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Abstract

Low-complexity feature selection is analyzed in the context of visual recognition. It is hypothesized

that high-order dependences of bandpass features contain little information for discrimination of natural

images. This hypothesis is characterized formally, by introduction of the concepts of conjunctive inter-

ference and decomposability order of a feature set. Necessary and sufficient conditions, for the feasibility

of low-complexity feature selection, are then derived in terms of these concepts. It is shown that the

intrinsic complexity of feature selection is determined by the decomposability order of the feature set,

not its dimension. Feature selection algorithms are then derived for all levels of complexity, and shown

to be approximated by existing information theoretic methods, which they consistently outperform. The

new algorithms are also used to objectively test the hypothesis of low decomposability order, through

comparison of classification performance. It is shown that, for image classification, the gain of modeling

feature dependencies has strongly diminishing returns: best results are obtained under the assumption

of decomposability order 1. This suggests a generic law for bandpass features extracted from natural

images: that the effect, on the dependence of any two features, of observing any other feature is constant

across image classes.

Index Terms

Feature Extraction and Construction, Low-complexity, Natural image statistics, Information Theory, Fea-

ture Discrimination vs Dependence, Image databases, Object recognition, Texture, Perceptual reasoning
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I. INTRODUCTION

Natural image statistics have been a subject of substantial recent research in computer and

biological vision [1]–[14]. For computer vision, good models of image statistics enable algorithms

tuned to the scenes that matter the most. Tuning to natural statistics can be accomplished through

priors that favor solutions consistent with them [15]–[18], or optimal solutions derived from

probability models which enforce this consistency [19]–[23]. The idea of optimal tuning to

natural statistics also has a long history in biological vision [5], [24]–[26], where this tuning is

frequently used to justify neural computations. In fact, various recent advances in computational

modeling of biological vision follow from connections between neural function and properties of

natural stimulus statistics [8], such as sparseness [12], [27], independence [13], [14], compliance

with certain probability models [28], or optimal statistical estimation [29], [30].

Although natural images are quite diverse, their convolution with banks of band-pass functions

gives rise to frequency coefficients with remarkably stable statistical properties [1]–[4], [6]–

[8], [10]. This is illustrated by Fig. 1 a), which presents three images, the histograms of one

coefficient of their wavelet decomposition, and the histogram of that coefficient conditioned on its

parent. The different visual appearance of the images affects the scale (variance) of the marginal

distribution, but not its shape or that of the conditional distribution, which is a bow-tie for all

classes. This canonical pattern is simply rescaled to match the marginal statistics of each class.

These type of properties have been exploited in various image processing domains, including

compression [1], [2], [6], [19], de-noising [15], [16], [18], [22], retrieval [21], saliency [31],

extraction of intrinsic images [20], separation of reflections [32] and inpainting [17], [18]. In fact,

the study of image statistics has a complementary relationship with the development of vision

algorithms. Typically, an hypothesis is advanced for the statistics, an algorithm derived under

that hypothesis, and applied to natural images. If the algorithm performs well, the hypothesis is

validated.

This indirect validation paradigm is useful in two ways. First, it avoids the estimation of

complex statistical quantities. For example, hypotheses on high-order statistics are difficult to

verify experimentally, due to the well known difficulties of estimating such statistics [33]. Instead,

it is usually easier to 1) derive an algorithm that is optimal if the hypothesis holds, and 2) apply

it to a specific vision problem, such as object recognition [34], where performance can be easily
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a) b)

Fig. 1. a) Constancy of natural image statistics. Left: three images. Center: each plot presents the histogram of the same

coefficient from a wavelet decomposition of the image on the left. Right: conditional histogram of the coefficient conditioned

on the value of the co-located coefficient of immediately coarser scale (its parent). b) Biological vision frequently disregards

feature dependences. Top: a stimulus that differs from it surrounds by a single feature (color) is salient. Bottom: differences in

feature conjunctions (color and orientation) are not.

quantified. If the algorithm performs poorly there is reason to question the hypothesis, otherwise

there is concrete evidence in its support. The second advantage of indirect validation is that it

produces new vision algorithms which, under the hypothesis, are optimally tuned to the image

statistics. If the hypothesis holds, these algorithms can outperform the state-of-the-art.

In this work, we adopt the indirect validation paradigm to study the discriminant power

of the statistical dependencies of frequency coefficients extracted from natural images. While

simple inspection of the histograms of Fig. 1 a) shows that these dependences exist, their

constancy across image classes suggests the hypothesis that high-order dependences contain

little information for image discrimination. This hypothesis is supported by what is known

about biological vision, where it has long been argued that the early visual system dismisses

feature dependences in the solution of discriminant tasks, such as visual search [35], [36]. This

is illustrated by Fig. 1 b), which presents a classical example of the inability of pre-attentive

vision to process feature conjunctions. When, as on the top, an object (colored bar) differs from
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a background of distractors (other colored bars) in terms of a single feature (color), it can be

easily discriminated (it pops out). However if, as on the bottom, the object differs from the

distractors by a conjunction of two features (color and orientation, the bar on the 3rd row and

3rd column), there is no percept of pop-out. Current explanations attribute this phenomena to

independent feature processing [35]–[40].

For computer vision, where models of feature dependences require estimation of high-dimensional

densities, such dependences are a dominant source of complexity. A formal characterization of

their role in image discrimination is, therefore, a pre-requisite for optimal image classification

with reduced complexity. Since optimal classification requires discriminant features, we study

dependences in the context of feature selection. In the spirit of indirect validation, we 1)

develop optimal feature selection algorithms under the hypothesis that high-order dependences

are uninformative for discrimination, and 2) evaluate their image classification performance.

The contributions of this effort are in three areas. The first is a rigorous characterization of the

role of image statistics in optimal feature selection with low-complexity. We equate complexity

with the dimensionality of the probability densities to be estimated, and adopt an information

theoretic definition of optimality widely used in the literature [41]–[65]. We then derive, for each

level of complexity, the necessary and sufficient condition (on the statistics) for optimal feature

selection with that complexity. This condition depends exclusively on a quantity denoted as the

conjunctive interference within the set of features X, which roughly measures how, on average,

the dependence between two disjoint feature subsets A,B ⊂ X is affected by the remaining

features in X. It is shown (see Theorem 1) that if this conjunctive interference is constant across

classes, the complexity of the optimal solution is determined by the dimension of the subsets

A,B, rather than that of X. Hence, the smaller the set size for which conjunctive interference

is non-discriminant, the smaller the intrinsic complexity of feature selection.

The second contribution, which follows from the theoretical analysis, is a new family of feature

selection algorithms. These algorithms optimize simplified costs at all levels of complexity, and

are (locally) optimal when conjunctive interference is non-discriminant at their complexity level.

This family generalizes a number of low-complexity information theoretic methods [41]–[64]

previously shown to outperform many state-of-the-art feature selection techniques [48], [58].

The impressive empirical performance of the previous methods is explained by the fact that

they approximate the algorithms now derived. Nevertheless, there is a gain in replacing the
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approximations with the optimal algorithms: experiments on various datasets show that the latter

consistently outperform the previous methods, sometimes by a significant margin.

The final contribution, in the spirit of indirect validation, is the use of the feature selection

algorithms to indirectly characterize the image statistics. Given that the different algorithms

are optimal only when conjunctive interference is non-discriminant at their complexity level,

a comparison of feature selection performance identifies the complexity at which conjunctive

interference ceases to affect image discrimination. Algorithms with less than this complexity

are sub-optimal, and performance levels off once it is reached. We present evidence for the

hypothesis that this “leveling off” effect occurs at very low complexity levels. While simply

modeling marginal densities is, is general, not enough to guarantee optimal feature selection,

there appears to be little gain in estimating more than the densities of pairs of coefficients.

The paper is organized as follows. Section II reviews information theoretic feature selec-

tion. Section III introduces a basic decomposition of the information theoretic cost, and shows

that independent feature selection can be optimal even for highly dependent feature sets. The

decomposition is refined in Section IV, which formally defines conjunctive interference, and

introduces a measure of the intrinsic complexity of a feature set (decomposability order). Sec-

tion V introduces the new family of (locally) optimal algorithms, and discusses connections to

prior methods. Finally, the experimental protocol for indirect validation of the decomposability

hypothesis is introduced in Section VI, and experimental results discussed in Section VII. A

very preliminary version of the work, focusing mostly on the theoretical connections between

conjunctive interference and low complexity feature selection, has appeared in [64].

II. INFOMAX FEATURE SELECTION

We start by introducing the information theoretic optimality criterion adopted in this work,

and reviewing its previous uses in the feature selection literature.

A. Definitions

A classifier g : X → L = {1, . . . , M} maps a feature vector x = (x1, . . . , xN)T ∈ X ⊂
R

N into a class label i ∈ L. Feature vectors result from a transformation T : Z → X
of observation vectors z = (z1, . . . , zD) in measurement space Z ⊂ R

D. Observations are

samples from random process Z, of probability distribution PZ(z) on Z , feature vectors samples

March 5, 2008 DRAFT



6

from process X, of distribution PX(x) on X , and labels samples from random variable Y , of

distribution PY (i) in L. Given class i, observations have class-conditional density PZ|Y (z|i),
and class-posterior probabilities determined by Bayes rule, PY |Z(i|z) = PZ|Y (z|i)PY (i)/PZ(z).

The classification problem is uniquely defined by C = {Z, PZ|Y (z|i), PY (i), i ∈ L}. T induces

class-conditional densities, PX|Y (x|i), in X and defines a new classification problem CX =

{X , PX|Y (x|i), PY (i), i ∈ L}. We define as optimal the spaces of maximum mutual information

between features and class label.

Definition 1: Given a classification problem C and a set S of range spaces for the feature

transforms under consideration, the infomax space is

X ∗ = arg max
X∈S

I(Y ;X) (1)

where

I(X; Y ) =
∑

i

∫
X

pX,Y (x, i) log
pX,Y (x, i)

pX(x)pY (i)
dx. (2)

is the mutual information (MI) between X and Y .

Infomax is closely related to the minimization of Bayes classification error, and has a number of

relevant properties for low-complexity feature selection, some which are reviewed in Appendix I.

In what follows, z is a vector of image pixels, and x the result of a bandpass transformation

(e.g. a wavelet, Gabor, or windowed Fourier transform), followed by selection of N coefficients.

B. Previous Infomax approaches to feature selection

Information theoretic feature selection has been used for text categorization [41]–[44], cre-

ation of semantic ontologies [45], analysis of genomic microarrays [46], [47], classification of

electroencephalograms (EEG) [49], [50] and sonar pulses [53], [54], medical diagnosis [51],

audio-visual speech recognition [56] and visualization [57]. In computer vision, it been used for

face detection [58], object recognition [59], [61], and image retrieval [62]–[64]. These approaches

can be grouped into four classes. Algorithms in first class approximate (2) with

M(X; Y ) =
D∑

k=1

I(Xk; Y ), (3)

where I(Xk; Y ) is the MI between feature Xk and class label Y . M(X; Y ) is a measure

of the discriminant information conveyed by individual features. It is denoted as marginal
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mutual information (MMI), and its maximization as marginal infomax. It is popular in text

categorization [41]–[43] mostly due to its computational simplicity. It has, nevertheless, been

shown to sometimes outperform methods which account for feature dependences [45], [51], [56].

Algorithms in the second class combine an heuristic extension of marginal infomax, originally

proposed in [53], and the classical greedy strategy of sequential forward feature selection [66],

where one feature is selected at a time. Denoting by X∗ = {X∗
1 , . . . , X

∗
k} the set of previously

selected features, and X a candidate feature, the selected feature is

X∗
k+1 = arg max

X
{I(X; Y ) − f(X,X∗)}, (4)

where f(·) is a dependence measure, ranging from a hard rejection of dependent features [53]

to continuous penalties. The most popular is [47], [48], [51], [52], [54], [55]

f(X,X∗) = ξ
k∑

i=1

I(X; X∗
i ), (5)

where ξ controls the strength of the dependence penalty. Various information theoretic costs are

either special cases of this [47], [48], or extensions that automatically determine ξ [55].

Algorithms in the third class optimize costs closer to (1), once again through sequential

forward search. One proposal is to select the feature X which maximizes I(X, X ∗
i ; Y ), i ∈

{1, . . . , k} [57]. This is a low complexity approximation to I(X; Y ), which only considers pairs

of features. Because it does not rely on a modular decomposition of the MI, it is somewhat

inefficient. An alternative, proposed in [58], [60], addresses this problem by relying on

X∗
k+1 = arg max

X
min

i
I(Y ; X|X∗

i ) = arg max
X

min
i

[I(X, X∗
i ; Y ) − I(X∗

i ; Y )] , (6)

where we have used (31). This is equivalent (see (34)) to

X∗
k+1 = arg max

X
{I(X; Y ) + min

i
[I(X; X∗

i |Y ) − I(X; X∗
i )]}. (7)

We will show that (4) and (7) are simplifications of (1) which disregard important components

for image discrimination. Nevertheless, extensive empirical studies have shown that they can

beat state-of-the-art methods [48], [58], such as boosting [67], [68] or decision trees [69].

The final class has a single member, the algorithm of [65]. Unlike the other classes, it

sequentially eliminates features from X. This elimination is based on the concept of a Markov

blanket [70]: if there is a set of features M (called a Markov blanket), such that X is conditionally

independent of (X∪Y )−M−{X} given M, the feature X can be removed from X without any
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loss of information about Y . While theoretically sound, this method has a number of practical

shortcomings which are acknowledged by its authors: the Markov blanket condition is much

stronger than what is really needed (conditional independence of X from Y given M), there

may not be a full Markov blanket for a feature, and when there is one it can be difficult to find.

To overcome these problems, [65] uses various heuristics which only involve feature pairs. The

assumptions, with respect to the feature statistics, underlying these heuristics are not clear.

III. OPTIMALITY OF MARGINAL INFOMAX

To gain some intuition on the feasibility of low-complexity feature selection, we start by

investigating the conditions under which marginal infomax is identical to (1).

A. Features vs conjunctions

For this, we note that the MI can be decoupled into contributions from individual features

and feature conjunctions.

Lemma 1: Let X = (X1, . . . , XD) be any feature set, and X1,k = (X1, . . . , Xk). Then

I(X; Y ) = M(X; Y ) + C(X; Y ), (8)

where M(X; Y ) is the MMI of (3) and

C(X; Y ) =
D∑

k=2

[I(Xk;X1,k−1|Y ) − I(Xk;X1,k−1)]. (9)

Proof: See Appendix II.

The terms I(Xk;X1,k−1|Y )−I(Xk;X1,k−1) measure how the MI between features is affected by

knowledge of the class label. They quantify the discriminant information due to feature depen-

dences. C(X; Y ) is referred to as the conjunctive component of the MI (CCMI). A consequence

of Lemma 1 is that, if C(X, Y ) = 0, ∀X ∈ S, then (1) reduces to marginal infomax

X ∗ = arg max
X∈S

∑
k

I(Xk; Y ). (10)

Due to the non-negativity of MI, (10) has a simple solution: order the Xk by decreasing I(Xk; Y )

and select the largest N . While (1) involves combinatorial search and high-dimensional density

estimation, (10) only requires a linear search based on marginal density estimates. Hence, a null

CCMI is a sufficient condition for low-complexity feature selection.
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B. The role of natural image statistics

To obtain some intuition on how the CCMI is affected by the dependency structure of X, we

consider the classification of two Gaussian features X = (X1, X2) with

PX|Y (x|i) =
1√

4π2|Σi|
e−

1
2
xT Σ−1

i x, i ∈ {1, 2},

Σi =

⎡
⎣ εi γi

γi ηi

⎤
⎦ , Σ1 �= Σ2.

Gaussianity reduces all class-conditional dependences to two parameters, the correlation coeffi-

cients ρi = γi/
√

εiηi. It is relatively straightforward to measure the relative strength

R(X; Y ) =
C(X; Y )

M(X; Y )
(11)

of the MI components as a function of these parameters. If the variances εi and ηi are held

constant, fixing the marginal distributions, then R(X; Y ) is proportional to C(X; Y ), allowing

the study of how the latter depends on the ρi. By repeating the experiment with different εi and

ηi it is also possible to infer how this dependence is affected by the MMI, M(X; Y ). The graph

of R(X; Y ) vs. ρi, for fixed MMI, is the CCMI surface associated with the latter. While natural

images statistics are not Gaussian, this procedure provides intuition on how the MI is affected

by feature dependences. We consider two common scenarios for pairs of bandpass coefficients.

• S1: two features that are active/inactive for the same images (e.g. a wavelet coefficient and

its parent). X1 and X2 have equal variance (εi = ηi = νi) and are inactive for one class

(ν2 = 1) but active for the other (ν1 > 1). The CCMI surface is measured for various

activity levels (by controlling ν1).

• S2: each feature active for one class but not the other, e.g., X1 (X2) horizontally (vertically)

tuned and class 1 (2) predominantly composed of horizontal (vertical) lines. The variances

are ε1 = η2 = ν and ε2 = η1 = 1. The CCMI surface is measured for various ν.

Fig. 2 presents the corresponding CCMI surfaces, suggesting three main conclusions. First,

the CCMI can be close to zero even when the features are very strongly dependent. Note that

all surfaces are approximately zero along the line ρ1 = ρ2 = ρ, independently of either ρ

(dependence strength) or the MMI. Second, the importance of the CCMI in (8) increases with

the diversity of the dependence across classes, i.e. with |ρ1−ρ2|. Third, this increase is inversely

proportional to the MMI. While, for small MMI, a significant difference between the ρi makes
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12 2 1

a) b)

Fig. 2. R(X, Y ) as a function of the class-conditional correlations ρi, for a binary Gaussian problem. The inserts show one

standard deviation contours of the two Gaussian classes for various values of (ρ1, ρ2). The plots report to scenarios S1 (a) and

S2 (b). In both cases, different surfaces report to different values of ν, the variable that controls the marginal discrimination.

All MIs were evaluated by replacing expectations with sample means, obtained from a sample of 10, 000 points per class.

R(X, Y ) large, this is not the case for large MMI. Overall, (8) (and Fig. 2) shows that 1) the

relevance of feature dependences to the solution of (1) increases with their inter-class variability,

but 2) this variability only boosts the importance of features that are not discriminant per se.

In summary, C(X, Y ) = 0 is a sufficient condition for optimal feature selection with low-

complexity. It does not require feature independence, but simply that the discriminant power

of feature dependences is small. As seen in Fig. 1 a), this hypothesis is not unreasonable for

natural images. We will evaluate it in Section VII. For now, we consider a series of extensions

that bridge the gap between (1) and (10).

IV. DECOMPOSITIONS OF THE CONJUNCTIVE COMPONENT

If feature conjunctions are discriminant, it is unlikely that this will hold for all conjunctions.

For example, wavelet coefficients are dependent on their immediate neighbors (in space, scale,

or orientation), but the dependence decays quickly [71]. Hence, C(X, Y ) should not require

modeling dependences between all coefficients. We next derive conditions for the optimality of

infomax costs that only account for dependences within low-dimensional feature subsets.
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A. Decompositions of the mutual information

We start by considering the decomposition of I(X, Y ) for a given feature set X. We group

the D features into a collection of disjoint subsets of cardinality l

Cl = {C1, . . . ,C�D/l�}, (12)

where1

Ci =

⎧⎨
⎩

{X(i−1)l+1, . . . , Xil}, if i < �D/l	,
{X(i−1)l+1, . . . , XD}, if i = �D/l	.

(13)

and �x	 = inf{m ∈ Z|x ≤ m}, and derive the conditions under which the CCMI is totally

determined by the dependencies within each Ci. This is based on the following decomposition.

Lemma 2: Consider the decomposition of X into a subset collection Cl, as in (12). Then

C(X, Y ) =

D∑
k=2

�k−1/l�∑
i=1

[
I(Xk; C̃i,k|Ci−1

1 , Y ) − I(Xk; C̃i,k|Ci−1
1 )

]
. (14)

where Ci are as in (13), C̃i,k is the subset of features in Ci whose index is smaller than k, and

Ci−1
1 = (C1, . . . ,Ci−1).

Proof: See Appendix III.

This decomposition offers an explanation for why, in the absence of statistical regularities, low

complexity feature selection is impossible [72]. Note that, although Ci−1
1 shares no elements with

{Xk} or C̃i,k, the state of the features of the former affects the dependences between those in the

latter. Hence, the discriminant information due to the dependences between Xk and C̃i,k depends

on the state of Ci−1
1 , and is impossible to compute with low complexity. We refer to these indirect

dependence relationships, i.e. that the state of a subset of features interferes with the dependence

between two other non-overlapping subsets, as 2nd-order components of dependence. This is

opposed to direct dependences between subsets, which are referred to as 1st-order components,

or dependences within subsets, that we denote of 0th order. The conjunctive interference within

a feature set is the overall difference between the 1st and 2nd order dependences of its subsets.

Definition 2: Consider the decomposition of X into a subset collection C l, as in Lemma 2.

The conjunctive interference within X, with respect to Cl, is

CI(X; Cl) =

D∑
k=2

�k−1/l�∑
i=1

[
I(Xk; C̃i,k|Ci−1

1 ) − I(Xk; C̃i,k)
]
. (15)

1What follows could be extended to subsets Ci of different cardinality, but this would complicate the notation and is omitted.
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Conjunctive interference is a differential measure of dependence. It measures how, across

the feature set, the dependence between two sets of features (e.g. (Xk, C̃i,k)) changes with

the observation of a third, non-overlapping, set (Ci−1
1 ). Since if (A,B) is independent of C

then I(A;B|C) = I(A;B), it follows that conjunctive interference within X (with respect to

decomposition Cl) is null when (Xk, C̃i,k) is independent of Ci−1
1 for all valid i and k. We next

show that this is not a necessary condition for low-complexity evaluation of the MI. It suffices

that the conjunctive interference does not depend on the class.

Theorem 1: Consider the decomposition of X into Cl, as in (12). Then

I(X; Y ) = M(X; Y ) + CCl
(X; Y ) (16)

with M(X, Y ) as in (3), and

CCl
(X; Y ) =

D∑
k=2

�k−1/l�∑
i=1

[I(Xk; C̃i,k|Y ) − I(Xk; C̃i,k)], (17)

if and only if

CI(X; Cl) =
D∑

k=2

�k−1/l�∑
i=1

[
I(Xk; C̃i,k|Ci−1

1 , Y ) − I(Xk; C̃i,k|Y )
]
. (18)

Proof: See Appendix IV.

When (18) holds, (16) is equivalent to (8), with CCl
(X; Y ) playing the role of C(X; Y ). In

particular, (16) replaces each of the terms

I(Xk;X
k−1
1 |Y ) − I(Xk;X

k−1
1 ) (19)

of (9) by a sum, over i, of terms of the form

I(Xk; C̃i,k|Y ) − I(Xk; C̃i,k). (20)

While (19) quantifies the discriminant information due to dependences between Xk and the

entire set of Xj , j < k, (20) restricts this measure to dependences between Xk and subset C̃i,k.

Hence, (20) requires density estimates of dimension at most l + 1. Since density estimation has

exponential complexity on feature space dimension, the complexity difference between (16) and

(8) can be very significant if l << D. To illustrate this, we analyze a simple example.

Example 1: Let D = 6, l = 2. Then, C1 = {X1, X2},C2 = {X3, X4}, and C3 = {X5, X6},

and CCl
(X; Y ) is the sum of the terms in the third column of Table I. These terms measure
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TABLE I

TERMS OF (17) AND (15) WHEN D = 6, AND l = 2.

k i I(Xk; C̃i,k|Y ) − I(Xk; C̃i,k) I(Xk; C̃i,k|C1, . . . ,Ci−1) − I(Xk; C̃i,k)

2 1 I(X2; X1|Y ) − I(X2; X1) I(X2; X1) − I(X2; X1) = 0

3 1 I(X3;C1|Y ) − I(X3;C1) I(X3;C1) − I(X3;C1) = 0

4 1 I(X4;C1|Y ) − I(X4;C1) I(X4;C1) − I(X4;C1) = 0

4 2 I(X4; X3|Y ) − I(X4; X3) I(X4; X3|C1) − I(X4; X3)

5 1 I(X5;C1|Y ) − I(X5;C1) I(X5;C1) − I(X5;C1) = 0

5 2 I(X5;C2|Y ) − I(X5;C2) I(X5;C2|C1) − I(X5;C2)

6 1 I(X6;C1|Y ) − I(X6;C1) I(X6;C1) − I(X6;C1) = 0

6 2 I(X6;C2|Y ) − I(X6;C2) I(X6;C2|C1) − I(X6;C2)

6 3 I(X6; X5|Y ) − I(X6; X5) I(X6; X5|C1,C2) − I(X6; X5)

discriminant information due to dependences within C1, C2, and C3, (0th order components),

and between X3 and C1, X4 and C1, X5 and C1, X5 and C2, X6 and C1, and X6 and C2 (1st

order). Hence, (16) requires joint density estimates of up to three features. On the other hand,

(8) requires densities of up to six features and is three orders of magnitude more complex.

B. Decompositions for low-complexity feature selection

Theorem 1 only holds for the decomposition of X according to (12)-(13). This is not sufficient

for feature selection algorithms, which usually evaluate the MI of various subsets of X. For this,

the theorem must be expanded to all possible feature subsets of X. The extension of the necessary

and sufficient condition of (18) to all such subsets is denoted as l-decomposability.

Definition 3: A feature set X is l-decomposable, or decomposable at order l, if and only if

CI(W; Cl) =

|W|∑
k=2

�k−1/l�∑
i=1

[
I(Wk; C̃i,k|Ci−1

1 , Y ) − I(Wk; C̃i,k|Y )
]
, ∀W ∈ S(X) (21)

where Cl and C̃i,k are built from W, as in (12)-(13), and S(X) is the set of all subsets of X.

Since (18) holds for any feature subset W of a l-decomposable set X, simple application of

Theorem 1 shows that the same is true for (16).

Corollary 1: Let X be an l-decomposable feature set, W a subset of X, and Cl a collection

of disjoint subsets Ci of cardinality l built from W, as in (12)-(13). Then

I(W; Y ) = M(W; Y ) + CCl
(W; Y ) (22)
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with

M(W; Y ) =

|W|∑
k=1

I(Wk; Y ) (23)

CCl
(W; Y ) =

|W|∑
k=2

�k−1/l�∑
i=1

[I(Wk; C̃i,k|Y ) − I(Wk; C̃i,k)], (24)

where C̃i,k the subset of features in Ci whose index is smaller than k, and Ci−1
1 = (C1, . . . ,Ci−1).

Hence, for an l-decomposable set, it is equivalent to use (2) or (16) as feature selection cost.

Corollary 2: If X is l-decomposable, then the solution of (1) is the identical to that of

X ∗ = arg max
X∈S

⎧⎨
⎩

∑
k

I(Xk; Y ) +

D∑
k=2

�k−1/l�∑
i=1

[I(Xk; C̃i,k|Y ) − I(Xk; C̃i,k)]

⎫⎬
⎭ . (25)

In summary, the infomax subset of an l-decomposable X can be computed with density

estimates of dimension l+1. When l = D there is only one possibility for C l, namely Cl = {X},

and (16) is equal to (8). Hence, all feature sets are at least D-decomposable and, in the worst case,

feature selection has exponential complexity in the cardinality of X. However, depending on the

decomposability order of X, this bound may be very loose. The intrinsic complexity of feature

selection is determined by the decomposability order l of the feature set, not its cardinality.

V. LOW COMPLEXITY INFOMAX FEATURE SELECTION ALGORITHMS

In this section, we derive a family of infomax feature selection algorithms, based on the

theoretical characterization above.

A. A new family of algorithms

When X is l-decomposable, the infomax space is given by (25). When l-decomposability does

not hold, (25) provides a low-complexity approximation to the optimal solution. In this case, l

is denoted as the order of the approximation, and we refer to the true decomposability order

as l∗. Since all feature sets are (at least) D-decomposable, the optimal solution can always be

attained if (25) is solved for all values of l. This suggests 1) developing a family of algorithms

parameterized by l, 2) solving the feature selection problem for all l, and 3) retaining the best

solution. Note that, given l, (25) can be solved by existing feature selection strategies. In our

implementation, we use the popular (greedy) strategy of sequential forward feature selection [66],
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Algorithm 1 (approximate infomax of order l)
Input: feature set X = {X1, . . . , XD}, order l, and target number of features N .

set X∗ = C1 = {X∗
1} where X∗

1 = arg maxXk∈X I(Xk; Y ), k = 2, and i = 1.

repeat

for Xr �∈ X∗ do

δr = I(Xr; Y ) +
�k−1/l�∑

p=1

[
I(Xr; C̃p,k|Y ) − I(Xr; C̃p,k)

]
, (26)

end for

let r∗ = arg maxr δr.

if k − 1 is not a multiple of l then

let Ci = Ci ∪ Xr∗ ,

else

set i = i + 1, Ci = Xr∗ .

end if

set X∗ = ∪iCi, k = k + 1,

until k = N

Output: X∗.

which leads2 to Algorithm 1. The MIs of (26) are computed with histograms. When b histogram

bins are used per feature, the algorithm can be implemented in O[D(bl/l)N2] time. Since N is

usually small, the complexity is dominated by b and l, increasing exponentially with the latter.

B. Comparison to other infomax methods

The main novelty of Algorithm 1 is the use of (26) as sequential feature selection rule. In

addition to the theoretical motivation above, this rule is interesting in two ways. First, it has an

intuitive interpretation: it favors features of 1) large MI with the class label, 2) low MI with

previously selected features, and 3) large MI with those features given image class. This enforces

three principles that are always at play in feature selection:

1) discrimination: each selected feature must be as discriminant as possible,

2It is worth stressing that the algorithm does not guarantee the best approximation for any l, since the greedy selection of a

feature limits the feature groupings of subsequent steps. This is a known limitation of sequential forward selection, e.g., shared

by all algorithms of Section II. It can sometimes be circumvented with heuristics such as floating search [66], [73], [74].
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2) diversity: the selected features must not be redundant,

3) reinforcement : unless this redundancy is, itself, discriminant.

Second, it unifies many algorithms previously proposed for information theoretic feature selec-

tion.

In fact, the first three classes of Section II are special cases of the family now proposed.

Methods in the first class, marginal infomax, only use the first term of (26). Slightly abusing

notation, we refer to this as the approximate infomax algorithm of order 0. It enforces the

principle of discrimination, but not diversity or reinforcement, and does not guarantee a compact

representation: exactly identical features are selected in consecutive steps, wasting some of the

available dimensions. The second and third classes are approximations to (26) with l = 1, in

which case (26) can be written as

I(X; Y ) +

k−1∑
i=1

[I(X; X∗
i |Y ) − I(X; X∗

i )] . (27)

Algorithms in the second class, based on (4), simply discard the terms which account for the

discriminant power of feature dependencies (I(X; X∗
i |Y )), failing to enforce the principle of

reinforcement. This can be overkill, since discriminant dependences can be crucial for fine

discrimination between otherwise similar classes. On the other hand, by relying on (7), the

algorithms in the third class approximate the summation of (27) by its smallest term.

The excellent empirical performance [48], [58] of algorithms in the second and third classes

suggests two hypotheses. The first is that the infomax approximation of first order (l = 1) is

sufficient for many problems of practical interest. The second is that, even for this approximation,

many terms of (27) are neglectable. It is, nevertheless, puzzling that excellent results have

been achieved with two very different approximations: the average MI between features (max-

relevance min-redundancy (mRMR) method [48]), and the minimum of the differential MI

terms [58]. It is also unclear why these would be the only sensible simplifications. Given that

both the minimum differential term and the average of the negative terms perform well, why not

consider the smallest of the negative terms, their sum (as proposed in [47], [48], [51], [52], [54],

[55]), or the median of the differential terms? Table II presents a number of such alternatives

to (27), as well as their empirical performance on a set of experiments to be discussed in

Section VII.
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TABLE II

POSSIBLE ALTERNATIVES TO THE COST OF (27), THEIR RELATION TO THE LITERATURE, AND PERFORMANCE (AVERAGE

AND STANDARD DEVIATION OF PRECISION-RECALL AREA) ON EXPERIMENTS OF SECTION VII.

Cost feature selection method PRA

∆(l = 0) I(X; Y ) Marginal infomax 49.7 ± 15.1

∆(l = 1) I(X; Y ) +
�k−1

i=1 [I(X; X∗
i |Y ) − I(X; X∗

i )] approximate infomax order 1 56.3 ± 17.7

∆(l = 2) I(X; Y ) +
��(k−1)/2�

i=1 [I(X; C̃i,k|Y ) − I(X; C̃i,k)] approximate infomax order 2 55.2 ± 17.0

δmin I(X; Y ) + mini [I(X;X∗
i |Y ) − I(X; X∗

i )] method of [58] 54.1 ± 17.6

δmed I(X; Y ) + mediani [I(X; X∗
i |Y ) − I(X; X∗

i )] 52.9 ± 16.9

δmax I(X;Y ) + maxi [I(X; X∗
i |Y ) − I(X;X∗

i )] 52.6 ± 18.3

αmin I(X; Y ) + mini I(X; X∗
i |Y ) 49.0 ± 13.5

βmin I(X; Y ) − maxi I(X; X∗
i ) 53.5 ± 17.1

βavg I(X;Y ) − 1
k−1

�k−1
i=1 I(X; X∗

i ) mRMR method of [48] 53.4 ± 15.6

α I(X;Y ) +
�k−1

i=1 I(X; X∗
i |Y ) 50.2 ± 16.9

β I(X; Y ) −�k−1
i=1 I(X;X∗

i ) method of [54] with ξ = 1 53.4 ± 15.7

VI. IMAGE STATISTICS AND LOW DECOMPOSABILITY ORDER

In this section, we develop an indirect procedure to validate the hypothesis that band-pass

features extracted from natural images have low decomposability order.

A. l-decomposability and image statistics

From Definition 3, X is l-decomposable if the conjunctive interference (with respect to subsets

of cardinality l) within any of its subsets W ⊂ X is non-discriminant. This can be illustrated by

returning to Example 1, for which the terms of (15) are the entries in 4th column of Table I. Note

that the non-trivially zero entries (identified by boldface k and i) measure how the dependences

in C2 are affected by C1 (k = 4, i = 2); how the dependences in X5 ∪ C2 are affected by C1

(k = 5, i = 2); how the dependences in X6 ∪ C2 are affected by C1 (k = 6, i = 2); and how

the dependences in C3 are affected by C1 ∪ C2 (k = 6, i = 3). CI(X; Cl) is the sum of these

measures and, for l-decomposability to hold, must not be affected by knowledge of the class Y .

In addition to this, l-decomposability requires (18) to hold for any subset W ⊂ X. For

example, W = (X1, X3, X5, X6) produces a table similar to Table I, with a single non-trivially

zero entry, I(X6; X5|X1, X3) − I(X6; X5). l-decomposability requires that the interference of
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(X1, X3) on the dependence between X5 and X6 be non-discriminant. Other subsets of four

features give rise to similar constraints on the interference between feature pairs. Hence, in this

example, l-decomposability requires all pairwise interferences to be non-discriminant.

In general, l-decomposability holds if and only if the conjunctive interference (with respect

to subsets of cardinality l) within any subset W of X is not affected by knowledge of the class

label Y . As in Fig. 2, this does not mean that conjunctive interference is non-existent, but simply

that it does not change across classes. Overall, the sufficient condition for l-decomposability is

similar to the sufficient condition for the optimality of marginal infomax. While, in that case,

image statistics must satisfy C(X; Y ) = 0, i.e. that no dependences in X are discriminant, in

this case the constraints only affect 2nd order subset dependences: l-decomposability does not

impose constraints on subset dependencies of 0th or 1st order, and neither does it impose that

there are no 2nd order subset dependences. It only requires these dependences to be such that

the conjunctive interference CI(X; Cl) is non-discriminant. This is much less restrictive than

what is required for the optimality of marginal infomax. As in that case, the consistency of the

statistics of Fig. 1 a) suggests that, for natural images, the hypothesis that l-decomposability

holds for small l is not unreasonable. We next turn to the problem of determining this value.

B. Indirect validation of the low-order decomposability hypothesis

If X is l∗-decomposable, the infomax feature set can be found with (25), using l = l∗.

For approximation orders l �= l∗, the problems of (25) make looser assumptions about feature

dependences as l increases. l = 0 assumes that no feature dependences are discriminant, l = 1

that only dependences within feature pairs are important, and so forth, up to l = D where all

dependences are accounted for. The decomposability order of the feature set can be determined

with recourse to the indirect validation paradigm: the error of classifiers designed on the spaces

produced by (25) is expected to decrease with l, leveling off at l = l∗. If this produces a consistent

estimate of l∗ across a number of classification problems, there is strong empirical evidence that

X is l∗-decomposable. If this is repeatedly observed for transformations in a certain class, e.g.

wavelets, there is strong evidence that all feature sets in the class are l∗-decomposable.
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Fig. 3. Basis functions for DCT (left), PCA (center) and ICA (right).

VII. EXPERIMENTS

In this work, we hypothesize that transformations into sets of bandpass frequency coefficients

have low decomposability order. We rely on indirect validation to test this hypothesis.

A. Experimental protocol

All experiments were performed with the Brodatz and Corel image databases. Brodatz is

a standard benchmark for texture classification under controlled imaging conditions, and with

no distractors. Corel is a standard evaluation set for recognition from unconstrained scenes

(e.g. no control over lighting or object pose, cluttered backgrounds). Brodatz contains sets of 9

patches from 112 gray-scale textures, in a total of 1008 images. One patch of each texture was

used for testing and the remaining 8 for training. From Corel, we selected 15 image classes3

each containing 100 color images. Train and test sets were then created by assigning each

image to the test set with probability 0.2. Evaluation was based on precision and recall (PR),

using the test images as queries to a database containing the training set. The PR curve was

summarized by its integral, the PR area (PRA). In all experiments, feature vectors were extracted

from localized image neighborhoods and classification based on (30) with Gauss mixture class-

conditional densities. A Gauss mixture with a fixed number of components was learned for

each image (results were qualitatively similar for various values, we report on 8 components),

examples were assumed independent in (30), and class priors uniform. Four transformations

3“Arabian horses”, “Auto racing”, “Owls”, “Roses”, “Ski scenes”, “religious stained glass”, “sunsets and sunrises”, “coasts”,

“Divers and diving”, “Land of the pyramids” (pictures of Egypt), “English country gardens”, “fireworks”, “Glaciers and

mountains”, “Mayan and Aztec ruins”, and “Oil Paintings”.
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Fig. 4. PRA as a function of the number of features selected by approximate infomax 0 ≤ l ≤ 2, for the DCT, PCA, and ICA

feature sets, on Brodatz and Corel.

were considered: the discrete cosine transform (DCT), principal component analysis (PCA),

independent component analysis (ICA), and a wavelet representation (WAV). The feature space

had D = 64 per color channel (three layers of wavelet decomposition and 8 × 8 image blocks)

and the observations were extracted with a sliding window. PCA and ICA were learned from

100, 000 random training examples. Fig. 3 compares the basis functions learned on Brodatz with

those of the DCT.

B. Decomposability order

The decomposability order of all datasets was studied with the indirect validation paradigm.

Because the computational cost is exponential on the approximation order l, it is (at this point in

time) only feasible to consider small values of this parameter. We have limited all experiments

to the range 0 ≤ l ≤ 2. Fig. 4 presents the PRA curves obtained with different l for DCT,
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Fig. 5. a) Top nine features (in decreasing order, from left to right) selected on Brodatz for the three representations and

0 ≤ l ≤ 2. b) Conjunctions of features that contribute to (16) for the optimal feature set on Brodatz with DCT features and

l = 1. The basis function at row i and column j of the table was produced by averaging features i and j of the optimal set of

a).

PCA, and ICA4. The most striking observation is that, for all databases and transformations,

l = 1 is superior to l = 0, but there is no advantage of l = 2 over l = 1. The constancy of

this result suggests that all feature sets are 1-decomposable. To understand this constancy, we

analyzed the feature rankings in detail. Fig. 5 a) presents the top 9 features selected, on Brodatz,

for each transformation and value of l. For l = 0, the top features are nearly identical: all

have very high frequency and do not appear to capture perceptually interesting image structure.

This indicates that marginal statistics are not enough for these problems. The solution obtained

with l = 1 is superior: not only the features appear to be detectors of perceptually relevant

image attributes but the same holds for their pair-wise conjunctions. This is shown in Fig. 5 b),

which presents the optimal pairwise DCT conjunctions. While individual features detect smooth

regions, horizontal and vertical bars, horizontal and vertical edges, horizontal and vertical parallel

segments, corners, and rounded spots, the set of conjunctions includes detectors of crosses, T-

4Qualitatively identical results were obtained with the wavelet and are omitted for brevity.
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and L-junctions, grids, oriented lines, etc5. The fact that, for l = 1, features are selected not only

by individual discriminant power, but also by the discriminant power of pairwise conjunctions,

makes a significant difference for both classification accuracy (Fig. 4) and perceptual relevance

of the visual attributes they detect (Fig. 5). Finally, there is no benefit in considering l = 2:

both classification performance and perceptual relevance decrease slightly. Because the union of

individual features and pairwise conjunctions is very discriminant, the gain of triplets is small.

On the other hand, all dimensionality problems (complexity of density estimation, exponential

increase in training data requirements) are compounded, and the overall result is a loss.

C. Comparison to previous methods

The classification performance of (25) with 0 ≤ l ≤ 2 - costs ∆(l) - was compared to that of

each of the other costs in Table II. For each transformation and image database, classification

performance was summarized by the average PRA of the first N features. N was chosen to

guarantee that the number of features needed for optimal performance was available, but not a

lot more (all methods perform similarly when N is close to the total number of features). Using

Fig. 4 for guidance, we chose N = 15 for Brodatz, and N = 20 for Corel. Table II presents

the average and standard deviation of the PRA achieved (across datasets and transforms) by

each cost. To facilitate the comparison we divided (for each dataset and transform) the average

PRA of each cost by that achieved with ∆(l = 1). The average of this measure (across datasets

and transforms) is denoted as the normalized average PRA (NAPRA) score of the cost. Fig. 6

presents a boxplot of the NAPRA score of each cost, across databases and transformations. A

number of interesting observations can be made. The first is that ∆(l = 1) produced the best

feature set in all cases. The second overall best performer was ∆(l = 2), followed by the three

costs previously proposed in the literature: δmin [58], βavg [48], and β [54]. On average, there

was no substantial difference between these three costs, although δmin performed best. The fact

that these are the best approximations to ∆(l = 1) (among those we evaluated) is a possible

explanation for their impressive performance in previous experimental comparisons [48], [58].

Of the remaining costs, δmedian and δmax performed somewhat worse, but clearly above marginal

infomax (∆(l = 0)), while α and αmin did not consistently beat the latter.

5In fact, the set of conjunctions is much larger than that shown. While the table only includes pair-wise feature averages, the

set includes all functions of the same feature pairs.
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Fig. 6. NAPRA scores for the different costs of Table II, across feature transforms and databases. Box lines indicate lower,

median, and upper quartile values. Dashed lines show the extent of the rest of the data.

Returning to the indirect validation paradigm, these results provide information about the

importance, for discrimination, of various aspects of the feature statistics. The first interesting

observation is the average performance of marginal infomax: close to 90% of the best. This

suggests that, for natural images, most discriminant information is contained in marginal feature

statistics. Given that marginal infomax is the only method which does not require joint density

estimates, it may be the best solution for recognition problems with strict constraints on time or

computation. It is also interesting to investigate which terms of ∆(l = 1) are responsible for its

performance gain over ∆(l = 0). One observation from Fig. 6 is that this gain is very non-linear

on the differential terms δi = I(X; X∗
i |Y ) − I(X; X∗

i ). In particular, the inclusion of a single

term, be it the largest (δmax), median (δmedian) or most negative (δmin), is sufficient to achieve at

least half of the total gain, with δmin achieving 2/3. Hence, while it is important to include one

differential term, the exact choice may not be very important. This flexibility could be significant

when there are complexity constraints. While computing an arbitrary δi has linear complexity

on the number of features, the search for the best term has quadratic complexity. It follows that

the inclusion of an arbitrary differential term may be a good intermediate solution (complexity

quadratic in histogram bins but linear on features) between marginal infomax and approximate
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infomax of order 1. On the other hand, finding the best δi [58] requires more computation than

evaluating ∆(l = 1) (due to the search after all terms are computed) and has no advantage.

As an alternative to the differential terms δi, Fig. 6 shows that gains can also be obtained

by adding terms of each mutual information type - αi = I(X; X∗
i |Y ) and βi = I(X; X∗

i ) - to

∆(l = 0). Here, it appears that the βi are much more important than the αi: by themselves, the

αi do not even produce a consistent improvement over marginal infomax. On the other hand,

the inclusion of the best βi (cost βmin), does not perform nearly as well as the inclusion of the

best δi (cost δmin). In fact, the latter performed better than all the α-only, or β-only approaches

considered. Yet, the gains of the β-only costs could, once again, be interesting if there are

complexity constraints. Note that, unlike the α terms, they do not depend explicitly on the class

Y . They could, thus, be learned from a generic collection of natural images, independently of the

particular recognition problem under consideration. In this case, the complexity of the β costs

would be equivalent to that of marginal infomax! While it is currently unclear if the performance

would remain as in Fig. 6 (where all βi were estimated from the training sets used for classifier

design), this is an interesting topic for further research.

As discussed in Section II, there is a large literature on β costs, mostly focusing on the role

of the parameter ξ of (5) [47], [48], [51]–[55]. Fig. 6 suggests that, for natural images, this

discussion is inconsequent: similar performance was obtained with only one β i (cost βmin), their

average (cost βavg), or sum (cost β). Different ξ only affected the variance of the NAPRA score,

which was smallest for ξ = 1. The increased variance of the other weights might explain various,

sometimes conflicting, claims for their success [47], [48], [51], [52], [54], [55].

In summary, the infomax approximation of order 1 (∆(l = 1)) outperforms the previous

low complexity methods. It is worth emphasizing that the discussion above is based on the

average performance of the different costs, across datasets and transformations. One important

point is that all previous methods exhibited “breakdown” modes, i.e. combinations of transfor-

mation/database on which their performance was well below average. This can be seen from

the limit intervals (dashed lines) of Fig. 6. In almost all cases, the lower bound is close to the

average performance of marginal infomax. The only salient exceptions are ∆(l = 1), which

always performed best, and ∆(l = 2), which has small variance. These observations suggest that

the main role of the summation in (26) is to assure robustness. While simplifications of this rule

can perform well for certain datasets, they compromise generalization.
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Fig. 7. a): PRA curves for the DCT on Corel using ∆(l = i), i ∈ {0, 1}, and various numbers b of histogram bins. b)

comparison of the PRA curves obtained with infomax and popular methods of equivalent complexity, for PCA.

D. Robustness

Assuming that bandpass transforms are indeed 1-decomposable, we performed some experi-

ments to determine the robustness to the parameter that determines the complexity: the number

of histogram bins/axis b (recall that the complexity of approximate infomax of order l is O(b l)).

In particular, we repeated the experiment with l = 0 and l = 1 for values of b in [4, 16]. Fig. 7

a) presents PRA curves from Corel, with DCT features6, showing that recognition accuracy is

quite insensitive to this parameter. For both values of l, 8 bins are sufficient to achieve accuracy

very close to the highest. A loss only occurs for b = 4 and, as expected, is more significant for

l = 1, where the density estimates are two-dimensional.

E. Comparison with scalable feature selection methods

To place the results above in a larger feature selection context, we compared the infomax

algorithms with two widely popular methods of similar complexity: PCA, and its combina-

tion with quadratic discriminant analysis [75] (PCA+QDA). Because these methods project all

examples onto the PCA subspace, we restricted the comparison to the infomax subset of PCA

features. Although PCA is frequently combined with the Euclidean or Mahalanobis distances and

a nearest neighbor classifier, the popular “Eigenfaces” technique [76], preliminary experiments

6Similar results were obtained on Brodatz and are omitted.
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showed better performance for a Gauss mixture classifier on the PCA subspace. This is identical

to the classifier adopted for the infomax features, but relies on feature ranking by variance, rather

than MI. PCA+QDA is an extension of the popular “Fisherfaces” method [77], and equivalent

to (30) when the PCA coefficients are Gaussian. It was implemented by fitting a multivariate

Gaussian to each training image, and using (30) to classify all test images.

Fig. 7 b) compares, on Corel, the PRA curves of PCA+Variance and PCA+QDA, with those

previously presented for infomax (l ∈ {0, 1}) on PCA space7. PCA+QDA performs significantly

worse than all other approaches. This is not surprising, given the strong non-Gaussianity of

the distributions of Fig. 1 a). With the Gaussian mixture classifier, maximum variance and

marginal infomax have similar performance8, but infomax with l = 1 is substantially better. For

example, in the PCA case, energy compaction requires about 30 features to reach the accuracy

that infomax (l = 1) achieves with only 10! For the DCT, the ratio is even larger, closer to 4/1.

Visual inspection of recognition results shows significant improvement for queries from classes

that share visual attributes with other classes in the database (see [78] for examples).

VIII. DISCUSSION

We have studied the hypothesis that high-order dependences of bandpass features contain little

information for image discrimination. The hypothesis was characterized formally, by introduction

of the concepts of conjunctive interference and decomposability order, and derivation of necessary

and sufficient conditions for the feasibility of low-complexity feature selection, in terms of these

concepts. It was shown that the intrinsic complexity of feature selection is determined by the

decomposability order of the feature set: the infomax subset of an l-decomposable set can be

computed with density estimates of dimension l+1. A family of (locally) optimal feature selection

algorithms was then derived for all levels of complexity, and its performance characterized in two

ways. Theoretically, it was shown that various previous information theoretic feature selection

algorithms are approximations to the ones now derived. Experimentally, the latter were shown

to consistently outperform the former, for a diverse set of images and feature transformations.

7Once again, similar results were obtained on Brodatz and are omitted.

8While maximum variance is somewhat superior to marginal infomax in Fig. 7 b), we have seen no consistent differences

between the two criteria across all feature spaces.
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Following the indirect validation paradigm, the new feature selection algorithms were used to

objectively test the hypothesis of low decomposability order for natural image features. This has

shown that, while there is a non-negligible classification gain in modeling feature dependencies

(in all cases l = 1 outperformed l = 0), this gain has diminishing returns. For certain, the benefits

of modeling dependencies between triplets (l = 2) over pairs (l = 1) are, at most, marginal. While

it is possible that there may be some l > 2 with substantially better performance than l = 1, the

consistent lack of improvement from l = 1 to l = 2, across the imagery and features considered

in our experiments, suggests that this is unlikely. Unfortunately, limitations in computation and

database size currently prevent us from experimenting with l > 2.

A detailed investigation of the l = 1 case has shown that, when pairwise dependences are

modeled, the gains are very nonlinear on the rigor of this modeling. In particular, simple modeling

of marginal statistics performs fairly well (within 90% of the top performance) and the inclusion

of a single pairwise differential term, as proposed in [58], can capture as much as 2/3 of what

remains. On the other hand, the simple inclusion of so-called β terms, as proposed in [47],

[48], [51], [52], [54], [55], can also work well. Since β terms do not depend on the particular

classification problem under analysis, they could conceivably be learned from a generic image

database. In this case, it should be possible to account for dependences with feature selection

algorithms that only require the estimation of marginal densities. This remains an interesting

topic for further research. The main benefit of accounting for all terms of order 1 seems to be

a significant increase in robustness. While the previously proposed approximations can perform

very well in some cases, and reasonably well on average, they have all exhibited “breakdown”

modes (combinations of features and image databases where performance was similar to that of

marginal statistics). The large variance of their classification performance could explain previous

conflicting claims for the superiority of different approximations [47], [48], [51], [52], [54], [55].

On the other hand, the algorithms now proposed performed very robustly, consistently achieving

the best results on all datasets. It would, therefore, be speculative to 1) propose that some of

the terms of the simplified MI of order 1 are more important than others, or 2) make generic

statements about the details of the dependence structure encoded by these terms.

What can, thus, be said about the structure of the dependencies of bandpass features extracted

from natural images? 1-decomposability means that, for natural images, the conjunctive inter-

ference between individual features is not discriminant. Or in other words, that the effect, on the
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dependence between two features, of observing any other feature is constant across image classes.

This is a significantly more precise statement than the hypothesis, that feature dependences are

constant across classes, with which we started. Although our analysis is limited to features

extracted from natural images, this conclusion also appears sensible for modalities such as audio,

speech, or language. For example, in the language context, it would imply that the effect of

observing a word, on the dependence between two other words, is constant across document

classes. This simply suggests that second order dependences between words are determined by

language, not the specific document classes. It is a fairly mild constraint on the structure of

text, e.g. much milder than the common bag-of-words model. It is interesting to note that some

experimental observations similar to the ones that we report for images have been made for text

categorization. These include reports of successful application of marginal infomax [41], [42],

and reports of improved performance by the criterion of (6) [44].

APPENDIX I

OPTIMALITY CRITERIA FOR FEATURE SELECTION

In the most general sense, the optimal feature space for a classification problem CX is

X ∗ = arg min
X∈S

J(CX ). (28)

where J(·) is a cost, and S the set of range spaces for the transforms under consideration.

A. Minimum Bayes error features

One measure of goodness of CX is the lowest possible probability of error achievable in X ,

usually referred to as the Bayes error [33]

L∗
X = 1 − Ex[max

i
PY |X(i|x)], (29)

where Ex is the expectation with respect to PX(x). It depends only on X , not the classifier

itself, and there is at least one classifier that achieves this bound, the Bayes decision rule

g∗(x) = arg max
i

PY |X(i|x). (30)

While it is natural to define X � as the space of minimum Bayes error, it has long been known

that the resulting optimization can be difficult. For example, sequential feature selection is not

easy in this setting since the max(·) non-linearity of (29) makes it impossible to decompose the
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new cost (EXn [maxi PY |Xn(i|xn)]) as a function of the previous best (EXc [maxi PY |Xc(i|xc)]),

and a function of the candidate set Xa, where Xc is the best current subset and Xn = (Xa,Xc).

B. Infomax features

The infomax formulation has a number of appealing properties.

Lemma 3: Let 〈f(i)〉Y =
∑

i PY (i)f(i), and KL[p||q] =
∫

p(x) log p(x)
q(x)

dx be the relative

entropy between p and q, with integrals replaced by summations for discrete random variables.

The following properties hold for the MI, as defined in (2).

1) for any two random vectors X and Z, I(X;Z) ≥ 0, with equality if and only if X and Z

are statistically independent. Furthermore I(X;Z) = KL[PX,Z(x, z)||PX(x)PZ(z)].

2) I(X; Y ) =
〈
KL

[
PX|Y (x|i)||PX(x)

]〉
Y

3) I(X; Y ) = H(Y ) − H(Y |X), where H(Y ) = −〈log PY (i)〉Y is the entropy of Y , and

H(Y |X) = −EX

[〈
log PY |X(i|x)

〉
Y |X

]
the posterior entropy of Y given X.

4) If X1,k = {X1, . . . , Xk}, then

I(X1,k; Y ) − I(X1,k−1; Y ) = I(Xk; Y |X1,k−1), (31)

where

I(X; Y |Z) =
∑

i

∫
PX,Y,Z(x, i, z) log

PX,Y |Z(x, i|z)

PX|Z(x|z)PY |Z(i|z)
dxdz

Proof: All proofs are either available in [79], or straightforward consequences of (2).

Property 1), and the fact that the KL[p||q] is a measure of similarity between distributions p

and q, show that I(X;Z) is a measure of dependence between X and Z. For this reason, we

frequently refer to I(X;Z) as the dependence between X and Z. Property 2) implies that

X ∗ = arg max
X∈S

〈
KL

[
PX|Y (x|i)||PX(x)

]〉
Y

(32)

i.e. that infomax feature selection is inherently discriminant: it rewards spaces where the class

densities are on average well separated from the mean density. This is a sensible way to quantify

the intuition that optimal discriminant transforms are those that best separate the different classes.

From Property 3), it follows that X ∗ = arg minX∈S H(Y |X). Since entropy is a measure of

uncertainty, this implies that the infomax space minimizes the uncertainty about which class is

responsible for the observed features. It also establishes a formal connection to the minimization
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of Bayes error since, in both cases, the optimal space is

X ∗ = arg max
X∈S

EX

[
φ

(
PY |X(1|X), . . . , PY |X(M |X)

)]
,

where φ(p1, . . . , pM) is one of two functions, max(pi) and 〈log pi〉, which are both convex

and have a number of similar properties (including co-located maxima and minima in the

unconstrained probability simplex, and interesting relationships between gradients). In fact, there

are a number of problems for which the two optimal solutions are identical [62], [80]. Property

4) probably has the greatest practical significance, and justifies the adoption of infomax over the

minimization of Bayes error. It enables modular decompositions of the MI, which are central to

the efficient implementation of sequential search, and intuitive. In particular, if X∗ is the current

set of selected features, it shows that the feature to be selected at the next step should be

X∗ = arg max
k|Xk �∈X∗

I(Xk; Y |X∗), (33)

i.e. the one that most reduces the uncertainty about Y , given X∗. This implies that X ∗ should

1) be discriminant and 2) have small redundancy with previously selected features.

APPENDIX II

PROOF OF LEMMA 1

From the chain rule of MI [79], I(X, Y ) =
∑D

k=1 I(Xk; Y |X1,k−1). Using the equality

I(X; Y |Z) = EX,Y,Z

[
log

PX,Y |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)

]

= EX,Y,Z

[
log

PX,Y (x, y)

PX(x)PY (y)
+ log

PX,Y |Z(x, y|z)PY (y)

PX,Y (x, y)PY |Z(y|z)
+ log

PX(x)

PX|Z(x|z)

]

= I(X; Y ) + EX,Y,Z

[
log

PX|Y,Z(x|y, z)

PX|Y (x|y)

]
− I(X;Z)

= I(X; Y ) + EX,Y,Z

[
log

PX,Z|Y (x, z|y)

PX|Y (x|y)PZ|Y (z|y)

]
− I(X;Z)

= I(X; Y ) + I(X;Z|Y ) − I(X;Z) (34)

with X = Xk and Z = X1,k−1, leads to

I(X, Y ) =

D∑
k=1

I(Xk; Y ) −
D∑

k=2

[I(Xk;X1,k−1) − I(Xk;X1,k−1|Y )]

and the lemma follows.
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APPENDIX III

PROOF OF LEMMA 2

By recursive application of the chain rule of mutual information

I(Xk;X1,k−1|Y ) = I(Xk;C1, . . . , C̃�k−1/l�,k|Y )

= I(Xk; C̃�k−1/l�,k|C1, . . . ,C�k−1/l�−1, Y ) + I(Xk;C1, . . . ,C�k−1/l�−1|Y )

=

�k−1/l�∑
i=1

I(Xk; C̃i,k|C1, . . . ,Ci−1, Y ) =

�k−1/l�∑
i=1

I(Xk; C̃i,k|Ci−1
1 , Y )

where Ck
1 = {C1, . . . ,Ck}. Similarly,

I(Xk;X1,k−1) =

�k−1/l�∑
i=1

I(Xk; C̃i,k|Ci−1
1 ).

The lemma follows from (9).

APPENDIX IV

PROOF OF THEOREM 1

Combining Lemmas 1 and 2,

I(X; Y ) =

D∑
k=1

I(Xk; Y ) +

D∑
k=2

�k−1/l�∑
i=1

[
I(Xk; C̃i,k|Ci−1

1 , Y ) − I(Xk; C̃i,k|Ci−1
1 )

]

=
D∑

k=1

I(Xk; Y ) −
D∑

k=2

�k−1/l�∑
i=1

[I(Xk; C̃i,k) − I(Xk; C̃i,k|Y )]

+
D∑

k=2

�k−1/l�∑
i=1

[
I(Xk; C̃i,k|Ci−1

1 , Y ) − I(Xk; C̃i,k|Y )
]

−
D∑

k=2

�k−1/l�∑
i=1

[
I(Xk; C̃i,k|Ci−1

1 ) − I(Xk; C̃i,k)
]
.

It follows that

I(X; Y ) =
D∑

k=1

I(Xk; Y ) +
D∑

k=2

�k−1/l�∑
i=1

[I(Xk; C̃i,k|Y ) − I(Xk; C̃i,k)]

if and only if

D∑
k=2

�k−1/l�∑
i=1

[
I(Xk; C̃i,k|Ci−1

1 ) − I(Xk; C̃i,k)
]

=

D∑
k=2

�k−1/l�∑
i=1

[
I(Xk; C̃i,k|Ci−1

1 , Y ) − I(Xk; C̃i,k|Y )
]

and the theorem follows from the definition of CI(X; Cl) in (15).
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