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Abstract—Low-complexity feature selection is analyzed in the context of visual recognition. It is hypothesized that high-order

dependences of bandpass features contain little information for discrimination of natural images. This hypothesis is characterized

formally by the introduction of the concepts of conjunctive interference and decomposability order of a feature set. Necessary and

sufficient conditions for the feasibility of low-complexity feature selection are then derived in terms of these concepts. It is shown that

the intrinsic complexity of feature selection is determined by the decomposability order of the feature set and not its dimension. Feature

selection algorithms are then derived for all levels of complexity and are shown to be approximated by existing information-theoretic

methods, which they consistently outperform. The new algorithms are also used to objectively test the hypothesis of low

decomposability order through comparison of classification performance. It is shown that, for image classification, the gain of modeling

feature dependencies has strongly diminishing returns: best results are obtained under the assumption of decomposability order 1.

This suggests a generic law for bandpass features extracted from natural images: that the effect, on the dependence of any two

features, of observing any other feature is constant across image classes.

Index Terms—Feature extraction and construction, low complexity, natural image statistics, information theory, feature discrimination

versus dependence, image databases, object recognition, texture, perceptual reasoning.

Ç

1 INTRODUCTION

NATURAL image statistics have been a subject of sub-
stantial recent research in computer and biological

vision [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14]. For computer vision, good models of image statistics
enable algorithms tuned to the scenes that matter the most.
Tuning to natural statistics can be accomplished through
priors that favor solutions consistent with them [15], [16], [17],
[18] or through optimal solutions derived from probability
models that enforce this consistency [19], [20], [21], [22], [23].
The idea of optimal tuning to natural statistics also has a long
history in biological vision [5], [24], [25], [26], where this
tuning is frequently used to justify neural computations. In
fact, various recent advances in computational modeling of
biological vision have followed from connections between
neural function and properties of natural stimulus statistics
[8], such as sparseness [12], [27], independence [13], [14],
compliance with certain probability models [28], or optimal
statistical estimation [29], [30].

Although natural images are quite diverse, their convolu-

tion with banks of bandpass functions gives rise to frequency

coefficients with remarkably stable statistical properties [1],

[2], [3], [4], [6], [7], [8], [10]. This is illustrated in Fig. 1a, which

presents three images, the histograms of one coefficient

of their wavelet decomposition, and the histograms of that

coefficient conditioned on its parent. The different visual

appearance of the images affects the scale (variance) of the
marginal distribution but not its shape or that of the conditional
distribution, which is a bow-tie for all classes. This canonical
pattern is simply rescaled to match the marginal statistics of
each class. These types of properties have been exploited in
various image processing domains, including compression
[1], [2], [6], [19], denoising [15], [16], [18], [22], retrieval [21],
saliency [31], extraction of intrinsic images [20], separation of
reflections [32], and inpainting [17], [18]. In fact, the study of
image statistics has a complementary relationship with the
development of vision algorithms. Typically, an hypothesis
is advanced for the statistics, an algorithm is derived under
that hypothesis, and applied to natural images. If the
algorithm performs well, the hypothesis is validated.

This indirect validation paradigm is useful in two ways. First,
it avoids the estimation of complex statistical quantities. For
example, hypotheses on high-order statistics are difficult to
verify experimentally due to the well-known difficulties of
estimating such statistics [33]. Instead, it is usually easier to
1) derive an algorithm that is optimal if the hypothesis holds
and 2) apply it to a specific vision problem such as object
recognition [34], where performance can be easily quantified. If
the algorithm performs poorly, there is reason to question
the hypothesis; otherwise, there is concrete evidence in its
support. The second advantage of indirect validation is that it
produces new vision algorithms which, under the hypothesis,
are optimally tuned to the image statistics. If the hypothesis
holds, these algorithms can outperform the state of the art.

In this work, we adopt the indirect validation paradigm to
study the discriminant power of the statistical dependencies of
frequency coefficients extracted from natural images. While
simple inspection of the histograms in Fig. 1a shows that
these dependences exist, their constancy across image
classes suggests the hypothesis that high-order dependences
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contain little information for image discrimination. This hypoth-
esis is supported by what is known about biological vision,
where it has long been argued that the early visual system
dismisses feature dependences in the solution of discrimi-
nant tasks such as visual search [35], [36]. This is illustrated
in Fig. 1b, which presents a classical example of the inability
of preattentive vision to process feature conjunctions. When,
as shown in Fig. 1b.1, an object (colored bar) differs from a
background of distractors (other colored bars) in terms of a
single feature (color), it can be easily discriminated (it pops
out). However if, as shown in Fig. 1b.2, the object differs from
the distractors by a conjunction of two features (color and
orientation, the bar on the third row and third column), there
is no percept of popout. Current explanations attribute this
phenomena to independent feature processing [35], [36],
[37], [38], [39], [40].

For computer vision, where models of feature depen-
dences require the estimation of high-dimensional densities,
such dependences are a dominant source of complexity. A
formal characterization of their role in image discrimination
is therefore a prerequisite for optimal image classification with
reduced complexity. Since optimal classification requires
discriminant features, we study dependences in the context
of feature selection. In the spirit of indirect validation, we
1) develop optimal feature selection algorithms under the
hypothesis that high-order dependences are uninformative
for discrimination and 2) evaluate their image classification
performance.

The contributions of this effort are in three areas. The
first is a rigorous characterization of the role of image
statistics in optimal feature selection with low complexity.
We equate complexity with the dimensionality of the
probability densities to be estimated, and adopt an

information-theoretic definition of optimality widely used

in the literature [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61],

[62], [63], [64], [65]. We then derive, for each level of

complexity, the necessary and sufficient condition (on the

statistics) for optimal feature selection with that complexity.

This condition depends exclusively on a quantity denoted

as the conjunctive interference within the set of features X,

which roughly measures how, on average, the dependence
between two disjoint feature subsets A;B � X is affected

by the remaining features in X. It is shown (see Theorem 1)

that if this conjunctive interference is constant across
classes, the complexity of the optimal solution is deter-

mined by the dimension of the subsets A, B rather than that

of X. Hence, the smaller the set size for which conjunctive

interference is nondiscriminant, the smaller the intrinsic complex-

ity of feature selection.
The second contribution, which follows from the theore-

tical analysis, is a new family of feature selection algorithms.

These algorithms optimize simplified costs at all levels of
complexity and are (locally) optimal when conjunctive

interference is nondiscriminant at their complexity level.

This family generalizes a number of low-complexity in-
formation-theoretic methods [41], [42], [43], [44], [45], [46],

[47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58],

[59], [60], [61], [62], [63], [64] previously shown to outper-
form many state-of-the-art feature selection techniques [48],

[58]. The impressive empirical performance of the previous

methods is explained by the fact that they approximate the

algorithms now derived. Nevertheless, there is a gain in
replacing the approximations with the optimal algorithms:

experiments on various data sets show that the latter
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Fig. 1. (a) Constancy of natural image statistics. (a.1) Three images. (a.2) Each plot presents the histogram of the same coefficient from a wavelet

decomposition of the image on the left. (a.3) Conditional histogram of the coefficient conditioned on the value of the colocated coefficient of an

immediately coarser scale (its parent). (b) Biological vision frequently disregards feature dependences. (b.1) A Stimulus that differs from it surrounds

by a single feature (color) is salient. (b.2) Differences in feature conjunctions (color and orientation) are not.
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consistently outperform the previous methods, sometimes by a

significant margin.
The final contribution, in the spirit of indirect validation,

is the use of the feature selection algorithms for indirectly

characterizing the image statistics. Given that the different

algorithms are optimal only when conjunctive interference is

nondiscriminant at their complexity level, a comparison of

feature selection performance identifies the complexity

at which conjunctive interference ceases to affect image

discrimination. Algorithms with less than this complexity

are suboptimal, and performance levels off once it is

reached. We present evidence for the hypothesis that this

“leveling off” effect occurs at very low complexity levels.

While simply modeling marginal densities is, in general, not

enough to guarantee optimal feature selection, there appears

to be a little gain in estimating more than the densities of pairs of

coefficients.
This paper is organized as follows: Section 2 reviews

information-theoretic feature selection. Section 3 introduces a

basic decomposition of the information-theoretic cost and

shows that independent feature selection can be optimal,

even for highly dependent feature sets. The decomposition is

refined in Section 4, which formally defines conjunctive

interference, and introduces a measure of the intrinsic

complexity of a feature set (decomposability order). Section 5

introduces the new family of (locally) optimal algorithms and

discusses connections to prior methods. Finally, the experi-

mental protocol for indirect validation of the decomposa-

bility hypothesis is introduced in Section 6, and experimental

results are discussed in Section 7. A very preliminary version

of the work, focusing mostly on the theoretical connections

between conjunctive interference and low complexity feature

selection, has appeared in [64].

2 INFOMAX FEATURE SELECTION

We start by introducing the information-theoretic optimality

criterion adopted in this work and reviewing its previous

uses in the feature selection literature.

2.1 Definitions

A classifier g : X ! L ¼ f1; . . . ;Mg maps a feature vector

x ¼ ðx1; . . . ; xNÞT 2 X � IRN into a class label i 2 L. Fea-

ture vectors result from a transformation T : Z ! X of

observation vectors z ¼ ðz1; . . . ; zDÞ in measurement space

Z � IRD. Observations are samples from random process Z

of probability distribution PZðzÞ on Z, feature vectors

samples from process X of distribution PXðxÞ on X , and

label samples from random variable Y of distribution PY ðiÞ
in L. Given class i, observations have class-conditional

density PZjY ðzjiÞ and class-posterior probabilities deter-

mined by the Bayes rule PY jZðijzÞ ¼ PZjY ðzjiÞPY ðiÞ=PZðzÞ.
The classification problem is uniquely defined by

C ¼ fZ; PZjY ðzjiÞ; PY ðiÞ; i 2 Lg. T induces class-conditional

densities PXjY ðxjiÞ in X and defines a new classification

problem CX ¼ fX ; PXjY ðxjiÞ; PY ðiÞ; i 2 Lg. We define as

optimal the spaces of maximum mutual information (MI)

between features and class labels.

Definition 1. Given a classification problem C and a set S of
range spaces for the feature transforms under consideration,
the infomax space is

X� ¼ arg max
X2S

IðY ; XÞ; ð1Þ

where

IðX;Y Þ ¼
X
i

Z
X
pX;Y ðx; iÞ log

pX;Y ðx; iÞ
pXðxÞpY ðiÞ

dx ð2Þ

is the MI between X and Y .

Infomax is closely related to the minimization of Bayes
classification error and has a number of relevant properties
for low-complexity feature selection, some of which are
reviewed in Appendix A. In what follows, z is a vector of
image pixels, and x is the result of a bandpass transforma-
tion (e.g., a wavelet, Gabor, or windowed Fourier trans-
form), followed by the selection of N coefficients.

2.2 Previous Infomax Approaches to Feature
Selection

Information-theoretic feature selection has been used for
text categorization [41], [42], [43], [44], creation of semantic
ontologies [45], analysis of genomic microarrays [46], [47],
classification of electroencephalograms (EEGs) [49], [50]
and sonar pulses [53], [54], medical diagnosis [51], audio-
visual speech recognition [56], and visualization [57]. In
computer vision, it has been used for face detection [58],
object recognition [59], [61], and image retrieval [62], [63],
[64]. These approaches can be grouped into four classes.
Algorithms in the first class approximate (2) with

MðX;Y Þ ¼
XD
k¼1

IðXk;Y Þ; ð3Þ

where IðXk;Y Þ is the MI between feature Xk and class label
Y . MðX;Y Þ is a measure of the discriminant information
conveyed by individual features. It is denoted as the
marginal MI (MMI), and its maximization is denoted as
marginal infomax. It is popular in text categorization [41],
[42], [43] mostly due to its computational simplicity. It has,
nevertheless, been shown to sometimes outperform meth-
ods that account for feature dependences [45], [51], [56].

Algorithms in the second class combine a heuristic
extension of marginal infomax, originally proposed in [53],
and the classical greedy strategy of sequential forward
feature selection [66], where one feature is selected at a
time. Denoting by X� ¼ fX�1 ; . . . ; X�kg the set of previously
selected features and denoting by X a candidate feature,
the selected feature is

X�kþ1 ¼ arg max
X
fIðX;Y Þ � fðX;X�Þg; ð4Þ

where fð�Þ is a dependence measure, ranging from a hard
rejection of dependent features [53] to continuous penalties.
The most popular is [47], [48], [51], [52], [54], [55]

fðX;X�Þ ¼ �
Xk
i¼1

IðX;X�i Þ; ð5Þ
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where � controls the strength of the dependence penalty.

Various information-theoretic costs are either special

cases of this [47], [48] or extensions that automatically

determine � [55].
Algorithms in the third class optimize costs closer to (1),

once again through sequential forward search. One propo-

sal is to select the feature X, which maximizes IðX;X�i ;Y Þ,
i 2 f1; . . . ; kg [57]. This is a low-complexity approximation

to IðX;Y Þ, which only considers pairs of features. Because

it does not rely on a modular decomposition of the MI, it is

somewhat inefficient. An alternative, proposed in [58] and

[60], addresses this problem by relying on

X�kþ1 ¼ arg max
X

min
i
IðY ;XjX�i Þ

¼ arg max
X

min
i

IðX;X�i ;Y Þ � IðX�i ;Y Þ
� �

; ð6Þ

where we have used (31). This is equivalent (see (34)) to

X�kþ1 ¼ arg max
X
fIðX;Y Þ þmin

i
IðX;X�i jY Þ � IðX;X�i Þ
� �

g:

ð7Þ

We will show that (4) and (7) are simplifications of (1),

which disregard important components for image discrimi-

nation. Nevertheless, extensive empirical studies have

shown that they can beat state-of-the-art methods [48], [58]

such as boosting [67], [68] and decision trees [69].

The final class has a single member, i.e., the algorithm

in [65]. Unlike the other classes, it sequentially eliminates

features from X. This elimination is based on the concept of a

Markov blanket [70]: if there is a set of features M (called a

Markov blanket) such thatX is conditionally independent of

ðX [ Y Þ �M� fXg, given M, the featureX can be removed

from X without any loss of information about Y . While

theoretically sound, this method has a number of practical

shortcomings that are acknowledged by its authors: the

Markov blanket condition is much stronger than what is

really needed (conditional independence of X from Y , given

M), there may not be a full Markov blanket for a feature, and

when there is one, it can be difficult to find. To overcome

these problems, Koller and Sahami [65] use various heur-

istics that only involve feature pairs. The assumptions, with

respect to the feature statistics, underlying these heuristics

are not clear.

3 OPTIMALITY OF MARGINAL INFOMAX

To gain some intuition on the feasibility of low-complexity

feature selection, we start by investigating the conditions

under which marginal infomax is identical to (1).

3.1 Features versus Conjunctions

For this, we note that the MI can be decoupled into

contributions from individual features and feature

conjunctions.

Lemma 1. Let X ¼ ðX1; . . . ; XDÞ be any feature set and let

X1;k ¼ ðX1; . . . ; XkÞ. Then

IðX;Y Þ ¼MðX;Y Þ þ CðX;Y Þ; ð8Þ

where MðX;Y Þ is the MMI of (3), and

CðX;Y Þ ¼
XD
k¼2

½IðXk; X1;k�1jY Þ � IðXk; X1;k�1Þ�: ð9Þ

Proof. See Appendix B. tu

The terms IðXk; X1;k�1jY Þ � IðXk; X1;k�1Þ measure how the
MI between features is affected by knowledge of the class
label. They quantify the discriminant information due to
feature dependences.CðX;Y Þ is referred to as the conjunctive

component of the MI (CCMI). A consequence of Lemma 1 is
that if CðX; Y Þ ¼ 0, 8X 2 S, then (1) reduces to the marginal
infomax criterion

X� ¼ arg max
X2S

X
k

IðXk;Y Þ: ð10Þ

Due to the nonnegativity of the MI, (10) has a simple solution:
order the Xk by decreasing IðXk;Y Þ and select the largest N .
While (1) involves combinatorial search and high-dimen-
sional density estimation, (10) only requires a linear search
based on marginal density estimates. Hence, a null CCMI is a
sufficient condition for low-complexity feature selection.

3.2 The Role of Natural Image Statistics

To obtain some intuition on how the CCMI is affected by
the dependency structure of X, we consider the classifica-
tion of two Gaussian features X ¼ ðX1; X2Þ with

PXjY ðxjiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�2j�ij
p e�

1
2x

T��1
i x; i 2 f1; 2g;

�i ¼
�i �i

�i �i

� �
; �1 6¼ �2:

Gaussianity reduces all class-conditional dependences to
two parameters, namely, the correlation coefficients
�i ¼ �i=

ffiffiffiffiffiffiffiffi
�i�i
p

. It is relatively straightforward to measure
the relative strength

RðX;Y Þ ¼ CðX;Y Þ
MðX;Y Þ ð11Þ

of the MI components as a function of these parameters. If
the variances �i and �i are held constant, fixing the marginal
distributions, then RðX;Y Þ is proportional to CðX;Y Þ,
allowing for the study of how the latter depends on the �i.
By repeating the experiment with different �i and �i, it is also
possible to infer how this dependence is affected by the MMI
MðX;Y Þ. The graph of RðX; Y Þ versus �i for fixed MMIs is
the CCMI surface associated with the latter. While natural
image statistics are not Gaussian, this procedure provides
intuition on how the MI is affected by feature dependences.
We consider two common scenarios for pairs of bandpass
coefficients:

. S1. Two features are active/inactive for the same
images (e.g., a wavelet coefficient and its parent). X1

and X2 have equal variance ð�i ¼ �i ¼ �iÞ and are
inactive for one class ð�2 ¼ 1Þ but are active for the
other ð�1 > 1Þ. The CCMI surface is measured for
various activity levels (by controlling �1).
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. S2. Each feature is active for one class but not for the
other; for example,X1 ðX2Þ is horizontally (vertically)
tuned, and class 1 (2) is predominantly composed of
horizontal (vertical) lines. The variances are �1 ¼ �2 ¼
� and �2 ¼ �1 ¼ 1. The CCMI surface is measured for
various �.

Fig. 2 presents the corresponding CCMI surfaces, suggest-
ing three main conclusions. First, the CCMI can be close to zero,
even when the features are very strongly dependent. Note that all
surfaces are approximately zero along the line �1 ¼ �2 ¼ �,
independent of either � (dependence strength) or the MMI.
Second, the importance of the CCMI in (8) increases with the
diversity of the dependence across classes, i.e., with j�1 � �2j.
Third, this increase is inversely proportional to the MMI. While,
for small MMIs, a significant difference between the �i makes
RðX; Y Þ large, this is not the case for large MMIs. Overall, (8)
(and Fig. 2) shows that 1) the relevance of feature depen-
dences to the solution of (1) increases with their interclass
variability but 2) this variability only boosts the importance of
features that are not discriminant per se.

In summary, CðX; Y Þ ¼ 0 is a sufficient condition for
optimal feature selection with low complexity. It does not
require feature independence but simply that the discriminant

power of feature dependences is small. As shown in Fig. 1a,
this hypothesis is not unreasonable for natural images. We
will evaluate it in Section 7. For now, we consider a series of
extensions that bridge the gap between (1) and (10).

4 DECOMPOSITIONS OF THE CONJUNCTIVE

COMPONENT

If feature conjunctions are discriminant, it is unlikely that
this will hold for all conjunctions. For example, wavelet
coefficients are dependent on their immediate neighbors (in
space, scale, or orientation), but the dependence decays
quickly [71]. Hence, CðX; Y Þ should not require modeling

dependences between all coefficients. We next derive conditions
for the optimality of infomax costs that only account for
dependences within low-dimensional feature subsets.

4.1 Decompositions of the MI

We start by considering the decomposition of IðX; Y Þ for a

given feature set X. We group theD features into a collection

of disjoint subsets of cardinality l:

Cl ¼ fC1; . . . ;CdD=leg; ð12Þ

where1

Ci ¼
fXði�1Þlþ1; . . . ; Xilg; if i < dD=le;
fXði�1Þlþ1; . . . ; XDg; if i ¼ dD=le;

�
ð13Þ

and dxe ¼ inffm 2 ZZjx � mg, and we derive the conditions

under which the CCMI is totally determined by the

dependencies within each Ci. This is based on the following

decomposition.

Lemma 2. Consider the decomposition of X into a subset

collection Cl, as in (12). Then

CðX; Y Þ ¼
XD
k¼2

Xdk�1=le

i¼1

IðXk; ~Ci;kjCi�1
1 ; Y Þ � IðXk; ~Ci;kjCi�1

1 Þ
� �

;

ð14Þ

where Ci are as in (13), ~Ci;k is the subset of features in Ci

whose index is smaller than k, and Ci�1
1 ¼ ðC1; . . . ;Ci�1Þ.

Proof. See Appendix C. tu

This decomposition offers an explanation for why, in the

absence of statistical regularities, low complexity feature

selection is impossible [72]. Note that although Ci�1
1 shares

no elements with fXkg or ~Ci;k, the state of the features of the

former affects the dependences between those in the latter.

Hence, the discriminant information due to the dependences

betweenXk and ~Ci;k depends on the state of Ci�1
1 and is impossible

to compute with low complexity. We refer to these indirect

dependence relationships, i.e., that the state of a subset of

features interferes with the dependence between two other

232 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 2, FEBRUARY 2009

Fig. 2. RðX; Y Þ as a function of the class-conditional correlations �i for a binary Gaussian problem. The inserts show the one standard deviation

contour of the two Gaussian classes for various values of ð�1; �2Þ. The plots report to (a) scenario S1 and (b) scenario S2. In both cases, different

surfaces report to different values of �, the variable that controls the marginal discrimination. All MIs were evaluated by replacing expectations with

sample means, obtained from a sample of 10,000 points per class.

1. What follows could be extended to subsets Ci of different cardinality,
but this would complicate the notation and is omitted.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on January 27, 2009 at 15:47 from IEEE Xplore.  Restrictions apply.



nonoverlapping subsets, as second-order components of depen-
dence. This is opposed to direct dependences between
subsets, which are referred to as first-order components or
dependences within subsets, which we denote as zeroth order.
The conjunctive interference within a feature set is the overall
difference between the first- and second-order dependences
of its subsets.

Definiton 2. Consider the decomposition of X into a subset
collection Cl, as in Lemma 2. The conjunctive interference
within X with respect to Cl is

CIðX; ClÞ ¼
XD
k¼2

Xdk�1=le

i¼1

IðXk; ~Ci;kjCi�1
1 Þ � IðXk; ~Ci;kÞ

� �
: ð15Þ

Conjunctive interference is a differential measure of depen-
dence. It measures how, across the feature set, the depen-
dence between two sets of features (e.g., ðXk; ~Ci;kÞ) changes
with the observation of a third nonoverlapping set ðCi�1

1 Þ.
Since, if ðA;BÞ is independent of C, IðA; BjCÞ ¼ IðA; BÞ, it
follows that conjunctive interference within X (with respect
to decomposition Cl) is null when ðXk; ~Ci;kÞ is independent of
Ci�1

1 for all valid i and k. We next show that this is not a
necessary condition for low-complexity evaluation of the MI.
It suffices that the conjunctive interference does not depend
on the class.

Theorem 1. Consider the decomposition of X into Cl, as in (12).
Then,

IðX;Y Þ ¼MðX;Y Þ þ CClðX;Y Þ; ð16Þ

with MðX; Y Þ as in (3), and

CClðX;Y Þ ¼
XD
k¼2

Xdk�1=le

i¼1

½IðXk; ~Ci;kjY Þ � IðXk; ~Ci;kÞ�; ð17Þ

if and only if

CIðX; ClÞ ¼
XD
k¼2

Xdk�1=le

i¼1

IðXk; ~Ci;kjCi�1
1 ; Y Þ � IðXk; ~Ci;kjY Þ

� �
:

ð18Þ

Proof. See Appendix D. tu

When (18) holds, (16) is equivalent to (8), with CClðX;Y Þ
playing the role of CðX;Y Þ. In particular, (16) replaces each
of the terms

IðXk; X1;k�1jY Þ � IðXk; X1;k�1Þ ð19Þ

of (9) by a sum, over i, of terms of the form

IðXk; ~Ci;kjY Þ � IðXk; ~Ci;kÞ: ð20Þ

While (19) quantifies the discriminant information due to
dependences between Xk and the entire set of Xj, j < k,
(20) restricts this measure to dependences between Xk and
subset ~Ci;k. Hence, (20) requires density estimates of
dimension of at most lþ 1. Since density estimation has
exponential complexity on feature space dimension, the
complexity difference between (16) and (8) can be very
significant if l� D. To illustrate this, we analyze a simple
example.

Example 1. Let D ¼ 6 and l ¼ 2. Then, C1 ¼ fX1; X2g;
C2 ¼ fX3; X4g, C3 ¼ fX5; X6g, and CClðX;Y Þ is the sum
of the terms in the third column in Table 1. These terms
measure discriminant information due to dependences
within C1, C2, and C3, (zeroth-order components) and
between X3 and C1, X4 and C1, X5 and C1, X5 and C2,
X6 and C1, and X6 and C2 (first order). Hence, (16)
requires joint density estimates of up to three features.
On the other hand, (8) requires densities of up to six
features and is three orders of magnitude more complex.

4.2 Decompositions for Low-Complexity Feature
Selection

Theorem 1 only holds for the decomposition of X according
to (12) and (13). This is not sufficient for feature selection
algorithms, which usually evaluate the MI of various subsets
of X. For this, the theorem must be expanded to all possible
feature subsets of X. The extension of the necessary and
sufficient condition of (18) to all such subsets is denoted as
l-decomposability.

Definition 3. A feature set X is l-decomposable or is
decomposable at order l if and only if

CIðW; ClÞ ¼
XjWj
k¼2

Xdk�1=le

i¼1

IðWk; ~Ci;kjCi�1
1 ; Y Þ � IðWk; ~Ci;kjY Þ

� �
;

8W 2 SðXÞ;
ð21Þ

where Cl and ~Ci;k are built from W, as in (12) and (13), and
SðXÞ is the set of all subsets of X.

Since (18) holds for any feature subset W of an l-decomposable
set X, simple application of Theorem 1 shows that the same is
true for (16).

Corollary 1. Let X be an l-decomposable feature set, W a subset
of X, and Cl be a collection of disjoint subsets Ci of cardinality
l built from W, as in (12) and (13). Then

IðW;Y Þ ¼MðW;Y Þ þ CClðW;Y Þ; ð22Þ

with

MðW;Y Þ ¼
XjWj
k¼1

IðWk;Y Þ; ð23Þ
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CClðW;Y Þ ¼
XjWj
k¼2

Xdk�1=le

i¼1

IðWk; ~Ci;kjY Þ � IðWk; ~Ci;kÞ
� �

; ð24Þ

where ~Ci;k is the subset of features in Ci whose index is

smaller than k, and Ci�1
1 ¼ ðC1; . . . ;Ci�1Þ.

Hence, for an l-decomposable set, it is equivalent to adopt

(2) or (16) as feature selection cost.

Corollary 2. If X is l-decomposable, then the solution of (1) is

identical to that of

X� ¼ arg max
X2S

�X
k

IðXk;Y Þ

þ
XD
k¼2

Xdk�1=le

i¼1

�
IðXk; ~Ci;kjY Þ � IðXk; ~Ci;kÞ

��
:

ð25Þ

In summary, the infomax subset of an l-decomposable X can

be computed with density estimates of dimension lþ 1. When

l ¼ D, there is only one possibility for Cl, namely, Cl ¼ fXg,
and (16) is equal to (8). Hence, all feature sets are at least

D-decomposable, and in the worst case, feature selection has

exponential complexity in the cardinality of X. However,

depending on the decomposability order of X, this bound

may be very loose. The intrinsic complexity of feature selection

is determined by the decomposability order l of the feature set and

not its cardinality.

5 LOW-COMPLEXITY INFOMAX FEATURE

SELECTION ALGORITHMS

In this section, we derive a family of infomax feature selection
algorithms based on the theoretical characterization above.

5.1 A New Family of Algorithms

When X is l-decomposable, the infomax space is given by

(25). When l-decomposability does not hold, (25) provides a

low-complexity approximation to the optimal solution. In this

case, l is denoted as the order of the approximation, and we

refer to the true decomposability order as l�. Since all feature

sets are (at least) D-decomposable, the optimal solution can

always be attained if (25) is solved for all values of l. This

suggests 1) developing a family of algorithms parameter-

ized by l, 2) solving the feature selection problem for all l,

and 3) retaining the best solution. Note that, given l, (25) can

be solved by existing feature selection strategies. In our

implementation, we use the popular (greedy) strategy of

sequential forward feature selection [66], which leads2 to

Algorithm 1. The MIs of (26) are computed with histograms.

When b histogram bins are used per feature, the algorithm

can be implemented in O½Dðbl=lÞN2� time. Since N is usually

small, the complexity is dominated by b and l, increasing

exponentially with the latter.

Algorithm 1 (approximate infomax of order l).
Input: feature set X ¼ fX1; . . . ; XDg, order l, and target

number of features N .

set X� ¼ C1 ¼ fX�1g, where X�1 ¼ arg maxXk2X IðXk;Y Þ,
k ¼ 2, and i ¼ 1.

repeat

for Xr 62 X� do

	r¼IðXr;Y Þþ
Pdk�1=le

p¼1 IðXr; ~Cp;kjY Þ�IðXr; ~Cp;kÞ
� �

;

ð26Þ
end for

let r� ¼ arg maxr 	r.

if k� 1 is not a multiple of l then

let Ci ¼ Ci [Xr� ,

else

set i ¼ iþ 1, Ci ¼ Xr� .

end if

set X� ¼ [iCi, k ¼ kþ 1,
until k ¼ N
Output: X�.

5.2 Comparison to Other Infomax Methods

The main novelty of Algorithm 1 is the use of (26) as a

sequential feature selection rule. In addition to the theore-

tical motivation above, this rule is interesting in two ways.

First, it has an intuitive interpretation: it favors features of

1) large MIs with the class label, 2) low MIs with previously

selected features, and 3) large MIs with those features given

image class. This enforces three principles that are always at

play in feature selection:

1. Discrimination. Each selected feature must be as
discriminant as possible.

2. Diversity. The selected features must not be redun-
dant.

3. Reinforcement. Unless, this redundancy is itself
discriminant.

Second, it unifies many algorithms previously proposed for

information-theoretic feature selection.
In fact, the first three classes in Section 2 are special cases of

the family now proposed. Methods in the first class, namely,

marginal infomax, only use the first term of (26). Slightly

abusing the notation, we refer to this as the approximate

infomax algorithm of order 0. It enforces the principle of

discrimination but not diversity or reinforcement and does

not guarantee a compact representation: exactly identical

features are selected in consecutive steps, wasting some of

the available dimensions. The second and third classes are

approximations to (26), with l ¼ 1, in which case (26) can be

written as

IðX;Y Þ þ
Xk�1

i¼1

I X;X�i jY
	 


� I X;X�i
	 
� �

: ð27Þ

Algorithms in the second class, based on (4), simply discard

the terms that account for the discriminant power of feature

dependencies ðIðX;X�i jY ÞÞ, failing to enforce the principle

of reinforcement. This can be an overkill, since discriminant

dependences can be crucial for fine discrimination between

otherwise similar classes. On the other hand, by relying on
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2. It is worth stressing that the algorithm does not guarantee the best
approximation for any l, since the greedy selection of a feature limits the
feature groupings of subsequent steps. This is a known limitation of
sequential forward selection, e.g., shared by all algorithms in Section 2. It
can sometimes be circumvented with heuristics such as floating search [66],
[73], [74].
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(7), the algorithms in the third class approximate the
summation of (27) by its smallest term.

The excellent empirical performance [48], [58] of algo-
rithms in the second and third classes suggests two
hypotheses. The first is that the infomax approximation of
first order ðl ¼ 1Þ is sufficient for many problems of practical
interest. The second is that, even for this approximation,
many terms of (27) are neglectable. It is, nevertheless,
puzzling that excellent results have been achieved with two
very different approximations: the average MI between
features (the max-relevance min-redundancy (mRMR) meth-
od [48]) and the minimum of the differential MI terms [58].
It is also unclear why these would be the only sensible
simplifications. Given that both the minimum differential
term and the average of the negative terms perform well, why
not consider the smallest among the negative terms, their sum
(as proposed in [47], [48], [51], [52], [54], and [55]), or the
median of the differential terms? Table 2 presents a number of
such alternatives to (27), as well as their empirical perfor-
mance on a set of experiments to be discussed in Section 7.

6 IMAGE STATISTICS AND LOW-DECOMPOSABILITY

ORDER

In this section, we develop an indirect procedure for
validating the hypothesis that bandpass features extracted
from natural images have low decomposability order.

6.1 l-Decomposability and Image Statistics

From Definition 3, X is l-decomposable if the conjunctive
interference (with respect to subsets of cardinality l) within
any of its subsets W � X is nondiscriminant. This can be
illustrated by returning to Example 1, for which the terms of
(15) are the entries in the fourth column in Table 1. Note that
the nontrivially zero entries (identified by boldface k and i)
measure how the dependences in C2 are affected by C1

ðk ¼ 4; i ¼ 2Þ, how the dependences in X5 [C2 are affected
by C1 ðk ¼ 5; i ¼ 2Þ, how the dependences in X6 [C2 are
affected by C1 ðk ¼ 6; i ¼ 2Þ, and how the dependences in
C3 are affected by C1 [C2 ðk ¼ 6; i ¼ 3Þ. CIðX; ClÞ is the

sum of these measures and, for l-decomposability to hold,
must not be affected by knowledge of the class Y .

In addition to this, l-decomposability requires (18) to hold
for any subset W � X. For example, W ¼ ðX1; X3; X5; X6Þ
produces a table similar to Table 1, with a single nontrivially
zero entry IðX6;X5jX1; X3Þ � IðX6;X5Þ. l-decomposability

requires that the interference of ðX1; X3Þ on the dependence
between X5 and X6 be nondiscriminant. Other subsets of
the four features give rise to similar constraints on the
interference between feature pairs. Hence, in this example,
l-decomposability requires all pairwise interferences to be
nondiscriminant.

In general, l-decomposability holds if and only if the
conjunctive interference (with respect to subsets of cardin-
ality l) within any subset W of X is not affected by
knowledge of the class label Y . As in Fig. 2, this does not

mean that conjunctive interference is nonexistent but simply that it

does not change across classes. Overall, the sufficient condition
for l-decomposability is similar to the sufficient condition for
the optimality of marginal infomax. While, in that case,
image statistics must satisfy CðX;Y Þ ¼ 0, i.e., that no

dependences in X are discriminant, in this case, the
constraints only affect second-order subset dependences:
l-decomposability does not impose constraints on subset depen-

dencies of zeroth or first order, nor does it impose that there are no

second-order subset dependences. It only requires these depen-

dences to be such that the conjunctive interference CIðX; ClÞ is

nondiscriminant. This is much less restrictive than what is
required for the optimality of marginal infomax. As in that
case, the consistency of the statistics in Fig. 1a suggests that
for natural images, the hypothesis that l-decomposability

holds for small l is not unreasonable. We next turn to the
problem of determining this value.

6.2 Indirect Validation of the Low-Order
Decomposability Hypothesis

If X is l�-decomposable, the infomax feature set can be found
with (25) by using l ¼ l�. For approximation orders l 6¼ l�, the
problems of (25) make looser assumptions about feature
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dependences as l increases. l ¼ 0 assumes that no feature

dependences are discriminant, l ¼ 1 assumes that only

dependences within feature pairs are important, and so

forth, up to l ¼ D, where all dependences are accounted

for. The decomposability order of the feature set can be

determined with recourse to the indirect validation para-

digm: the error of classifiers designed on the spaces produced

by (25) is expected to decrease with l, leveling off at l ¼ l�. If

this produces a consistent estimate of l� across a number of

classification problems, there is strong empirical evidence

that X is l�-decomposable. If this is repeatedly observed for

transformations in a certain class, e.g., wavelets, there is

strong evidence that all feature sets in the class are

l�-decomposable.

7 EXPERIMENTS

In this work, we hypothesize that transformations into sets of

bandpass frequency coefficients have low decomposability

order. We rely on indirect validation to test this hypothesis.

7.1 Experimental Protocol

All experiments were performed with the Brodatz and

Corel image databases. Brodatz is a standard benchmark for

texture classification under controlled imaging conditions

and with no distractors. Corel is a standard evaluation set

for recognition from unconstrained scenes (e.g., no control

over lighting or object pose and cluttered backgrounds).

Brodatz contains sets of nine patches from 112 gray-scale

textures, with a total of 1,008 images. One patch of each

texture was used for testing, and the remaining eight were

used for training. From Corel, we selected 15 image classes,3

each containing 100 color images. Train and test sets were

then created by assigning each image to the test set with

probability 0.2. Evaluation was based on precision and

recall (PR), using the test images as queries to a database

containing the training set. The PR curve was summarized

by its integral, namely, the PRA. In all experiments, feature

vectors were extracted from localized image neighborhoods

and classification based on (30) with Gauss mixture class-

conditional densities. A Gauss mixture with a fixed number

of components was learned for each image (results were
qualitatively similar for various values, and we report on
eight components), examples were assumed independent in
(30), and class priors were uniform. Four transformations
were considered:

1. discrete cosine transform (DCT),
2. principal component analysis (PCA),
3. independent component analysis (ICA), and
4. wavelet representation (WAV).

The feature space had D ¼ 64 per color channel (three
layers of wavelet decomposition and 8 	 8 image blocks),
and the observations were extracted with a sliding window.
PCA and ICA were learned from 100,000 random training
examples. Fig. 3 compares the basis functions learned on
Brodatz with those of the DCT.

7.2 Decomposability Order

The decomposability order of all data sets was studied with
the indirect validation paradigm. Because the computa-
tional cost is exponential on the approximation order l, it is
(at this point in time) only feasible to consider small values
of this parameter. We have limited all experiments to the
range 0 � l � 2. Fig. 4 presents the PRA curves obtained
with different l for DCT, PCA, and ICA.4 The most striking
observation is that for all databases and transformations,
l ¼ 1 is superior to l ¼ 0, but there is no advantage of l ¼ 2
over l ¼ 1. The constancy of this result suggests that all
feature sets are 1-decomposable. To understand this constancy,
we analyzed the feature rankings in detail. Fig. 5a presents
the top-nine features selected on Brodatz for each transfor-
mation and value of l. For l ¼ 0, the top features are nearly
identical: all have very high frequency and do not appear to
capture perceptually interesting image structure. This
indicates that marginal statistics are not enough for these
problems. The solution obtained with l ¼ 1 is superior: not
only the features appear to be detectors of perceptually
relevant image attributes but the same also holds for their
pairwise conjunctions. This is shown in Fig. 5b, which
presents the optimal pairwise DCT conjunctions. While
individual features detect smooth regions, horizontal and
vertical bars, horizontal and vertical edges, horizontal and
vertical parallel segments, corners, and rounded spots, the
set of conjunctions includes detectors of crosses, T- and
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Fig. 3. Basis functions for (a) DCT, (b) PCA, and (c) ICA.

3. “Arabian horses,” “auto racing,” “owls,” “roses,” “ski scenes,”
“religious stained glass,” “sunsets and sunrises,” “coasts,” “divers and
diving,” “Land of the Pyramids” (pictures of Egypt), “English country
gardens,” “fireworks,” “glaciers and mountains,” “Mayan and Aztec
ruins,” and “oil paintings.”

4. Qualitatively identical results were obtained with the wavelet and are
omitted for brevity.
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L-junctions, grids, oriented lines, etc.5 The fact that, for l ¼ 1,

features are selected not only by individual discriminant power

but also by the discriminant power of pairwise conjunctions makes

a significant difference for both classification accuracy (see Fig. 4)

and perceptual relevance of the visual attributes that they detect

(see Fig. 5). Finally, there is no benefit in considering l ¼ 2:

both classification performance and perceptual relevance

decrease slightly. Because the union of individual features

and pairwise conjunctions is very discriminant, the gain

of triplets is small. On the other hand, all dimensionality

problems (complexity of density estimation and exponential
increase in training data requirements) are compounded,

and the overall result is a loss.

7.3 Comparison to Previous Methods

The classification performance of (25), with 0 � l � 2
(costs �ðlÞ), is compared to that of each of the other costs
in Table 2. For each transformation and image database,
classification performance is summarized by the average
PRA of the first N features. N was chosen to guarantee that
the number of features needed for optimal performance was
available but not a lot more (all methods perform similarly
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Fig. 4. PRA as a function of the number of features selected by approximate infomax 0 � l � 2 for the DCT, PCA, and ICA feature sets on Brodatz

and Corel. (a) DCT on Brodatz. (b) PCA on Brodatz. (c) ICA on Brodatz. (d) DCT on Corel. (e) PCA on Corel. (f) ICA on Corel.

5. In fact, the set of conjunctions is much larger than that shown. While
the table only includes pairwise feature averages, the set includes all
functions of the same feature pairs.

Fig. 5. (a) Top-nine features (in decreasing order, from left to right) selected on Brodatz for the three representations and 0 � l � 2. (b) Conjunctions

of features that contribute to (16) for the optimal feature set on Brodatz with DCT features and l ¼ 1. The basis function at row i and column j of the

table was produced by averaging features i and j of the optimal set of (a).
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when N is close to the total number of features). Using Fig. 4
for guidance, we chose N ¼ 15 for Brodatz and N ¼ 20 for
Corel. Table 2 presents the average and standard deviation
of the PRA achieved (across data sets and transforms) by
each cost. To facilitate the comparison, we divided (for each
data set and transform) the average PRA of each cost by that
achieved with �ðl ¼ 1Þ. The average of this measure (across
data sets and transforms) is denoted as the normalized
average PRA (NAPRA) score of the cost. Fig. 6 presents a
boxplot of the NAPRA score of each cost across databases
and transformations. A number of interesting observations
can be made. The first is that �ðl ¼ 1Þ produced the best
feature set in all cases. The second overall best performer
was �ðl ¼ 2Þ, followed by the three costs previously
proposed in the literature: 	min [58], 
avg [48], and 
 [54].
On average, there was no substantial difference between
these three costs, although 	min performed best. The fact that
these are the best approximations to �ðl ¼ 1Þ (among those
that we have evaluated) is a possible explanation for their
impressive performance in previous experimental compar-
isons [48], [58]. Of the remaining costs, 	median and 	max

performed somewhat worse but clearly above the marginal
infomax ð�ðl ¼ 0ÞÞ, while � and �min did not consistently
beat the latter.

Returning to the indirect validation paradigm, these
results provide information about the importance, for
discrimination, of various aspects of the feature statistics.
The first interesting observation is that the average perfor-
mance of marginal infomax is close to 90 percent of the best. This
suggests that, for natural images, most discriminant informa-
tion is contained in marginal feature statistics. Given that the
marginal infomax is the only method that does not require
joint density estimates, it may be the best solution for recognition
problems with strict constraints on time or computation. It is also
interesting to investigate which terms of �ðl ¼ 1Þ are
responsible for its performance gain over �ðl ¼ 0Þ. One
observation based on Fig. 6 is that this gain is very nonlinear

on the differential terms 	i ¼ IðX;X�i jY Þ � IðX;X�i Þ. In
particular, the inclusion of a single term, be it the largest
ð	maxÞ, median ð	medianÞ, or most negative ð	minÞ, is sufficient
to achieve at least half the total gain, with 	min achieving 2/3.
Hence, while it is important to include one differential term,
the exact choice may not be very important. This flexibility could
be significant when there are complexity constraints. While
computing an arbitrary 	i has linear complexity on the
number of features, the search for the best term has quadratic
complexity. It follows that the inclusion of an arbitrary

differential term may be a good intermediate solution (complexity
quadratic in histogram bins but linear on features) between

the marginal infomax and an approximate infomax of order 1. On
the other hand, finding the best 	i [58] requires more
computation than evaluating �ðl ¼ 1Þ (due to the search
after all terms are computed) and has no advantage.

As an alternative to the differential terms 	i, Fig. 6 shows
that gains can also be obtained by adding terms of each MI
type �i ¼ IðX;X�i jY Þ and 
i ¼ IðX;X�i Þ to �ðl ¼ 0Þ. Here, it
appears that 
i are much more important than �i: by
themselves, �i do not even produce a consistent improve-
ment over the marginal infomax. On the other hand, the
inclusion of the best 
i (cost 
min) does not perform nearly as
well as the inclusion of the best 	i (cost 	min). In fact, the latter
performed better than all the �- or 
-only approaches
considered. Yet, the gains of the 
-only costs could, once
again, be interesting if there are complexity constraints. Note
that, unlike the � terms, they do not depend explicitly on the
class Y . They could thus be learned from a generic collection
of natural images, independent of the particular recognition

problem under consideration. In this case, the complexity of the


 costs would be equivalent to that of the marginal infomax. While
it is currently unclear if the performance would remain as in
Fig. 6 (where all 
i were estimated from the training sets
used for classifier design), this is an interesting topic for
further research.
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Fig. 6. NAPRA scores for the different costs in Table 2 across feature transforms and databases. Box lines indicate lower, median, and upper

quartile values. Dashed lines show the extent of the rest of the data.
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As discussed in Section 2, there is a large literature on

 costs, mostly focusing on the role of the parameter � of (5)
[47], [48], [51], [52], [53], [54], [55]. Fig. 6 suggests that for
natural images, this discussion is inconsequent: similar
performance was obtained with only one 
i (cost 
min), their
average (cost 
avg), or sum (cost 
). Different � only affected
the variance of the NAPRA score, which was smallest for
� ¼ 1. The increased variance of the other weights might
explain various sometimes-conflicting claims for their
success [47], [48], [51], [52], [54], [55].

In summary, the infomax approximation of order 1

ð�ðl ¼ 1ÞÞ outperforms the previous low-complexity meth-
ods. It is worth emphasizing that the discussion above is
based on the average performance of the different costs
across data sets and transformations. One important point
is that all previous methods exhibited “breakdown” modes, i.e.,
combinations of transformation/database on which their
performance was well below average. This can be seen from
the limit intervals (dashed lines) in Fig. 6. In almost all
cases, the lower bound is close to the average performance
of marginal infomax. The only salient exceptions are
�ðl ¼ 1Þ, which always performed the best, and �ðl ¼ 2Þ,
which has small variance. These observations suggest that
the main role of the summation in (26) is to assure robustness.
While simplifications of this rule can perform well for certain data

sets, they compromise generalization.

7.4 Robustness

Assuming that bandpass transforms are indeed 1-decom-
posable, we performed some experiments to determine the
robustness to the parameter that determines the complex-
ity: the number of histogram bins/axis b (recall that the
complexity of approximate infomax of order l is OðblÞ). In
particular, we repeated the experiment with l ¼ 0 and l ¼ 1

for values of b in [4, 16]. Fig. 7a presents PRA curves from
Corel, with DCT features,6 showing that recognition
accuracy is quite insensitive to this parameter. For both
values of l, eight bins are sufficient to achieve accuracy very
close to the highest. A loss only occurs for b ¼ 4 and, as

expected, is more significant for l ¼ 1, where the density

estimates are two-dimensional.

7.5 Comparison with Scalable Feature Selection
Methods

To place the results above in a larger feature selection

context, we compared the infomax algorithms with two

widely popular methods of similar complexity: PCA and its

combination with quadratic discriminant analysis [75] (PCA

þ QDA). Because these methods project all examples onto

the PCA subspace, we restricted the comparison to the

infomax subset of PCA features. Although PCA is frequently

combined with the euclidean or Mahalanobis distances and a

nearest neighbor classifier, namely, the popular “Eigen-

faces” technique [76], preliminary experiments showed

better performance for a Gauss mixture classifier on the

PCA subspace. This is identical to the classifier adopted

for the infomax features but relies on feature ranking by

variance rather than the MI. PCA þ QDA is an extension of

the popular “Fisherfaces” method [77] and is equivalent

to (30) when the PCA coefficients are Gaussian. It was

implemented by fitting a multivariate Gaussian to each

training image and using (30) to classify all test images.
Fig. 7b compares, on Corel, the PRA curves of PCA +

Variance and PCA + QDA with those previously presented

for infomax ðl 2 f0; 1gÞ on the PCA space.7 PCA + QDA

performs significantly worse than all other approaches. This

is not surprising, given the strong non-Gaussianity of the

distributions in Fig. 1a. With the Gaussian mixture classifier,

maximum variance and marginal infomax have similar

performance,8 but infomax with l ¼ 1 is substantially better.

For example, in the PCA case, energy compaction requires

about 30 features to reach the accuracy that infomax ðl ¼ 1Þ
achieves with only 10. For the DCT, the ratio is even larger,

closer to 4/1. Visual inspection of recognition results shows

significant improvement for queries from classes that share
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Fig. 7. (a) PRA curves for the DCT on Corel by using �ðl ¼ iÞ, i 2 f0; 1g, and various numbers b of histogram bins. (b) Comparison of the PRA

curves obtained with infomax and popular methods of equivalent complexity for PCA.

6. Similar results were obtained on Brodatz and are omitted.

7. Once again, similar results were obtained on Brodatz and are omitted.
8. While maximum variance is somewhat superior to marginal infomax

in Fig. 7b, we have seen no consistent differences between the two criteria
across all feature spaces.
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visual attributes with other classes in the database (see [78]
for examples).

8 DISCUSSION

We have studied the hypothesis that high-order depen-
dences of bandpass features contain little information for
image discrimination. The hypothesis was characterized
formally by the introduction of the concepts of conjunctive
interference and decomposability order and the derivation
of necessary and sufficient conditions for the feasibility of
low-complexity feature selection in terms of these concepts.
It was shown that the intrinsic complexity of feature
selection is determined by the decomposability order of the
feature set: the infomax subset of an l-decomposable set can
be computed with density estimates of dimension lþ 1. A
family of (locally) optimal feature selection algorithms was
then derived for all levels of complexity, and its performance
was characterized in two ways. Theoretically, it was shown
that various previous information-theoretic feature selection
algorithms are approximations to the ones now derived.
Experimentally, the latter were shown to consistently out-
perform the former for a diverse set of images and feature
transformations.

Following the indirect validation paradigm, the new
feature selection algorithms were used to objectively test the
hypothesis of low decomposability order for natural image
features. This has shown that while there is a nonnegligible
classification gain in modeling feature dependencies (in all
cases, l ¼ 1 outperformed l ¼ 0), this gain has diminishing
returns. Certainly, the benefits of modeling dependencies
between triplets ðl ¼ 2Þ over pairs ðl ¼ 1Þ are at most
marginal. While it is possible that there may be some l > 2
with substantially better performance than l ¼ 1, the
consistent lack of improvement from l ¼ 1 to l ¼ 2 across
the imagery and features considered in our experiments
suggests that this is unlikely. Unfortunately, limitations in
computation and database size currently prevent us from
experimenting with l > 2.

A detailed investigation of the l ¼ 1 case has shown that
when pairwise dependences are modeled, the gains are very
nonlinear on the rigor of this modeling. In particular, simple
modeling of marginal statistics performs fairly well (within
90 percent of the top performance), and the inclusion of a
single pairwise differential term, as proposed in [58], can
capture as much as 2/3 of what remains. On the other hand,
the simple inclusion of the so-called 
 terms, as proposed in
[47], [48], [51], [52], [54], and [55], can also work well. Since 

terms do not depend on the particular classification problem
under analysis, they could conceivably be learned from a
generic image database. In this case, it should be possible to
account for dependences with feature selection algorithms
that only require the estimation of marginal densities. This
remains an interesting topic for further research. The main
benefit of accounting for all terms of order 1 seems to be a
significant increase in robustness. While the previously
proposed approximations can perform very well in some
cases and reasonably well on the average, they have all
exhibited “breakdown” modes (combinations of features
and image databases where the performance was similar to
that of marginal statistics). The large variance of their
classification performance could explain previous conflict-
ing claims for the superiority of different approximations

[47], [48], [51], [52], [54], [55]. On the other hand, the
algorithms now proposed performed very robustly, con-
sistently achieving the best results on all data sets. It would
therefore be speculative to 1) propose that some of the terms
of the simplified MI of order 1 are more important than
others or 2) make generic statements about the details of the
dependence structure encoded by these terms.

What can thus be said about the structure of the
dependencies of bandpass features extracted from natural
images? 1-decomposability means that for natural images,
the conjunctive interference between individual features
is not discriminant. Or, in other words, the effect, on the
dependence between two features, of observing any other feature is
constant across image classes. This is a significantly more
precise statement than the hypothesis that feature depen-
dences are constant across classes, with which we started.
Although our analysis is limited to features extracted from
natural images, this conclusion also appears sensible for
modalities such as audio, speech, or language. For example,
in the language context, it would imply that the effect of
observing a word on the dependence between two other
words is constant across document classes. This simply
suggests that second-order dependences between words are
determined by language and not the specific document
classes. It is a fairly mild constraint on the structure of text,
e.g., much milder than the common bag-of-words model. It is
interesting to note that some experimental observations
similar to the ones that we have reported for images have
been made for text categorization. These include reports of
successful application of marginal infomax [41], [42] and
reports of improved performance by the criterion of (6) [44].

APPENDIX A

OPTIMALITY CRITERIA FOR FEATURE SELECTION

In the most general sense, the optimal feature space for a
classification problem CX is

X� ¼ arg min
X2S

JðCXÞ; ð28Þ

where Jð�Þ is a cost, and S is the set of range spaces for the
transforms under consideration.

A.1 Minimum Bayes Error Features

One measure of the goodness of CX is the lowest possible
probability of error achievable in X , usually referred to as
the Bayes error [33]:

L�X ¼ 1� Ex max
i
PY jXðijxÞ

� �
; ð29Þ

where Ex is the expectation with respect to PXðxÞ. It
depends only on X and not the classifier itself, and there is
at least one classifier that achieves this bound, the Bayes
decision rule:

g�ðxÞ ¼ arg max
i
PY jXðijxÞ: ð30Þ

While it is natural to define X? as the space of minimum
Bayes error, it has long been known that the resulting
optimization can be difficult. For example, sequential
feature selection is not easy in this setting, since the maxð�Þ
nonlinearity of (29) makes it impossible to decompose
the new cost ðEXn

½maxi PY jXn
ðijxnÞ�Þ as a function of the
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previous best ðEXc
½maxi PY jXc

ðijxcÞ�Þ and a function of the
candidate set Xa, where Xc is the best current subset, and
Xn ¼ ðXa;XcÞ.

A.2 Infomax Features

The infomax formulation has a number of appealing
properties.

Lemma 3. Let hfðiÞiY ¼
P

i PY ðiÞfðiÞ and let KL½pkq� ¼R
pðxÞ log pðxÞ

qðxÞ dx be the relative entropy between p and q, with

integrals replaced by summations for discrete random variables.

The following properties hold for the MI, as defined in (2):

1. For any two random vectors X and Z, IðX; ZÞ 
 0
with equality if and only if X and Z are
statistically independent. Furthermore, IðX; ZÞ ¼
KL½PX;Zðx; zÞkPXðxÞPZðzÞ�.

2. IðX;Y Þ ¼ hKL PXjY ðxjiÞkPXðxÞ
� �

iY .
3. IðX;Y Þ ¼ HðY Þ �HðY jXÞ, where HðY Þ ¼
�hlogPY ðiÞiY is the entropy of Y , and HðY jXÞ ¼
�EX½hlogPY jXðijxÞiY jX� is the posterior entropy of Y ,
given X.

4. If X1;k ¼ fX1; . . . ; Xkg, then

IðX1;k;Y Þ � IðX1;k�1;Y Þ ¼ IðXk;Y jX1;k�1Þ; ð31Þ

where

IðX;Y jZÞ ¼
X
i

Z
PX;Y ;Zðx; i; zÞ

log
PX;Y jZðx; ijzÞ

PXjZðxjzÞPY jZðijzÞ
dxdz:

Proof. All proofs are either available in [79] or are
straightforward consequences of (2). tu
Property 1 and the fact that KL½pkq� is a measure of

similarity between distributions p and q show that IðX; ZÞ is
a measure of dependence between X and Z. For this reason,
we frequently refer to IðX; ZÞ as the dependence between X
and Z. Property 2 implies that

X� ¼ arg max
X2S
hKL PXjY ðxjiÞkPXðxÞ

� �
iY ; ð32Þ

i.e., that infomax feature selection is inherently discrimi-
nant: it rewards spaces where the class densities are, on the
average, well separated from the mean density. This is a
sensible way of quantifying the intuition that optimal
discriminant transforms are those that best separate the
different classes.

From Property 3, it follows that X� ¼ arg minX2SHðY jXÞ.
Since entropy is a measure of uncertainty, this implies that the
infomax space minimizes the uncertainty about which class is
responsible for the observed features. It also establishes a
formal connection to the minimization of Bayes error, since in
both cases, the optimal space is

X� ¼ arg max
X2S

EX � PY jXð1jXÞ; . . . ; PY jXðMjXÞ
	 
� �

;

where �ðp1; . . . ; pMÞ is one of the two functions maxðpiÞ and
hlog pii, which are both convex and have a number of similar
properties (including colocated maxima and minima in the
unconstrained probability simplex and interesting relation-
ships between gradients). In fact, there are a number of

problems for which the two optimal solutions are identical
[62], [80]. Property 4 probably has the greatest practical
significance and justifies the adoption of infomax over the
minimization of Bayes error. It enables modular decomposi-
tions of the MI, which are central to the efficient implemen-
tation of sequential search and are intuitive. In particular, if
X� is the current set of selected features, it shows that the
feature to be selected at the next step should be

X� ¼ arg max
kjXk 62X�

IðXk;Y jX�Þ; ð33Þ

i.e., the one that most reduces the uncertainty about Y ,
given X�. This implies that X� should 1) be discriminant
and 2) have small redundancy with previously selected
features.

APPENDIX B

PROOF OF LEMMA 1

From the chain rule of the MI [79], IðX; Y Þ ¼PD
k¼1 IðXk;Y jX1;k�1Þ. Using the equality

IðX;Y jZÞ ¼EX;Y ;Z

�
log

PX;Y jZðx; yjzÞ
PXjZðxjzÞPY jZðyjzÞ

�

¼EX;Y ;Z

�
log

PX;Y ðx; yÞ
PXðxÞPY ðyÞ

þ log
PX;Y jZðx; yjzÞPY ðyÞ
PX;Y ðx; yÞPY jZðyjzÞ

þ log
PXðxÞ

PXjZðxjzÞ

�

¼ IðX;Y Þ þEX;Y ;Z

�
log

PXjY ;Zðxjy; zÞ
PXjY ðxjyÞ

�
� IðX; ZÞ

¼ IðX;Y Þ þEX;Y ;Z

�
log

PX;ZjY ðx; zjyÞ
PXjY ðxjyÞPZjY ðzjyÞ

�

�IðX; ZÞ ¼ IðX;Y Þ þ IðX; ZjY Þ � IðX; ZÞ;
ð34Þ

with X ¼ Xk and Z ¼ X1;k�1, leads to

IðX; Y Þ ¼
XD
k¼1

IðXk;Y Þ

�
XD
k¼2

IðXk; X1;k�1Þ � IðXk; X1;k�1jY Þ
� �

;

and the lemma follows. tu

APPENDIX C

PROOF OF LEMMA 2

By recursive application of the chain rule of the MI

IðXk; X1;k�1jY Þ ¼IðXk; C1; . . . ; ~Cdk�1=le;kjY Þ
¼I Xk; ~Cdk�1=le;kjC1; . . . ;Cdk�1=le�1; Y
	 


þI Xk; C1; . . . ;Cdk�1=le�1jY
	 


¼
Xdk�1=le

i¼1

I Xk; ~Ci;kjC1; . . . ;Ci�1; Y
	 


¼
Xdk�1=le

i¼1

I Xk; ~Ci;kjCi�1
1 ; Y

	 

;
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where Ck
1 ¼ fC1; . . . ;Ckg. Similarly

IðXk; X1;k�1Þ ¼
Xdk�1=le

i¼1

I Xk; ~Ci;kjCi�1
1

	 

:

The lemma follows from (9). tu

APPENDIX D

PROOF OF THEOREM 1

Combining Lemmas 1 and 2

IðX;Y Þ ¼
XD
k¼1

IðXk;Y Þ þ
XD
k¼2

Xdk�1=le

i¼1

�
IðXk; ~Ci;kjCi�1

1 ; Y Þ

�IðXk; ~Ci;kjCi�1
1 Þ

�
¼
XD
k¼1

IðXk;Y Þ

�
XD
k¼2

Xdk�1=le

i¼1

½IðXk; ~Ci;kÞ � IðXk; ~Ci;kjY Þ�

þ
XD
k¼2

Xdk�1=le

i¼1

�
IðXk; ~Ci;kjCi�1

1 ; Y Þ � IðXk; ~Ci;kjY Þ
�

�
XD
k¼2

Xdk�1=le

i¼1

IðXk; ~Ci;kjCi�1
1 Þ � IðXk; ~Ci;kÞ

� �
;

it follows that

IðX;Y Þ ¼
XD
k¼1

IðXk;Y Þ

þ
XD
k¼2

Xdk�1=le

i¼1

IðXk; ~Ci;kjY Þ � IðXk; ~Ci;kÞ
� �

if and only if

XD
k¼2

Xdk�1=le

i¼1

�
IðXk; ~Ci;kjCi�1

1 Þ � IðXk; ~Ci;kÞ
�
¼

XD
k¼2

Xdk�1=le

i¼1

�
IðXk; ~Ci;kjCi�1

1 ; Y Þ � IðXk; ~Ci;kjY Þ
�
;

and the theorem follows from the definition of CIðX; ClÞ
in (15). tu
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