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Abstract

The design of optimal feature sets for visual classification problems is still one of the most challenging topics in the area of computer
vision. In this work, we propose a new algorithm that computes optimal features, in the minimum Bayes error sense, for visual recognition
tasks. The algorithm now proposed combines the fast convergence rate of feature selection (FS) procedures with the ability of feature
extraction (FE) methods to uncover optimal features that are not part of the original basis function set. This leads to solutions that
are better than those achievable by either FE or FS alone, in a small number of iterations, making the algorithm scalable in the number
of classes of the recognition problem. This property is currently only available for feature extraction methods that are either sub-optimal
or optimal under restrictive assumptions that do not hold for generic imagery. Experimental results show significant improvements over
these methods, either through much greater robustness to local minima or by achieving significantly faster convergence.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The fundamental goal for the design of a statistical clas-
sifier is to minimize its probability of making mistakes.
More formally, if the classifier operates on observations
from a random variable X, defined on a observation space

X, and C is the random variable from which class labels
are drawn, the goal is to design the decision function g (x)
that minimizes the probability of classification error [1].

EX½P CjXðc–gðxÞjxÞ� ¼ EX½1� P CjXðgðxÞjxÞ� ð1Þ

with PCjX (cjx) denoting the posterior distribution of
class c, and PX (x) the marginal distribution of X. The
implementation of the minimum probability of error
classifier requires access to (1) ideal estimates of the class
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conditional distributions PXjC (xjc), and (2) the space that
best separates the two classes. In practice, the accuracy of
the estimates PXjC (xjc) is affected by several factors (e.g.,
model assumed for the distributions, the accuracy with
which model parameters can be learned from the available
training data, etc.), but better estimates are usually ob-
tained in low-dimensional spaces (where enough training
data is more likely to be available). On the other hand, it
can be shown that the space where classification takes place
uniquely determines the lowest probability of error achiev-
able by any classifier. Unlike the estimation error, this low-
er bound, known as the Bayes error (BE), tends to decrease
with the dimension of the space [2]. Hence, the design of
the optimal space for classification usually requires the
identification, among all spaces that are low-dimensional
enough to guarantee small density estimation error, that
which achieves the minimum BE.

The search for the optimal set of features, in the mini-
mum BE sense, for a given classification problem can be
addressed in two ways: by (1) feature extraction (FE) or
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(2) feature selection (FS). In both cases, the goal is to find
the best transform W into a lower dimensional feature

space Y. While in the case of FE there are few constraints
on W, for FS the transformation is constrained to be a pro-
jection, i.e., the components of a feature vector in Y are a
subset of the components of the associated vector in X.
While both FS or FE can be used for the minimization
of BE, both approaches have non-trivial limitations. On
one hand, FS requires the solution of a significantly simpler
computational problem, since it consists of selecting the
best subset from a set of already available basis functions.
On the other, because it cannot produce features that are
not part of the original set, the resulting transformation
is usually sub-optimal. For example, as illustrated in
Fig. 1, two features that (as a pair) are highly discriminant
but also highly correlated can have marginal distributions
of small discriminant power. Such feature pairs cannot be
reduced to a single new discriminant feature by FS tech-
niques. FE avoids this problem by designing the basis itself,
through the search for the overall optimal W, but requires
the solution of a significantly more difficult optimization
problem. In fact, because the BE is a non-linear function
of the feature transformation, which does not have well-
defined derivatives everywhere, its minimization by
straightforward application of standard optimization
procedures can be quite challenging. Perhaps due to this,
only a surprisingly small amount of work has addressed
the direct minimization of BE in both the FE and FS
literatures [3–5].

The most successful visual classification approaches in
the literature find the optimal feature set for a given classi-
fication task by explicitly optimizing the performance of
the classifier, thus skipping the estimation of the class con-
ditional distribution PXjC (xjc). While there are multiple
ways to achieve this goal, e.g., through the search for the
optimal weight configuration for the hidden nodes of a
neural network [6,7], the selection of a best set of basis
functions from a predefined set [8,9], or the selection of fea-
ture configurations [10,11], the end product is invariably a
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Fig. 1. A classification problem with a pair of jointly discrimi
set of features that is optimal, in the classification sense, for
recognition. The most challenging issue faced by such
approaches is their significant computational complexity:
assuming that the initial pool of features is large, the com-
plex problem of designing a complete classifier on a high-
dimensional feature space has to be solved at each step of
feature extraction. Since most of the state-of-the-art algo-
rithms for the design of discriminant classifiers (e.g. back-
propagation, SVM learning, or boosting) do not scale
well with the number of classes that need to be discriminat-
ed, the task is virtually impossible in the context of large-
scale recognition systems, i.e., recognition systems applica-
ble to problems containing thousands of classes and signif-
icant amounts of training data per class. For this reason,
sub-optimal feature extraction techniques such as principal
component analysis (PCA) [12], or linear discriminant
analysis (LDA) [13], remain the most popular for problems
such as face, object, or texture recognition.

In this paper, we introduce an algorithm for the com-
putation of the minimum-BE feature set for a given clas-
sification problem. This algorithm combines the appealing
properties of FS and FE. Like FS methods, it progresses
in a sequence of steps where, at each step, the best fea-
tures among those not yet selected are identified. Howev-
er, unlike FS methods, it does not blindly include these
features in the selected set. Instead, it considers the set
of 2-D subspaces spanned by all pairs of features such
that one feature is in the selected set and the other in
the candidate set. It then performs FE in each of these
subspaces, to find the direction that leads to the largest
decrease in BE, and includes that direction in the selected
set. When compared to standard FE procedures, the new
algorithm has the advantage of immediately zooming in
on the optimal features that may already exist in the ini-
tial feature set. This leads to a significantly improved rate
of convergence. When compared to FS procedures, it has
the advantage of not being restricted to the original fea-
ture set. Experimental evaluation on multi-class visual
recognition tasks shows that it converges to minimum
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Bayes error solutions in a very small number of iterations.
The new algorithm is compared to the FE solutions in
common use in the large-scale classification context –
PCA, LDA and heteroscedastic discriminant analysis
(HDA) [14] – and to an alternative FE solution based
on gradient descent on a tight upper bound of the BE.
It significantly outperforms these solutions, either by hav-
ing much greater robustness to local minima or by achiev-
ing significantly faster convergence.

2. Minimum Bayes error features

Consider a set of training data fxl; clgN
l¼1 drawn from a

continuous-valued random variable X such that xl 2 Rn�1,
and a discrete random variable C that generates class labels
cl 2 f1; . . . ; jCjg. The goal of FE is to find a feature transfor-
mation f : X � Rn�1 ! Y � Rm�1. In this work, we consider
f (x) to be a linear function of x, i.e., yl = f (xl) is written as
yl = Wxl, that reduces the dimensionality of the data from
n to m (i.e., m < n), The minimum BE feature transformation
~W is the one that minimizes the BE [1] on the output space Y

L�Y ¼ 1�
Z

Rm
max

c
P CjY ðcjyÞP Y ðyÞdy

¼ 1� EY ½max
c

P CjY ðcjyÞ�; ð2Þ

where PCjY (cjy) is the posterior distribution for class c on
Y and PY (y) the probability density function for y.
Formally,

~W ¼ arg min
W; rankðWÞ¼m

L�Y: ð3Þ
2.1. Estimating the Bayes error

Typically one does not have access to the probabilities
PCjY (cjy) or PY (y) and it is therefore impossible to evaluate
the BE through (2). Noting, however, that by the applica-
tion of Bayes rule

L�Y ¼ 1� EY max
c

P Y jCðyjcÞP CðcÞP
c

P Y jCðyjcÞP CðcÞ

2
4

3
5; ð4Þ

it follows that, given the class-conditional densities
PYjC (yljc), the priors PC (c), and a sample {y1, . . . ,yN},
the expectation above can be estimated by the Monte-Car-
lo approximation

L̂�Y ¼ 1� 1

N

X
l

max
c

P Y jCðyljcÞP CðcÞP
c

P Y jCðyljcÞP CðcÞ

2
4

3
5; ð5Þ

which we denote by the empirical Bayes error (EBE).
The class priors are assumed known (but could also be
estimated from training data quite easily), while the
class-conditional densities are estimated by maximum
likelihood (via the expectation-maximization algorithm
[15]), using a Gaussian mixture model
P X jCðxjcÞ ¼
XKc

k¼1

kckGðx; lck;RckÞ; ð6Þ

in X, where

Gðx; l;RÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn detðRÞ

p e�
1
2
ðx�lÞTR�1ðx�lÞ:

Using well-known properties of the Gaussian, it can be
easily shown that this leads to a Gaussian mixture in Y [2]

P Y jCðyjcÞ ¼
XKc

k¼1

kckGðWx; Wlck;WRckWTÞ: ð7Þ

Note that this estimation is an initialization step that only
has to be performed once, typically when the images in the
class are added to the database, and is likely to be required
for operations other than feature design (e.g., the actual
classification of images presented to the recognition sys-
tem). Hence, it does not affect the complexity of the feature
design algorithms to be discussed in the subsequent
sections.

2.2. Joint feature selection and extraction

The matrix W can be seen as the product of a matrix W0

whose rows form a basis of X and the canonical projection
matrix

Qm
n : Rn ! Rm,

Qm
n ðx1; . . . ; xnÞ ¼ ðx1; . . . ; xmÞ

W ¼
Ym

n

W0: ð8Þ

Under this interpretation, the rows of W are simply the
subset of the basis vectors of X that span a subspace
Xs � X. The BE on Y is determined by how discriminant
this subspace is, i.e., it will be minimum when Xs is the
most discriminant m-dimensional subspace of X. Since
discarding a discriminant direction can lead to a drastic
increase in BE, the transformation W can be significantly
improved by switching a basis vector of Xc

s (row-vectors
of W0 not in W) with a basis vector of Xs (i.e., row vectors
of W) when the former is a better discriminant than the
latter.

This is the basic operation of FS, and one that is very
unlikely under traditional FE. Because, when seen as
points in Rn�m, the matrices W before and after the switch
can be arbitrarily far apart, it is highly likely that local min-
ima of the BE surface will prevent a gradient-descent type
of iteration from reaching the latter when initiated at the
former. Due to this ability to avoid local optimum (the step
in solution space is not guided by the gradient) FS usually
has a significantly faster convergence rate than FE. The
only problem is that it can never identify discriminant
directions which are not basis functions of W0 already.
This can be a significant limitation, as illustrated by
Fig. 1. In this example, while the features w1 and w2 are
(jointly) a highly discriminant pair, their marginal class-
conditional densities exhibit a significant amount of over-
lap. Hence, because none of the two features is significantly
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discriminant by itself, it is unlikely that, in the context of a
larger problem, the highly discriminant pair would be iden-
tified by a standard FS step.

In order to achieve convergence rates equivalent to
those of FS, while avoiding this limitation, we introduce
an algorithm that performs joint FS and FE, and which
we denote by FSE (feature selection and extraction). The
basic idea is to replace the simple evaluation of the good-
ness of the switch between the two candidate vectors with
a full FE step in the plane spanned by them. Let wi be
the vector in Xs (the ith row of W0, i 2 {0, . . ., m � 1})
and wo the one in Xc

s (oth row of W0, o 2 {m, . . . ,n � 1}),
and consider the set of 2D rotation matrices R(i,o,hio)
(where R(i,o,hio) is identical to the n · n identity matrix
with the exception of Rii = cos(hio), Rio = sin(hio),
Roi = �sin (hio), Roo = cos (hio)). Instead of simply evaluat-
ing the EBE resulting from the switch of wi with wo, we
search for the rotation angle hio that leads to the overall
transformation

W ¼
Ym

n

Rði; o; hioÞW0 ð9Þ

with smallest EBE

L̂�Y ¼ 1� 1

N

XN

l¼1

max
c

P CjY ðcjylÞ; ð10Þ

where PCjY (cjyl) is obtained by combining (7) and the class
priors with Bayes rule. This is a one-dimensional minimiza-
tion problem that can, therefore, be solved very efficiently
with standard exhaustive search procedures (e.g., golden
search [16]).

In fact, it is usually not even necessary to repeat this pro-
cedure for all possible pairs of basis vectors. One observa-
tion that we have made quite consistently is that, when W0

is a sensible initialization (e.g., that provided by PCA), the
vast majority of the planes (wi,wo) either (1) are not very
discriminant, or (2) already have wi as the most discrimi-
nant dimension. In these cases there is not much to be
gained from the rotation and it is unlikely that such planes
will be selected. To take advantage of this observation, we
introduce an (optional) pre-filtering step that eliminates the
planes with small ratio between (1) the EBE of the projec-
tion on wi

~L�½wi � ¼ 1� EX ½max
c

P CjX ðcjwixÞ�; ð11Þ

and (2) the EBE of the projection on the plane

~L�½wi;wo� ¼ 1� EX max
c

P CjX cj
wi

wo

� �
x

� �� �
: ð12Þ

Note that, because all the densities involved are one- or
two-dimensional, this ratio can be computed using histo-
grams1. Its complexity is therefore negligible when com-
1 In all experiments, we used histograms of bin size set according
to the standard deviation of the projected data (for 1D, binsize ¼
6 stdðwixl jl2f1;...;NgÞ

#bins , where #bins is fixed).
pared to that of (10) and, if p planes are selected, the
overall complexity is reduced by a factor of sm(n � m)/p.
The complete algorithm is as follows:

(1) let W ¼
Qm

n W0;

(2) compute
~L�½wi �

~L�½wi ;wo �
for all pairs (wi,wo) and select the p

pairs of smallest ratio.
(3) for each of the p selected pairs find the rotation angle
h�io, using golden section search, that yields the smallest
possible EBE as given by (7), (9) and (10).
(4) find the plane ðwi� ;wo� Þ that leads to the smallest
empirical BE and update W0 ¼ Rði�; o�; h�i�o� ÞW0.
(5) return to step 2 until the EBE difference between 2
successive iterations is smaller than a constant t (set to
10�6 in our experiments).

The matrix W0 can be the identity but can also be a fea-
ture transformation itself. One sensible solution is to rely
on a feature transformation that experience has shown to
perform reasonably well on the problem at hand. For
example, a principal component analysis or a wavelet
decomposition in visual recognition problems. In fact, as
long as W0 is invertible, there will be no loss of BE and,
therefore, any orthogonal or overcomplete decomposition
qualifies. Fig. 2 illustrates the FSE steps on a problem
where the goal is to reduce the dimensionality from 3 to
2, i.e., to find the plane, in 3D space, that best separates
the two classes. In this case, the initial transformation is
the identity and Xs is initially the plane spanned by w1

and w2. Note that there is substantial overlap between
the projection of the class densities on this plane. FSE
searches for a more discriminant plane as follows:

(1) Search for pairs of features (wi,wo) such that wi 2 Xs,
and wo 2 Xc

s , that span a subspace where the classes are
better separated. In the example, since w3 is the only vec-
tor in Xc

s , the possible combinations are (w1,w3) and
(w2,w3).
W’2

Fig. 2. Illustrative example showing the feature selection/extraction.
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(2) Find 2D projection that maximizes the ratio
~L�½wi �

~L�½wi ;wo �
. In

the example, this is the space spanned by (w2,w3), where
the classes are best separated.
(3) Rotate in the plane (w2,w3) by the rotation angle that
minimizes the EBE in the output space: ~L�W ¼ 1�
1
N

PN
l¼1maxdP CjY ðcjylÞ. This produces the basis ðw02;w03Þ.

Projecting the classes on the plane spanned by this basis
leads to a classification problem of very small EBE,
since the projections are well separated.

2.3. Gradient descent

As a benchmark against which to compare the algo-
rithm of the previous section, we implemented an algo-
rithm based on FE alone. As is customary in the FE
literature, this algorithm performs gradient descent on
the EBE surface. It turns out that the solution to this prob-
lem is not straightforward since, due to the max(Æ) operator
in (2), the EBE surface does not have well-defined deriva-
tives everywhere. To overcome this limitation, we relied
on the upper bound resulting from the replacement of the
max(Æ) operator by the softmax function

sðfxig; rÞ ¼
X

j

erxjP
ie

rxi
xj; ð13Þ

where r > 0 is a scale parameter, and {xi} P 0 the input set
[17]. As illustrated by Fig. 3a, the bound can be made arbi-
trarily tight by taking r to infinity, but is a very good
approximation to the max function even for relatively
small values of r (e.g., r = 10). Consequently,

L̂�Y ¼ 1� EY

XjCj
c¼1

erP CjY ðcjyÞPjCj
d¼1erP CjY ðdjyÞ

P CjY ðcjyÞ
" #

ð14Þ

is a very good approximation to (2). This is illustrated by
Fig. 3b, which presents the EBE on a problem with n = 2,
m = 1, jCj ¼ 2, as a function of the angle of the line into
which the input space is projected (see Fig. 4a). Clearly, the
extrema of the two functions are co-located. Furthermore,
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Fig. 3. The softmax function is a ti
because (14) has continuously differentiable derivatives, it
can be minimized with standard gradient descent

Wðtþ1Þ ¼WðtÞ � g
oL̂�Y
oW

� �
ðtÞ
; ð15Þ

where t represents the time step, and g is a learning rate (in
our implementation the value that produces the largest
decay of the cost among a set of pre-defined values). The
partial derivative of (14) with respect to W is then written as

oL̂�Y
oW
¼ �EY

XjCj
c¼1

o

oW

erP CjY ðcjyÞPjCj
d¼1erP CjY ðdjyÞ

P CjY ðcjyÞ
 !" #

: ð16Þ

Eq. (16) can be rewritten as follows:

oL̂�Y
oW
¼� EY s rP CjY ðcjyÞ

oP CjY ðcjyÞ
oW

� �
; r

� ��

�s rP CjY ðcjyÞs
oP CjY ðcjyÞ

oW

� �
; r

� �� �
; r

� �
þ s

oP CjY ðcjyÞ
oW

� �
; r

� ��
;

ð17Þ

where s({Æ}; r) is the softmax function (13). It should be
clear from (16) that s({Æ}; r) is the softmax function of
the values in the set {Æ} across the classes c 2 f1; . . . ; jCjg.
Replacing the expectation in (17) by the empirical mean
EY ½f ðyÞ� ¼ 1

N

P
lf ðylÞ, and assuming that

s rP CjY ðcjylÞ
oP CjY ðcjylÞ

oW

� �
; r

� �

� s rP CjY ðcjylÞs
oP CjY ðcjylÞ

oW

� �
; r

� �� �
; r

� �
;

which is an equality when s({Æ}; r) is replaced by max({Æ}),
it follows that

oL̂�Y
oW
� � 1

N

XN

l¼1

XjCj
c¼1

erP CjY ðcjylÞPjCj
d¼1erP CjY ðdjylÞ

oP CjY ðcjylÞ
oW

� �" #
; ð18Þ

where, by application of Bayes rule,

oP CjY ðcjylÞ
oW

¼ 1

P Y ðylÞ
oP Y jCðyljcÞ

oW

� �
P CðcÞ �

P CjY ðcjylÞ
P Y ðylÞ

� �
oP Y ðylÞ

oW

� �� �
;

ð19Þ
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P Y ðylÞ ¼
XjCj
c¼1

P Y jCðyljcÞP CðcÞ;

oP Y ðylÞ
oW

¼
XjCj
c¼1

oP Y jCðyljcÞ
oW

P CðcÞ;

and P CðcÞ ¼ 1
jCj. Under the Gauss mixture assumption of

(7)
oP Y jCðyljcÞ
oW

¼ oP Y jCðWxljcÞ
oW

ð20Þ

¼
XKc

k¼1

kckWðc; kÞð�Xðc; kÞ � Cðc; k; xlÞÞbðc; k; xlÞ;

with

Xðc; kÞ ¼ ðWRckWTÞ�1
WRck;
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output space computed using FSE, PCA and HDA. Graph (b) illustrates the log(EBE) for each space.

G. Carneiro, N. Vasconcelos / Image and Vision Computing 27 (2009) 131–140 137
Wðc; kÞ ¼ ð2pÞ�
m
2 jWRckWTj�

1
2;

Cðc; k; xlÞ ¼ ðWRckWTÞ�1
Wðxl � lckÞðxl � lckÞ

T

� ðI �WTðWRckWTÞ�1
WRckÞ;

bðc; k; xlÞ ¼ e�
1
2
ðWðxl�lckÞÞTðWRckWTÞ�1ðWðxl�lck ÞÞ:

Finally, the scale parameter is set to r ¼ arg maxrk
oL̂�

Y

oW
k,

i.e., the value that maximizes the gradient of the cost
function.
3. Experiments

To evaluate the algorithms introduced in this work, we
applied them to three classification problems, in which
their performance was compared to that of the classical
solutions. The first set of experiments were performed on
a collection of toy problems (projection of two classes from
2 to 1 dimension) that provide some intuition about the
advantages of minimizing EBE. Because in a 2D space
the FSE algorithm performs an exhaustive search over all
possible subspace (line) directions, we were not able to find
any example, or initialization, that would prevent conver-
gence to the global minimum. This was, however, not the
case for most of the other techniques that we considered,
namely LDA, HDA, or even the minimization of the
EBE by gradient descent.

As illustrated by Fig. 4a, all methods performed well on
Gaussian problems with classes of equal covariance. How-
ever, as shown in Fig. 4b and c, LDA broke down even for
Gaussian problems of unequal class covariance. This is a
well-known problem and the motivation for HDA [14,3].
Both HDA and the two minimum BE algorithms con-
verged to the optimal solution, shown in Fig. 4c. The prob-
lem on Fig. 4d–f consists of a Gaussian class and a second
class which is a mixture of two Gaussians. In this case, the
EBE surface has a local minimum that, as shown in
Fig. 4d, is also the optimal solution for LDA and HDA.
Fig. 4e and f illustrate the susceptibility of the gradient des-
cent algorithm to local minima of the EBE. As can be seen
in Fig. 4e, if the initial W is close to a local minimum then
gradient descent will converge to it. There is however, as
shown in Fig. 4f, a much larger region of the solution space
that will lead to convergence to the global minimum. This
example is more illustrative of the problems faced by the
minimization of EBE on high-dimensional spaces, where
there can be many local minima. It demonstrates the
increased robustness of FSE to this problem.

The second set of experiments was performed on a face
recognition task using the ORL database. This database
contains 40 classes, each composed of ten 112 · 92 images,
which were scaled down to 15 · 13 (by smoothing and bic-
ubic interpolation). This set was split into a training data-
base (first 6 images of each class) and a test database
(remaining 4 images). The matrix W0 was the PCA matrix
of the training data, as used in the popular eigenfaces tech-
nique [12], which was also used as the initial basis for
HDA. Recognition was performed with a maximum likeli-
hood classifier g* (Wxl) = arg maxcPYjC (Wxljc), where xl is
a face from the test database, and PYjC (yjc) the Gaussian
learned from the training images of class c. Note that the
classes are assumed to be Gaussian, an assumption that
favors HDA.

Fig. 5a shows the recognition rates, as a function of the
number of output dimensions, obtained with FSE, PCA,
and HDA. Note that the feature transform with 30 output
dimensions computed by FSE holds the best overall recog-
nition result of 87.50% (the best result recognition result
for PCA was 86.25%, and for HDA 86.88%). Fig. 5b shows
the EBE in the output space as a function of the output
dimension, for each algorithm. Two conclusions can be
drawn from this graph: (a) FSE produces the output space
with minimum EBE for all dimensions, and (b) for all
transforms, the EBE decreases with increasing dimension-
ality. Finally, Fig. 6 depicts the positive correlation
between the EBE and the recognition error, on the experi-
ments of Fig. 5a and b. This correlation is important, in the
sense that it validates the claim that the minimization of
EBE is a suitable criteria for optimal feature extraction.
In particular, it shows that the FSE algorithm is in fact



Table 1
Recognition rates on Brodatz for an SVM classifier at different image
resolutions

Resolution Recognition rate

8 · 8 32.08
16 · 16 32.08
32 · 32 31.25
128 · 128 33
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Fig. 6. Positive correlation between EBE and error rate.
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minimizing the classification error. Note that, unlike neural
networks, SVMs, or boosted perceptrons this is achieved
without the need to design the classifier at each iteration
of the feature extraction process.

The next experiment is on the Brodatz texture data-
base. Brodatz is interesting in the sense that it poses a sig-
nificant problem for many classification architectures. For
example, the straightforward application of a support vec-
tor machine (SVM) to this database tends to perform
quite poorly. Table 1 presents the best results that we
were able to obtain, at several image resolutions, for an
SVM with a Gaussian kernel, after a substantial amount
of tuning of both the kernel variance and the SVM capac-
ity parameter2.

We believe that this disappointing performance is due to
the fact that the 1-vs-all strategy required to turn the multi-
class problem (that the SVM cannot handle directly) into a
collection of binary problems (which are then combined
into a multi-class decision) may be strongly sub-optimal
on Brodatz. We have also previously shown that other cur-
rently popular representations in learning and vision, e.g.,
an independent component analysis (ICA) type of decom-
position, do not work well on this database [18]. In fact, an
extensive study comparing the performance of various fea-
ture spaces (including PCA, ICA, and wavelets), has shown
that the discrete cosine transform (DCT) is a top performer
2 We started from a kernel variance equal to the median Euclidean
distance between the training vectors and a capacity of 1, and then
manually tried various variations of the two parameters around these
initial values. The combination that lead to smallest error was selected.
on Brodatz (see [18] for details). We therefore used the
DCT as initial basis W0, in an attempt to determine if fur-
ther optimization, by either FSE or gradient descent, could
lead to visible improvement over this already very good
solution.

We started by comparing the performance of the mini-
mum-EBE feature sets obtained by FSE and gradient des-
cent, saving the matrix W at each iteration and measuring
the corresponding EBE on both the training and test sets,
to make sure that there was no over-fitting. Fig. 7 presents
the evolution of the EBE as a function of the iteration
number, showing that the convergence of FSE is signifi-
cantly faster (at least one order of magnitude) than that
of gradient descent. By running the algorithms for an
extended number of iterations, we also observed that the
curves remained flat after 50 iterations. This means that
gradient descent was trapped in a local minimum that pre-
vented convergence to the better solution reached by FSE.
In summary, gradient descent required a significantly larger
number of iterations to converge to a worse solution than
that found by FSE.

In order to compare the computational cost of the two
algorithms (and evaluate the trade-off between BE and
complexity due to the filtering step of FSE), we ran FSE
with various values of the plane-retention parameter p.
Fig. 7b shows the variation of the final value of EBE, for
p = 1 and p 2 {1%, 5%, 10%, 20%, 50%, 100%} of all pos-
sible planes, as a function of the CPU time3. Also shown
are the EBE achieved by gradient descent and the corre-
sponding time and the initial EBE. Clearly, simply picking
the best plane is enough to reach a solution that is very
close to the best possible (and better than the gradient des-
cent solution), at a computational cost more than two
orders of magnitude smaller than that of either the overall
best or gradient descent.

Finally, we compared the recognition performance of
the FSE solution with that of the initial DCT features.
Recognition was performed with a maximum likelihood
classifier g* (Wxl) = argmaxcPYjC (Wxljc), where xl is an
image from the test database, and PYjC (yjc) the Gauss-
ian mixture learned from the training images of class
c. Table 2 shows the recognition rates obtained, confirm-
ing that the FSE solution is the best one and reduces
the error rate of the DCT features by about 12%. Given
that the DCT features already perform very well for
most test images, we believe that this improvement is
significant.

In fact, visual inspection of the classification results
obtained for each test image revealed no instances where
FSE did worse than the DCT. On the contrary, FSE tends
to improve performance for test images belonging to clas-
ses that are visually quite similar to other classes in the
database. These are the most difficult images to classify
and the results above suggest that, for 12% of them, FSE
3 Computer configuration: Intel Xeon processor at 2.4 GHz with 4 GB
of memory.
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Table 2
Recognition rates on Brodatz for a mixture classifier based on the DCT
and FSE feature spaces

Features Recognition rate

DCT 92.92
FSE 93.75
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is helpful. Furthermore, we have noticed that this gain is
not achieved at the cost of a loss of the generalization abil-
ity of the classifier. On the contrary, the FSE-based classi-
fier appears to be more robust than the DCT-based
counterpart and produces judgments of similarity that
seem more correlated to those of human perception. These
points are illustrated by Fig. 8, where we show the classifi-
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cation results obtained with the two classifiers for various
test images. The top two examples of Fig. 8a and b illus-
trate how the FSE-based classifier has better ability to gen-
eralize, producing an ordering of the classes that seems to
be closer to human judgments of similarity. The bottom
two examples of Figs. 8a and b show instances where, even
though close, the DCT-based classifier produces an error.
In these cases, the FSE-based classifier is able to recover
the correct ordering without altering the third match. All
examples (as well as others that are omitted for brevity)
support the argument that FSE produces a layout of the
feature space that, locally, allows a finer discrimination
between similar classes but, globally, brings those classes
closer together.
4. Conclusion

We presented an algorithm to efficiently compute an
optimal set of features in the minimum Bayes error sense.
The algorithm combines the efficiency of feature selection
with the ability of feature extraction to compute optimal
features that are not part of the original set of basis func-
tions. One important aspect of this work is that the feature
set built by the algorithm now proposed can be used to
train any type of classifier, thus separating the complex
tasks of feature and classifier design. The divorce of these
two tasks is important for large-scale classification prob-
lems not only in terms of efficiency, but also with respect
to recognition accuracy. We provided empirical examples
of the efficiency and efficacy of the algorithm in several
visual recognition problems, ranging from simple toy
examples to full-blown recognition tasks involving many
classes in the domains of face and texture recognition.
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