each concept. (b) The system represents each image by a vector of posterior concept probabilities.

(b)(a)
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QBVE counterpart. In fact, informal surveys conducted
in our lab indicate that users frequently miss the labeling
errors and, even when they note an error, often find a
reasonable explanation for it—for example, the system
confused a jet for a propeller plane. This creates the sense
in users that the system, regardless of its flaws, “gets it.”

QUERY BY SEMANTIC EXAMPLE
Despite its many advantages, semantic retrieval also

has limitations. An obvious difficulty is that most images
have multiple semantic interpretations. Because train-
ing images are usually labeled with a short caption, some
concepts might never be identified as present. This
reduces the number of training examples and thereby
impairs the system’s ability to learn concepts that

• have a highly variable visual appearance, and 
• are relatively rare. 

Further, the semantic retrieval system’s limited vocab-
ulary can severely compromise generalization with
respect to concepts outside the semantic space—that is,
those on which the system is not trained. Although
semantic retrieval generalizes better than QBVE inside
the semantic space, this is usually not true outside it. 

One possible solution to this problem is to adopt a query
by semantic example paradigm.6 The idea behind QBSE

is to represent each image by its vector of posterior con-
cept probabilities (shown in Figure 3b) and perform query
by example in the simplex of these probabilities. Because
the probability vectors are multinomial distributions over
the space of semantic concepts, these can be referred to 
as semantic multinomials. A QBSE system defines a sim-
ilarity function between these objects and, in response to
a user-provided query image, ranks the images in the data-
base by the distance of their semantic multinomials to that
of the query.

Compared to semantic retrieval, QBSE is significantly
less affected by multiple semantic interpretations and dif-
ficult generalization outside the semantic space. This fol-
lows from the fact that the system does not face a
definitive natural-language query but rather an image that
it expands into its internal semantic representation. For
example, a system not trained with images of the concept
“fishing” can still expand a query image of this subject
into numerous alternative concepts such as “water,”
“boat,” “people,” and “nets” in its vocabulary. This is
likely to produce high scores for other fishing images.

Further, it is much easier to generalize in the QBSE fea-
ture space. Figure 2b compares the matches produced by
QBVE and QBSE to a common query. Inspection of the
semantic multinomials associated with the images shown
reveals that, although the query image receives fair prob-
ability for the concept “bridge,” it receives only slightly

Figure 4. Generalization. (a) An MPE semantic retrieval system can recognize concepts with varying visual patterns. Each row

shows the top three matches to a semantic query (from top to bottom):“blooms,”“mountain,”“pool,” “smoke,” and “woman.”

(b) Comparison of the annotations produced by the system with those of a human subject.

(b)(a)



inferior probability for concepts such as “locomotive,”
“railroad,” and “train.” The latter are consistent with
the semantic multinomials of other images depicting
trains but not necessarily with those of images depicting
bridges. Thus, although the erroneous “bridge” label is
individually dominant, it loses this dominance when the
semantic multinomials are matched as a whole.

PROGRESS IN IMAGE RETRIEVAL
QBVE, semantic retrieval, and QBSE, respectively,

represent steps in an evolutionary process that proceeds
from modeling visual appearance, to learning semantic
models, to making inferences using semantic spaces.
This evolution has occurred in the image retrieval com-
munity at large, and other researchers have developed
alternative approaches. The following assessment of
SVCL’s techniques is thus not intended to demonstrate
that they are the ultimate solution for the problems they
address, but simply to quantify the progress associated
with each evolutionary step.

All presented results are based on recall and precision.
Given a query and the top n database matches, recall is
the percentage of all relevant images the retrieved set
contains, and precision is the percentage of n that are
relevant or belong to the query’s class. 

Retrieval performance is measured by the mean average
precision. MAP is defined as the average precision, over all
queries, at the ranks where recall changes—that is, where
relevant items occur. It is a number between 0 and 1, with
higher values reflecting more accurate retrieval systems.
Annotation performance is measured by the percentage of
dictionary words the labeling system effectively learns. A
word is effectively learned if it has recall greater than zero
within the first five labels used to annotate each image.

QBVE 
Figure 5a compares the MAP of three state-of-the-art

QBVE methods on a set of 1,500 images from the Corel
database of stock photography: the color histograms

proposed by Michael Swain and Dana Ballard in 1991,7

the color correlogram developed by Jing Huang and col-
leagues in 1997,8 and SVCL’s 2002 MPE system.3 While
retrieval performance has clearly increased during the
past decade, the increase has not been dramatic—rising
from about 48 to slightly more than 54 percent. Several
reasons could account for this, including the fact that
the databases used to test the early retrieval systems were
suitable for the color-matching operations on which they
were based. Nevertheless, the slow rate of progress indi-
cates that we may be close to the asymptote of QBVE.

Semantic retrieval
A significantly greater rate of progress has occurred

in the area of semantic retrieval. As Figure 5b shows,
early annotation methods such as the co-occurrence
technique proposed in 1999 by Yasuhide Mori,
Hironobu Takahashi, and Ryuichi Oka9 performed at
about chance level. Notable subsequent improvements
included the translation model of Pinar Duygulu and
colleagues in 2002;10 the continuous-space relevance
model of Victor Lavrenko, Raghavan Manmatha, and
Jiwoon Jeon the following year;11 the multiple Bernoulli
relevance model of Shaolei Feng, R. Manmatha, and V.
Lavrenko in 2004;12 and SVCL’s MPE 2005 semantic
retrieval method.5

These results were obtained on a challenging corpus
of 5,000 images and a vocabulary of 371 words, with
labels produced by nontechnical subjects. The recent
surmounting of the barrier of 50 percent learned words
is worth noting, and a far cry from the less than 10 per-
cent rate of the earliest system.

QBSE
While annotation performance is not directly com-

parable to the MAP results of Figure 5a, it is possible to
quantify the gains of semantic over visual representa-
tions by considering QBSE. In fact, when QBSE and
QBVE are implemented within the MPE framework,
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with identical visual features and classification archi-
tectures, any performance differences can be directly
attributed to the semantic versus visual nature of the
associated representations. 

Figure 5c compares the MAP results of QBSE versus
QBVE on three datasets: the 5,000-image corpus used to
learn the semantic labels, a corpus of 1,800 images col-
lected on the Flickr Web site, and an additional set of
1,500 images from Corel. All of these sets are more chal-
lenging than that of Figure 5a, leading to lower QBVE
performance. The comparison tests performance both
inside (dataset 1) and outside (datasets 2 and 3) the
semantic space, but the results are qualitatively similar
after correcting for chance success, also shown for each
dataset. In all cases, QBSE performs substantially better
than QBVE. This suggests that semantic-level retrieval
is a potential area of future progress, certainly more
promising than the classic QBVE paradigm.

D esigning systems that understand images well
enough to enable effective search of large databases
remains a challenging problem, and current

retrieval systems are not useful for all applications. The
trend is very positive, however, and the retrieval com-
munity has only just begun to explore avenues of tremen-
dous potential, such as the use of semantic taxonomies.

An image retrieval system is more than an image sim-
ilarity engine. In addition to image matching, it should
address the problems of indexing to enable fast searches;
accounting for prior information, which can be used to
weigh some images more strongly than others; and
exploring the user’s presence in the retrieval loop. 

Information about the user’s preferences is usually
collected by relevance feedback algorithms, operating at
both short and long time scales. Within a single session,
the retrieval system can exploit user feedback to refine
particular searches. As the user provides more infor-
mation, the system becomes more confident about the
user’s needs, and retrieval accuracy increases. Across
sessions, the system can use relevance feedback to build
user profiles or improve semantic labeling of the data-
base images. 

All of these operations can be formulated under the
MPE retrieval framework, and optimal solutions are
available for many problems. ■
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