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It has been suggested that saliency mechanisms play a role in perceptual organization. This work evaluates the plausibility
of a recently proposed generic principle for visual saliency: that all saliency decisions are optimal in a decision-theoretic
sense. The discriminant saliency hypothesis is combined with the classical assumption that bottom-up saliency is a
center-surround process to derive a (decision-theoretic) optimal saliency architecture. Under this architecture, the saliency of
each image location is equated to the discriminant power of a set of features with respect to the classification problem that
opposes stimuli at center and surround. The optimal saliency detector is derived for various stimulus modalities, including
intensity, color, orientation, and motion, and shown to make accurate quantitative predictions of various psychophysics of
human saliency for both static and motion stimuli. These include some classical nonlinearities of orientation and motion
saliency and a Weber law that governs various types of saliency asymmetries. The discriminant saliency detectors are also
applied to various saliency problems of interest in computer vision, including the prediction of human eye fixations on natural
scenes, motion-based saliency in the presence of ego-motion, and background subtraction in highly dynamic scenes. In all
cases, the discriminant saliency detectors outperform previously proposed methods from both the saliency and the general
computer vision literatures.
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Introduction

An important goal of any perceptual system is to organize
the various pieces of visual information that land on the
retina. This organization requires both the grouping of
distinct pieces into coherent units to be perceived as objects
and the segregation of objects from their surroundings
(“figure/ground” segregation). Both problems are simplified
by a preliminary step of localized processing, known as
bottom-up saliency, that highlights the regions of the visual
field which most differ from their surround. These saliency
mechanisms appear to rely on measures of local contrast
(dissimilarity) of elementary features, like intensity, color,
or orientation, into which the visual stimulus is first
decomposed. It is well known that such contrast measures
can reproduce perceptual phenomena such as texture
segmentation (Beck, 1966b, 1972; Julesz, 1975, 1984;

Olson & Attneave, 1970), target pop-out (Nothdurft,
1991a; Treisman, 1985; Treisman & Gormican, 1988), or
even grouping (Beck, 1966a; Sagi & Julesz, 1985). For
example, Nothdurft (1992) has shown that upon the brief
inspection of a pattern such as that depicted in the leftmost
display of Figure 1, subjects report the global percept of a
“triangle pointing to the left.” This percept is quite robust to
the amount of (random) variability of the distractor bars and
to the orientation of the bars that make up the vertices of the
triangle. In fact, these bars do not even have to be oriented in
the same direction: The triangle percept only requires that
they have sufficient orientation contrast with their neighbors.
Another example of this type of perceptual grouping, as well
as some examples of texture segregation, is shown in
Figure 1. Below each display, we present the saliency maps
produced by the saliency detector proposed in this work.
Clearly, the saliency maps are informative of either the
boundary regions or the elements to be grouped.
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Computational modeling of saliency

The mechanisms of visual saliency, their neurophysio-
logical basis and psychophysics, have been extensively
studied during the last decades. In result of these studies,
it is now well known that saliency mechanisms exist for a
number of elementary dimensions of visual stimuli
(henceforth denoted as features), including color, orienta-
tion, depth, and motion, among others. More recently,
there has been an increasing interest in computational
models for saliency, in both biological and computer
vision. The overwhelming majority of these models is
inspired by or aims to replicate known properties of either
the psychophysics or physiology of pre-attentive vision
(Bruce & Tsotsos, 2006; Harel, Koch, & Perona, 2007;
Itti, Koch, & Niebur, 1998; Kienzle, Wichmann, Schölkopf,
& Franz, 2007; Li, 2002; Rosenholtz, 1999; Wolfe, 1994).
These models all compute a saliency map (Koch &
Ullman, 1985), through either the combination of inter-
mediate feature-specific saliency maps (e.g., Itti & Koch,
2001; Itti et al., 1998; Wolfe, 1994), or the direct analysis
of feature interactions (e.g., Li, 2002).
What distinguishes these models is mostly the computa-

tional measure of saliency. In what is perhaps the most
popular model for bottom-up saliency, Itti et al. (1998)
measures contrast as the difference between the stimulus at
a location and the stimulus in its neighborhood in a center-
surround fashion. This model has been shown to success-
fully replicate many observations from psychophysics
(Itti & Koch, 2000; Parkhurst, Law, & Niebur, 2002;
Peters, Iyer, Itti, & Koch, 2005) for both static and motion
stimuli and applied to the design of computer vision
algorithms for robotics and video compression (Itti, 2004;
Shic & Scassellati, 2007; Walther & Koch, 2006). In the
Guided Search model, Wolfe (1994) has, on the other

hand, emphasized the modulation of the bottom-up
activation maps by top-down, goal-dependent, knowledge.
Li (2002) has argued that saliency maps are a direct
product of the pre-attentive computations of primary
visual cortex (V1) and implemented a saliency model
inspired by the basic properties of the neural structures
found in V1. This has also been shown to reproduce many
psychophysical traits of human saliency, establishing a
direct link between psychophysics and the physiology of
V1. While many of these early saliency models aimed to
reproduce various known properties of biological vision,
they lacked a formal justification for their image process-
ing steps in terms of a unifying computational principle
for saliency. Some more recent models have tried to
address this problem by deriving saliency mechanisms as
optimal implementations of generic computational princi-
ples, such as the maximization of self-information (Bruce
& Tsotsos, 2006) or “surprise” (Itti & Baldi, 2005). It is
not yet clear how closely these models comply with the
classical psychophysics since existing evaluations have
been limited to the prediction of human eye fixation data.
In this work, we study the effectiveness of an

alternative, and currently less popular, hypothesis that all
saliency decisions are optimal in a decision-theoretic
sense. This hypothesis is denoted as discriminant saliency
and was first proposed by Gao and Vasconcelos (2005) in
a computer vision context. While initially posed as an
explanation for top-down saliency, of interest mostly for
object recognition, the hypothesis of decision theoretic
optimality is much more general and indeed applicable to
any form of center-surround saliency. This has motivated
us to test its ability to explain the psychophysics of human
saliency. Since these are better documented for the
bottom-up neural pathway than for its top-down counter-
part, we derive a bottom-up saliency detector which is

Figure 1. Four displays (top row) and saliency maps produced by the algorithm proposed in this article (bottom row). These examples
show that saliency analysis facilitates aspects of perceptual organization, such as grouping (left two displays) and texture segregation
(right two displays).
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optimal in a decision-theoretic sense. In particular, we
hypothesize that the most salient locations of the visual
field are those that enable the discrimination between
feature responses in center and surround with smallest
expected probability of error. This is referred to as the
discriminant center-surround hypothesis and, by defini-
tion, produces saliency measures that are optimal in a
classification sense. We derive optimal mechanisms for a
number of saliency problems, ranging from static spatial
saliency to motion-based saliency in the presence of ego-
motion or even complex dynamic backgrounds. The
ability of these mechanisms to both reproduce the
classical psychophysics of human saliency and solve
saliency problems of interest for computer vision is then
evaluated. From the psychophysics point of view, it is
shown that, for both static and moving stimuli, discrim-
inant saliency not only explains all qualitative observa-
tions (such as pop-out for single feature search, and
disregard of feature conjunctions) previously replicated by
existing models but also makes quantitative predictions
(such as the nonlinear aspects of human saliency), which
are beyond their reach. From the computer vision stand-
point, it is shown that the saliency algorithms now
proposed can predict human eye fixations with greater
accuracy than previous approaches and outperform state-
of-the-art algorithms for background subtraction. In
particular, it is shown that, by simply modifying the
probabilistic models employed in the discriminant sali-
ency measureVfrom well known models of natural image
statistics, to the statistics of simple motion features, to
more sophisticated dynamic texture modelsVit is possible
to produce saliency detectors for either static or dynamic
stimuli, which are insensitive to background image
variability due to texture, ego-motion, or scene dynamics.

Discriminant center-surround
saliency

Discriminant saliency

Discriminant saliency is rooted in a decision-theoretic
interpretation of perception. Under this interpretation,
perceptual systems evolve to produce decisions about the

state of the surrounding environment that are optimal in a
decision-theoretic sense, e.g., that have minimum proba-
bility of error. This goal is complemented by one of
computational parsimony, i.e., that the perceptual mech-
anisms should be as efficient as possible. Discriminant
saliency is defined with respect to two classes of stimuli: a
class of stimuli of interest and a null hypothesis,
composed of all the stimuli that are not salient. Given
these two classes, the locations of the visual field that can
be classified, with lowest expected probability of error, as
containing stimuli of interest are denoted as salient.
Mathematically, this is accomplished by (1) defining a
binary classification problem that opposes stimuli of
interest to the null hypothesis and (2) equating the saliency
of each location in the visual field to the discriminant
power (with respect to this problem) of the visual features
extracted from that location. This definition of saliency is
applicable to a broad set of problems. For example,
different specifications of stimuli of interest and null
hypothesis enable its specialization to both top-down and
bottom-up saliency. From a computational standpoint, the
search for discriminant features is a well-defined and
tractable problem that has been widely studied in the
literature. These properties have been exploited by Gao and
Vasconcelos (2005) to derive an optimal top-down saliency
detector, which equates stimuli of interest to an object class
and null hypothesis to all other object classes. In this work,
we consider the problem of bottom-up saliency.

Discriminant center-surround saliency

Inspired by the ubiquity of “center-surround” processing
in the early stages of biological vision (Cavanaugh, Bair, &
Movshon, 2002; Hubel & Wiesel, 1965; Knierim & van
Essen, 1992), it is commonly assumed that bottom-up sa-
liency is determined by how distinct the stimuli (features)
at each location of the visual field is from the stimuli
(features) in its surround. This “center-surround” hypothesis
can be naturally formulated as a classification problem, as
required by discriminant saliency and illustrated in Figure 2.
This consists of defining, at each image location l,

a. stimuli of interest: observations within a neighbor-
hood Wl

1 of l (henceforth referred to as the center);
and

Figure 2. Illustration of discriminant center-surround saliency.
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b. null hypothesis: observations within a surrounding
window Wl

0 (henceforth referred to as the surround).

All observations are responses, to the visual stimulus, of
a predefined set of features X. The saliency of location l is
equated to the power of X to discriminate between the
center and surround of l based on the distributions of the
feature responses estimated from the two regions.
Mathematically, the feature responses within the two

windows, Wl
0 and Wl

1 are observations from a random
process X(l) = (X1(l),I, Xd(l)), of dimension d, drawn
conditionally on the state of a hidden variable Y(l). The
feature vector observed at location j is denoted as x( j) =
(x1( j),I, xd( j)). Feature vectors x( j) such that j Z Wl

c,
cZ {0, 1} are drawn from class c according to conditional
densities PX(l)ªY(l)(xªc). Vectors drawn with Y(l) = c are
referred to as belonging to the center class if c = 1 and the
surround class if c = 0. The saliency of location l, S(l), is
equal to the discriminant power of X for the classification
of the observed feature vectors x( j), Oj Z Wl = Wl

0 ? Wl
1,

into center and surround. This is quantified by the mutual
information between features, X, and class label, Y,

SðlÞ ¼ IlðX ; YÞ
¼

X
c

Z
pXðlÞ;YðlÞ x; cð Þlog pXðlÞ;YðlÞðx; cÞ

pXðlÞðxÞpYðlÞðcÞ
dx: ð1Þ

The l subscript emphasizes the fact that both the
classification problem and the mutual information are

defined locally, within Wl. The function S(l) is referred to
as the saliency map. Note that Equation 1 defines the
discriminant saliency measure in a very generic sense,
independently of the stimulus dimension under consider-
ation or any specific feature sets. In fact, Equation 1 can be
applied to any type of stimuli and any type of local
features, as long as the probability densities PX(l)ªY(l)(xªc)
can be estimated from the center and surround neighbor-
hoods. In what follows, we derive the discriminant center-
surround saliency for a variety of features, including
intensity, color, orientation, motion, and even more
complicated dynamic texture models.

Discriminant saliency detection in
static imagery

We start by deriving the optimal saliency detector for
static stimuli, whose building blocks are illustrated in
Figure 3.

Extraction of visual features

The choice of a specific set of features is not crucial
for the proposed saliency detector. We have obtained
similar results with various types of wavelet or Gabor

Figure 3. Bottom-up discriminant saliency detector.
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decompositions. In this work, we rely on a feature
decomposition proposed by Itti and Koch (2000) and
loosely inspired by the earliest stages of biological visual
processing. This establishes a common ground for
comparison with the previous saliency literature. The
image to process is first subject to a feature decomposition
into an intensity map (I) and four broadly tuned color
channels (R, G, B, and Y),

I ¼ ðr þ gþ bÞ=3;
R ¼ ½r~jðg~þ b~Þ=2�þ;
G ¼ ½g~jðr~þ b~Þ=2�þ; ð2Þ
B ¼ ½b~jðr~þ g~Þ=2�þ;
Y ¼ ½ðr~þ g~Þ=2jjr~jg~j=2�þ;

where r~ = r/I, g~ = g/I, b~ = b/I, and )x2+ = max(x, 0). The
four color channels are, in turn, combined into two color
opponency channels, R j G for red/green and B j Y for
blue/yellow opponency. The two opponency channels,
together with the intensity map, are convolved with three
Mexican hat wavelet filters, centered at spatial frequencies
0.02, 0.04, and 0.08 cycles/pixel, to generate nine feature
channels. The feature space consists of these nine
channels, plus a Gabor decomposition of the intensity
map, implemented with a dictionary of zero-mean Gabor
filters at 3 spatial scales (centered at frequencies of 0.08,
0.16, and 0.32 cycles/pixel) and 4 directions (evenly
spread from 0 to :). Note that, following the tradition of
the image processing and computational modeling liter-
atures, we measure all filter frequencies in units of
“cycles/pixel (cpp).” For a given set of viewing con-
ditions, these can be converted to the “cycles/degree of
visual angle (cpd)” more commonly used in psychophy-
sics. For example, in all psychophysics experiments
discussed later, the viewing conditions dictate a conver-
sion rate of 30 pixels/degree of visual angle. In this case,
the frequencies of these Gabor filters are equivalent to 2.5,
5, and 10 cpd.

Leveraging natural image statistics

The second stage of the detection involves estimating
the mutual information of Equation 1, at each image
location, for the center-surround classification problem.
This is, in general, impractical since it requires density
estimates on a potentially high-dimensional feature space.
A known statistical property of band-pass natural image
features, such as Gabor or wavelet coefficients, can
nevertheless be exploited to drastically reduce complexity.
This property is that band-pass features exhibit strongly
consistent patterns of dependence across a very wide
range of natural image classes (Buccigrossi & Simoncelli,
1999; Huang &Mumford, 1999). For example, Buccigrossi

and Simoncelli (1999) have shown that, when a natural
image is subject to a wavelet decomposition, the condi-
tional distribution of any wavelet coefficient, given the
state of the co-located coefficient of immediately coarser
scale (known as its “parent”), invariably has a bow-tie
shape. This implies that, while the coefficients are statisti-
cally dependent, their dependencies carry little information
about the image class (Buccigrossi & Simoncelli, 1999;
Vasconcelos & Vasconcelos, 2004). In the particular case
of saliency, feature dependencies are not greatly informa-
tive about whether the observed feature vectors originate
in the center or the surround. Experimental validation of
this hypothesis (Vasconcelos, 2003; Vasconcelos &
Vasconcelos, 2004, in press) has shown that, for natural
images, Equation 1 is well approximated by the sum of
marginal mutual informations between individual features
and class label

SðlÞ ¼
Xd
i¼1

IlðXi;YÞ: ð3Þ

This is a sensible compromise between decision theoretic
optimality and computational parsimony. Note that this
approximation does not assume that the features are
independently distributed, but simply that their depen-
dencies are not informative about the class.
Since Equation 3 only requires estimates of marginal

densities, it has significantly less complexity than Equa-
tion 1. This complexity can be further reduced by
exploiting the well known fact that marginal densities of
band-pass features are accurately modeled by a general-
ized Gaussian distribution (GGD) (Clarke, 1985; Mallat,
1989; Modestino, 1977),

PX x; !; "ð Þ ¼ "

2!*ð1="Þ exp j
jxj
!

� �"
( )

; ð4Þ

where *(z) = X0
Vejtt zj1dt, t 9 0, is the Gamma function, !

is a scale parameter, and " is a shape parameter. The
parameter " controls the decay rate from the peak value
and defines a subfamily of the GGD (e.g., the Laplacian
family when " = 1 or the Gaussian family when " = 2).
When the class conditional densities, PXªY(xªc), and the
marginal density, PX(x), follow a GGD, the mutual
information of Equation 3 has a closed form (Do &
Vetterli, 2002)

I
�
X; Y

� ¼ X
c

PY

�
c
�
KL PXkYðxkcÞÝPXðxÞ

� �
; ð5Þ

with

KL PX x; !1; "1ð ÞÝPX x; !2; "2ð Þ½ �

¼ log
"1!2*ð1="2Þ
"2!1*ð1="1Þ

� �
þ !1

!2

� �"2 *ðð"2 þ 1Þ="1Þ
*ð1="1Þ

j
1

"1
;

ð6Þ
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where KL[pªªq] = Xp(x)log pðxÞ
qðxÞ dx is the Kullback–Leibler

(K–L) divergence between p(x) and q(x). Hence, the
discriminant saliency measure only requires the estimation
of the ! and the " parameters for the center and the
surround widows and the computation of Equations 3, 5,
and 6.
Gao and Vasconcelos (in press) have shown that, for

maximum a posteriori estimation of the parameters (!c
and "c, c Z {0, 1}) with conjugate (Gamma) priors, there
is a one-to-one mapping between the discriminant sali-
ency detector and a neural network that replicates the
standard architecture of V1: a cascade of linear filtering,
divisive normalization, quadratic nonlinearity, and spatial
pooling. In the implementation presented in this article,
we have instead adopted the method of moments for all
parameter estimation because it is computationally more
efficient on a nonparallel computer. Under the method of
moments, ! and " are estimated through the relationships

A2 ¼
!2*

3

"

� �

*
1

"

� � and . ¼
*

1

"

� �
*

5

"

� �

*2 3

"

� � ; ð7Þ

where A2 and . are, respectively, the variance and the
kurtosis of X

A2 ¼ EX

h
XjEX X½ �Þ2

� i
and . ¼ EX½ðXjEX½X�Þ4�

A4
:

ð8Þ

In summary, parameter estimation only requires sample
moments of the feature responses within the center and
the surround windows and is very efficient. The method of
moments has also been shown to produce good fits to
natural images (Huang & Mumford, 1999).

Consistency with psychophysics

To evaluate the compliance of discriminant saliency
with psychophysics, we simulated a number of classical
experiments in visual attention (Treisman & Gelade,
1980; Treisman & Gormican, 1988; Nothdurft, 1993).
All simulations assumed viewing conditions such that 30
pixels correspond to 1- of visual angle. Following the
standard practice in psychophysics, displays consisted of
arrays of simple items, which subtended approximately
1-. The proposed saliency detector has two free parame-
ters: the sizes of the center and the surround windows. In
all experiments, the radius of the center was set to 1- and
that of the surround to six times this value. Preliminary
experimentation with these parameters has shown that the

saliency results are not significantly affected by variations
around the parameter values adopted. To improve intelli-
gibility, the saliency maps shown in this article were
subject to smoothing, contrast enhancement (by squaring),
and normalization of the saliency value to the interval
[0, 1]. This implies that absolute saliency values are
not comparable across displays but only within each
saliency map.
We start with a series of displays commonly adopted in

the literature to investigate whether saliency detectors
reproduce the fundamental properties of human saliency
(Itti et al., 1998; Rosenholtz, 1999). This is the case of
discriminant saliency, which replicates the percept of pop-
out for single feature search (e.g., Figures 4A and 4B),
disregard of feature conjunctions (e.g., Figure 4C), and
saliency asymmetries for feature presence vs. absence (e.g.,
Figure 5), in addition to various grouping and segmenta-
tion percepts (e.g., Figure 1). Although interesting, this
type of evaluation is purely qualitative and therefore
anecdotal. Given the simplicity of the displays, it is not
hard to conceive of other center-surround operations that
could produce similar results. To address this problem, we
introduce an alternative evaluation strategy, based on the
comparison of quantitative predictions, made by the
saliency detectors, and available human data. It is our
belief that quantitative predictions are essential for an
objective comparison of different saliency principles. We
show that this process can be useful, by performing
various objective comparisons between discriminant
saliency and the popular saliency model of Itti and Koch
(2000), whose results were obtained with the MATLAB
implementation by Walther and Koch (2006).
In the first experiment, we examine the ability of the

saliency detectors to predict a well known nonlinearity of
human saliency. While it has long been known that local
feature contrast affects percepts such as target pop-out and
texture segregation, most early studies in the psychophy-
sics of saliency pursued the threshold at which these
events occur. Examples includes the threshold at which a
(previously nonsalient) target pops-out (Foster & Ward,
1991; Nothdurft, 1991b), two formerly indistinguishable
textures segregate (Julesz, 1981; Landy & Bergen, 1991),
a “serial” visual search becomes “parallel,” or vice versa
(Moraglia, 1989; Treisman & Gelade, 1980; Wolfe,
Friedman-Hill, Stewart, & O’Connell, 1992). In the
context of objective evaluation, these studies are less
interesting than a posterior set, which also measured the
saliency of pop-out targets above the detection thresh-
old (Motoyoshi & Nishida, 2001; Nothdurft, 1993;
Regan, 1995). In particular, Nothdurft (1993) character-
ized the saliency of pop-out targets due to orientation
contrast by comparing the conspicuousness of orientation
defined targets and luminance defined ones and by using
luminance as a reference for relative target salience. He
showed that the saliency of a target increases with
orientation contrast, but in a nonlinear manner, exhibit-
ing both threshold and saturation effects: (1) there
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exists a threshold below which the effect of pop-out
vanishes and (2) above this threshold saliency increases
with contrast, saturating after some point. The overall
relationship has a sigmoidal shape, with lower (upper)
threshold tl (tu).
The results of this experiment are illustrated in Figure 6.

The figure presents plots of saliency strength as a function
of the target orientation contrast. The human data
collected by Nothdurft (1993) is presented in Figure 6A,
while the predictions of the discriminant saliency detector
are shown in Figure 6B. Note that the latter closely
predicts the strong threshold and saturation effects of the

former, suggesting that tl , 10- and tu , 40-. These
predictions are consistent with the human data. The same
experiment was repeated for the model of Itti and Koch
(2000) which, as illustrated by Figure 6C, exhibited no
quantitative compliance with human performance.
The nonlinearity of discriminant saliency is mostly

due to the combination of (1) the mutual information
underlying the saliency measure and (2) the generalized
Gaussian statistics of natural image feature responses.
To obtain some intuition about this, consider the
saliency computations, Equations 5 and 6, with parame-
ters estimated by the method of moments, Equation 7. Let

Figure 5. Example of pop-out asymmetry (discriminant saliency maps shown below each display). (Left) A target (“Q”) defined by the
presence of a feature that the distractors (“O”) lack produces a strong pop-out effect. (Right) The reverse does not lead to noticeable pop-out.

Figure 4. Discriminant saliency output (bottom row) for displays (top row) where target and distractors differ in terms of single features
(A, orientation; B, color) or (C) feature conjunctions (color and orientation). Brightest regions are most salient. The strong saliency
peaks at the targets of panels A and B indicate a strong pop-out effect. The lack of distinguishable saliency variations between the
target (fourth line and fourth column) and distractors of panel C indicates that the target does not pop-out.
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!c, "c, c Z {0,1,2} represent, respectively, the GGD
parameters of feature distributions in the center, the
surround, and the total (center + surround) regions.

Finally, for simplicity, assume that "0 = "1 = "2 = 1, in
which case Equation 5 becomes

I X; Yð Þ ¼ PYð0ÞA0 þ PYð1ÞA1

A2

þ logA2 jPY 0ð ÞlogA0 j PY 1ð ÞlogA1 j 1;

with A2
2 = PY(0)A0

2 + PY(1)A1
2.

For Gabor decompositions, the standard deviation (A) of
the response of each filter is sensitive to stimulus
orientation: It reaches its maximum value when the latter
is aligned with the filter orientation, dropping significantly
as the two orientations diverge. This implies that, when
orientation contrast between target and distractors is
small, A0 and A1 are close (A1/A0 , 1). As contrast
increases, the response in the region whose stimulus
orientation is closer to the preferred orientation of the
filter becomes dominant, i.e., either A1/A0 d 1 or A0/A1

d 1. It follows that the ratio A1/A0 is a measure of
orientation contrast between center and surround stimuli.
Plotting Equation 9 as a function of this ratio, as
illustrated in Figure 7, shows that the discriminant
saliency measure increases nonlinearly with orientation
contrast and exhibits a strong saturation effect (a similar
shape was also obtained for A0/A1 and is omitted). While
other factors, such as the facts that " is not necessarily 1
and that A itself saturates, also contribute to the nonlinear
behavior of saliency, these are smaller effects than that of
Figure 7.
A second experiment addressed the ability of the

saliency detectors to make quantitative predictions regard-
ing classical saliency asymmetries: While the presence in
the target of some feature absent from the distractors
produces pop-out, the reverse (pop-out due to the absence,
in the target, of a distractor feature) does not hold
(Treisman & Gormican, 1988). The qualitative results of
Figure 5 show that discriminant saliency has the ability
to reproduce these asymmetries. We investigated if it

Figure 7. Mutual information between feature responses and class
label, as a function of the ratio between the variances of the
former in the center and the surround windows, A1/A0.

Figure 6. The nonlinearity of human saliency responses to
orientation contrast (reproduced from Figure 9 of Nothdurft,
1993) (A) is replicated by discriminant saliency (B) but not by
the model of Itti and Koch (2000) (C).

ð9Þ
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could also make objective predictions for the strength of
this asymmetry. For this, we relied on data collected in
visual search experiments (Treisman & Gormican, 1988),
which showed that asymmetries occur not only for the
existence and the absence of a feature but also for
quantitatively weaker and stronger responses along one
feature dimension. In fact, through a series of experi-
ments involving displays in which the target differs
from distractors only in terms of length, Treisman and

Gormican (1988) showed that the asymmetries follow
Weber’s law. Figure 8A presents one example of the
displays used in this experiment, where the target
(a vertical bar at the center of the display) has a different
length from the distractors (a set of vertical bars). The
discriminant saliency detector was applied to these dis-
plays, and the results are presented in Figure 8B. The figure
shows the saliency predictions obtained at the target
location, across the set of displays, as a scatter plot. The
dashed line shows the best fit to Weber’s law: Target
saliency is approximately linear in the ratio between the
difference of target/distractor length ($x) and distractor
length (x). For comparison, Figure 8C presents the
corresponding scatter plot for the model of Itti and Koch
(2000), which does not replicate human performance.

Motion saliency

An important property of human saliency is its ubiquity:
Saliency mechanisms have been observed for various
cues, including orientation, color, texture, and motion
(Nothdurft, 1991a; Treisman & Gelade, 1980). It has also
been suggested that orientation and motion saliency could
be encoded by similar mechanisms (Ivry & Cohen, 1992;
Nothdurft, 1993). Since Equation 1 can be applied to any
type of stimuli and features this is, in principle, possible to
replicate with discriminant saliency. In this section, we
verify this hypothesis by deriving the discriminant
saliency detector for motion stimuli and by providing
evidence of its ability to predict human psychophysics.

Motion-based discriminant saliency detector

To compute motion information from video sequences,
we adopt the spatiotemporal filtering approach of Adelson
and Bergen (1985) and Heeger (1988). Spatiotemporal
filtering is a biologically plausible mechanism for motion
estimation and has been shown to comply with the
physiology and the psychophysics of the early stages of
the visual cortex (Adelson & Bergen, 1985). Since
spatiotemporal orientation is equivalent to velocity, a set
of 3-D Gabor (spatiotemporal) filters, tuned to a specific
orientation in space and time, is used to extract the motion
energy associated with different velocities. The algorithmic
implementation of the spatiotemporal filters used in this
work was based on the separable spatiotemporal filters of
Heeger (1988). We considered only one spatial scale and
the spatial frequency of each Gabor filter was fixed to
0.25 cycles/pixel. Three temporal scales (temporal frequen-
cies of 0, T0.25 cycles/frame) and 4 spatial orientations
(0, :/4, :/2, and 3:/4) were used, in a total of 12 filters. The
standard deviation of the spatial Gaussian was set to 1 and
that of the temporal Gaussian to 2. This set of filter

Figure 8. An example display (A) and performance of saliency
detectors (discriminant saliency (B) and the model of Itti and
Koch, 2000 (C)) on Treisman’s Weber’s law experiment.
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parameters were chosen for simplicity; we have not
experimented thoroughly with them. We have also only
considered the intensity of the input video frames, and all
color information was discarded. These intensity maps
were convolved with the 12 spatiotemporal filters to
produce the feature maps used by the saliency algorithm.
Saliency was then computed as in the static case, using
Equations 3–6.

Consistency with psychophysics of motion
perception

To evaluate the compliance of the discriminant saliency
detector with the psychophysics of human motion saliency
(Ivry & Cohen, 1992; Nothdurft, 1993), we start with
some qualitative observations (all motion stimuli sequen-
ces in the experiments were generated using the Psychtool-
box; Brainard, 1997). Ivry and Cohen (1992) showed that

search asymmetries also hold for moving stimuli. For
example, searching for a fast-moving target among
slowly moving distractors is easier than the reverse. We
applied the motion-based discriminant saliency detector
to a set of sequences used to demonstrate the asymmetries
of motion pop-out (Ivry & Cohen, 1992), with the results
illustrated in Figure 9. The figure presents quiver plots of
the motion stimuli, under the two conditions, and one
frame of the resulting discriminant saliency map. The
conspicuous saliency peak at the target in Figure 9A
shows a strong pop-out effect when the target speed is
greater than that of the distractors. No noticeable pop-out
effect is observed in Figure 9B, where the distractor speed
is greater than that of the target. This shows that the
discriminant saliency detector can replicate the asymme-
tries of motion saliency.
As was the case for static stimuli, we complemented this

qualitative observation with a quantitative analysis of the
saliency predictions made by the discriminant detector.

Figure 9. Discriminant saliency detector output for (A) a fast-moving target among slowly moving distracters and (B) a slowly moving
target among fast-moving distractors. Top row shows quiver plots of the stimuli (the direction of motion is specified by the arrow whose
length indicates the speed), and bottom row plots the corresponding saliency maps.

Journal of Vision (2008) 8(7):13, 1–18 Gao, Mahadevan, & Vasconcelos 10



Nothdurft (1993) found that human saliency responses to
motion are very similar to those observed for orientation:
The perception of saliency of moving targets increases
nonlinearly with motion contrast and shows significant
saturation and threshold effects. To test the compliance of
discriminant saliency with this nonlinearity, we applied it
to the motion displays of Nothdurft (1993). An example
is shown in Figure 10A, where Figure 10B shows a plot
of the human saliency data, reproduced from the original
figure of Nothdurft (1993), and Figure 10C presents the
predictions made by discriminant saliency. The two plots
are very similar, both exhibiting threshold and saturation
effects.

Applications in computer vision

The ability of discriminant saliency to make accurate
predictions of the psychophysics of human saliency, for
both static and motion stimuli, encouraged us to examine
its performance as a solution for computer vision prob-
lems. We considered the problems of predicting human
eye fixations, detecting salient moving objects in the
presence of ego-motion, and background subtraction from
highly dynamic scenes. In all cases, the output of the
discriminant saliency detector was compared to either
human performance or state-of-the-art solutions from the
computer vision literature.

Prediction of eye fixations on natural scenes

We started by testing the ability of the static discrim-
inant saliency detector to predict the location of human
eye fixations. For this, we compared the discriminant
saliency maps obtained from a collection of natural
images to the eye fixation locations recorded from human
subjects, in a free-viewing task. The eye-fixation data
were collected by Bruce and Tsotsos (2006), from 20
subjects and 120 different natural color images, depicting
urban scenes (both indoor and outdoor). The images were
presented in 1024 � 768 pixel format on a 21-in. CRT
color monitor. The monitor was positioned at viewing
distance of 75 cm; consequently, the image presented
subtended 32- horizontally and 24- vertically, i.e.,
approximately 30 pixels per degree of visual angle. All
images were presented in random order, to each subject

Figure 10. The nonlinearity of human saliency responses to
motion contrast (reproduced from Figure 9 of Nothdurft, 1993) (B)
is replicated by discriminant saliency (C). A quiver plot of one
instance of the motion display used in the experiment (with
background contrast (bg) = 0; target contrast (tg) = 60) is
illustrated in panel A. The direction of motion is specified by the
arrow, whose length indicates the speed.

Saliency
model Discriminant

Itti and
Koch (2000)

Bruce and
Tsotsos (2006)

Inter-
subject

ROC area 0.7694 0.7287 0.7547 0.8766

Table 1. ROC areas for different saliency models with respect to
all human fixations.
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for 4 seconds, with a mask inserted between consecutive
presentations. Subjects were given no instructions, and
there were no predefined initial fixations. A standard non-
head-mounted gaze tracking device (Eye-gaze Response
Interface Computer Aid (ERICA) workstation) was
applied to record the eye movements. All participants
had normal or correct-to-normal vision.
To measure prediction accuracy, saliency maps were

first quantized into a binary mask that classified each
image location as either a fixation or nonfixation (Tatler,
Baddeley, & Gilchrist, 2005). Using the measured human
fixations as ground truth, a receiver operating character-
istic (ROC) curve was generated by varying the quantiza-
tion threshold. Perfect prediction corresponds to an ROC
area (area under the ROC curve) of 1, while chance
performance occurs at an area of 0.5. Since the metric

makes use of all saliency information in both the human
fixations and the saliency detector output, it has been
adopted in various recent studies (Bruce & Tsotsos, 2006;
Harel et al., 2007; Kienzle et al., 2007). The predictions of
discriminant saliency were compared to those of the
methods of Itti and Koch (2000) and Bruce and Tsotsos
(2006). As an absolute benchmark, we also computed the
“inter-subject” ROC area (Harel et al., 2007), which
measures fixation consistency between human subjects.
For each subject, a “human saliency map” was derived
from the fixations of all other subjects, by convolving
these fixations with a circular 2-D Gaussian kernel. The
standard deviation (A) of this kernel was set to 1- of visual
angle (,30 pixels), which is approximately the radius of
the fovea. The “inter-subject” ROC area was then
measured by comparing subject fixations to this saliency
map and averaging across subjects and images.
Table 1 presents average ROC areas for all detectors,

across the entire image set, as well as the “inter-subject”
ROC area. It is clear that discriminant saliency has the
best performance among the three saliency detectors.
Nevertheless, its advantage over the other two detectors is
not as significant as that observed in the quantitative
psychophysics simulations of the previous sections. This
is due to the fact that performance on the fixation task
does not depend on the accuracy of the saliency measure
as critically as performance in the psychophysics experi-
ments. There are two reasons for this. The first is that the
eye fixation experiment is more qualitative: All that is
required for good performance is that the saliency peaks
have the correct ordering within each saliency map. On
the other hand, good performance on the psychpohysics
simulations, e.g., the nonlinearity study, requires a precise
match between the simulated curve of saliency vs.

Figure 11. Average ROC area, as a function of inter-subject ROC
area, for the saliency algorithms discussed in the text.

Figure 12. Saliency in the presence of ego-motion. (A–D) Representative frames from a video sequence shot with a moving
camera, (E–H) the saliency map produced by the motion-based discriminant saliency detector, and (I–L) the “surprise” maps by the
model of Itti and Baldi (2005) (Movie clip).
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orientation contrast and that of humans. The second is that
ROC areas of Table 1 are averaged across all fixations.
This makes the human ground-truth unreliable since it is
unlikely that late fixations are driven by bottom-up
saliency. On the contrary, as the subjects start to recognize
the scenes, it is expected that they will use top-down cues
to decide where to look next. This has been pointed out in
the literature, for example, Tatler et al. (2005) suggest that
the first a few fixations are more likely to be driven by
bottom-up mechanisms than the remaining ones.
To probe deeper into this issue, we studied in greater

detail the relationship between saliency maps and the
subjects’ first two fixations. Figure 11 presents the ROC
areas of the three detectors as a function of the “inter-
subject” ROC area, for these fixations. Again, discrim-
inant saliency exhibited the strongest correlation with
human performance, at all levels of inter-subject consis-
tency. More importantly, the gains of discriminant saliency
were largest when inter-subject consistency was strongest.
In this region, the performance of discriminant saliency
(0.85) was close to 90% of that of humans (0.95), while the
other two detectors only achieved close to 85% (0.81).

Discriminant saliency on motion fields

Motion saliency is of importance for various computer
vision applications. For example, a robot could benefit
from a motion saliency module to identify objects
approaching it. However, motion saliency is not trivial
to implement when there is ego-motion. If the robot is
moving itself, the optical flow due to the moving objects
is easily confounded with that originated by background
variation due to the robot’s motion. This is illustrated by
Figure 12, which shows several frames (top row) from a
video sequence shot with a moving camera. The sequence
depicts a leopard running in a grassland. The camera
motion introduces significant variability in the back-
ground, making the detection of foreground motion (the
leopard) a difficult task. This can be confirmed by
analyzing the saliency predictions of algorithms previously
proposed in the literature. One example is the “surprise”
model of Itti and Baldi (2005) (results were generated
using the iLab Neuromorphic Vision Toolkit available
from http://ilab.usc.edu/toolkit). Although it is one of the
best saliency detectors for these types of sequences, the
“surprise” maps generated by this algorithm (bottom row
of the figure) frequently assign more saliency to the
motion of the background than to that of the leopard.
The saliency maps produced by motion-based discrim-

inant saliency are shown in the middle row of the figure.
They are clearly superior to those produced by the surprise
model, disregarding the background and concentrating all
saliency on the animal’s body. This example shows that
motion-based discriminant saliency is very robust to the
presence of ego-motion. This is due to the fact that
discriminant saliency is based on a measure of motion

contrast. While there is variability in the background
optical flow (due to a combination of camera motion and a
mostly static scene) this is usually much smaller than the
variability of the object’s optical flow (especially for
nonrigid objects). Hence, the object region has larger
motion contrast and is deemed more salient. This is

Figure 13. Performance of background subtraction algorithms on
(A) water bottle, (B) surfer, and (C) cyclists.
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similar to the grouping examples of Figure 1, where
feature contrast plays an important role in grouping and
segmentation percepts.

Discriminant saliency for dynamic scenes

One further source of complexity is the possibility that
the scene is itself dynamic, e.g., a background consisting
of water waves, or tree leaves moving with the wind. In
this case, the variability of background optical flow can
be larger than that of the object optical flow, for any
object. This problem is so complex that, even though
background subtraction is a classic problem in computer
vision, there has been relatively little progress for these
types of scenes (e.g., for a review, see Sheikh and
Shah, 2005). In order to capture the motion patterns
characteristic of these backgrounds, it is necessary to rely
on reasonably sophisticated probabilistic models, such as
the dynamic texture model (Doretto, Chiuso, Wu, &
Soatto, 2003). A dynamic texture (DT) is an autoregres-
sive, generative model for video. It models the spatial
component of the video and the underlying temporal

dynamics as two stochastic processes. The video is
represented as a time-evolving state process xt Z Rn,
and the appearance of a frame yt Z Rm is a linear
function of the current state vector and observation noise.
The system equations are

xt ¼ Axtj1 þ vt

yt ¼ Cxt þ wt;
ð10Þ

where A Z Rn�n is the state transition matrix and
C Z Rm�n is the observation matrix. The state and obser-
vation noise are given by vt È N(0, Q) and wt È N(0, R),
respectively. Finally, the initial condition is distributed as
x1 È N(2, S).
Due to the probabilistic nature of the dynamic texture

model, it can be easily incorporated on a center-surround
discriminant saliency detector. Given a sequence of
images, the parameters of the dynamic texture are learned
for the center and the surround regions at each image
location, using algorithms discussed by Doretto et al.

Figure 14. Results on bottle: (A–D) original; (E–H) DTDS; (I–L) surprise; and (M–P) GMM model (Movie clip).
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(2003) and Chan and Vasconcelos (2008). Saliency is then
computed with the mutual information of Equation 3,
using as PX(l),Y(l)(x, c) the probabilistic representation of
the center and surround linear dynamic systems. In this
case, the discriminant saliency measure becomes a
measure of contrast between the compliance of the center
and the surround regions with the dynamic texture
assumption. Since this assumption tends to be accurate
for dynamic natural scenes, but not necessarily for objects,
the result is a background subtraction algorithm applicable
to complex dynamic scenes.
This can be seen in Figures 14–16, which depict the

saliency maps produced by the dynamic texture-based
discriminant saliency (DTDS) detector for three video
sequences. The first (water bottle from Zhong and Sclaroff,
2003) depicts a bottle floating in water in rain and is
shown in Figure 14A–D. The second sequence, Surfer,
containing a surfer moving in water, is shown in
Figure 15A–D. This sequence is more challenging, as the
water surface displays a lower frequency sweeping wave
interspersed with high frequency components due to
turbulent wakes (created by the surfer and crest of the
sweeping wave). The third, Cyclists (Figure 16A–D),
shows a pair of cyclists moving across a field. The
resolution of the clip is poor, and there is considerable
background movement, making it difficult to extract

the foreground reliably. We compared the output of the
DTDS detector with a state-of-the-art background subtrac-
tion algorithm from computer vision, based on a Gaussian
mixture model (GMM) (Stauffer & Grimson, 1999;
Zivkovic, 2004), as well as the “surprise” model (Itti &
Baldi, 2005).
Figures 14E–H, 15E–H, and 16E–H show the saliency

maps produced by discriminant saliency detector, DTDS,
for the three sequences. The DTDS detector performs
well in all cases, detecting the foreground objects while
ignoring the movement in the background. As can be
seen in Figures 14I–L and 14M–P, Figures 15I–L and
15M–P, and Figures 16I–L and 16M–P, the foreground
detection of the other methods is very noisy and cannot
adapt to the highly dynamic nature of the background.
The “surprise” maps of the early frames are especially
noisy, since a training phase is required to learn the
model parameters, a limitation that does not affect DTDS.
Highly stochastic spatiotemporal stimuli, such as the
sweeping wave crest or the very fast moving background
field, create serious difficulties to both the GMM and the
surprise detector. Unlike the saliency maps of DTDS, the
resulting saliency maps contain substantial energy in
regions of the background, sometimes completely miss-
ing the foreground objects. These saliency maps would
be difficult to analyze by subsequent vision (e.g., object

Figure 15. Results on surfer: (A–D) original; (E–H) DTDS; (I–L) surprise; and (M–P) GMM model (Movie clip).
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tracking) modules. To produce a quantitative comparison
of the saliency maps, these were thresholded at a range of
values. The results were compared with manually
annotated ground-truth foreground masks, and an ROC
curve produced for each algorithm. The results are shown
in Figure 13. DTDS clearly outperforms both the GMM
based background model and the “surprise” model
(Figures 14–16).

Conclusion

In this work, we have evaluated the plausibility of a
recently proposed hypothesis for bottom-up saliency:
that it is the result of optimal decision making, under
constraints of computational parsimony. It was shown
that this hypothesis can be applied to various stimulus
modalities, and optimal saliency detectors were derived
for intensity, color, orientation, and motion. These
detectors were shown to replicate quantitative psycho-
physics aspects of human saliency for both static and
moving stimuli. Application of the detectors to prob-
lems of interest in computer vision, including the
prediction of human eye fixations on natural scenes,
motion-based saliency in the presence of ego-motion,
and background subtraction in highly dynamic scenes,
also revealed better performance than existing solutions
to these problems.
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