
Layered Dynamic Textures
Antoni B. Chan, Member, IEEE, and Nuno Vasconcelos, Senior Member, IEEE

Abstract—A novel video representation, the layered dynamic texture (LDT), is proposed. The LDT is a generative model, which

represents a video as a collection of stochastic layers of different appearance and dynamics. Each layer is modeled as a temporal

texture sampled from a different linear dynamical system. The LDT model includes these systems, a collection of hidden layer

assignment variables (which control the assignment of pixels to layers), and a Markov random field prior on these variables (which

encourages smooth segmentations). An EM algorithm is derived for maximum-likelihood estimation of the model parameters from a

training video. It is shown that exact inference is intractable, a problem which is addressed by the introduction of two approximate

inference procedures: a Gibbs sampler and a computationally efficient variational approximation. The trade-off between the quality of

the two approximations and their complexity is studied experimentally. The ability of the LDT to segment videos into layers of coherent

appearance and dynamics is also evaluated, on both synthetic and natural videos. These experiments show that the model possesses

an ability to group regions of globally homogeneous, but locally heterogeneous, stochastic dynamics currently unparalleled in the

literature.

Index Terms—Dynamic texture, temporal textures, video modeling, motion segmentation, mixture models, linear dynamical systems,

Kalman filter, Markov random fields, probabilistic models, expectation-maximization, variational approximation, Gibbs sampling.

Ç

1 INTRODUCTION

TRADITIONAL motion representations, based on optical
flow, are inherently local and have significant difficulties

when faced with aperture problems and noise. The classical
solution to this problem is to regularize the optical flow field
[1], [2], [3], [4], but this introduces undesirable smoothing
across motion edges or regions where the motion is, by
definition, not smooth (e.g., vegetation in outdoors scenes). It
does not also provide any information about the objects that
compose the scene, although the optical flow field could be
subsequently used for motion segmentation. More recently,
there have been various attempts to model videos as a
superposition of layers subject to homogeneous motion.
While layered representations exhibited significant promise
in terms of combining the advantages of regularization (use of
global cues to determine local motion) with the flexibility of
local representations (little undue smoothing), and a truly
object-based representation, this potential has so far not fully
materialized. One of the main limitations is their dependence
on parametric motion models, such as affine transforms,
which assume a piecewise planar world that rarely holds in
practice [5], [6]. In fact, layers are usually formulated as
“cardboard” models of the world that are warped by such
transformations, and then, stitched to form the frames in a
video stream [5]. This severely limits the types of videos that
can be synthesized: while the concept of layering showed

most promise for the representation of scenes composed of
ensembles of objects subject to homogeneous motion (e.g.,
leaves blowing in the wind, a flock of birds, a picket fence, or
highway traffic), very little progress has so far been
demonstrated in actually modeling such scenes.

Recently, there has been more success in modeling
complex scenes as dynamic textures or more precisely,
samples from stochastic processes defined over space and
time [7], [8], [9], [10]. This work has demonstrated that
global stochastic modeling of both video dynamics and
appearance is much more powerful than the classic global
modeling as “cardboard” figures under parametric motion.
In fact, the dynamic texture (DT) has shown a surprising
ability to abstract a wide variety of complex patterns of
motion and appearance into a simple spatiotemporal model.
One major current limitation is, however, its inability to
decompose visual processes consisting of multiple, co-
occurring, and dynamic textures, for example, a flock of birds
flying in front of a water fountain or highway traffic moving
at different speeds, into separate regions of distinct but
homogeneous dynamics. In such cases, the global nature of
the existing DT model makes it inherently ill-equipped to
segment the video into its constituent regions.

To address this problem, various extensions of the DT
have been recently proposed in the literature [8], [11], [12].
These extensions have emphasized the application of the
standard DT model to video segmentation, rather than
exploiting the probabilistic nature of the DT representation to
propose a global generative model for videos. They represent the
video as a collection of localized spatiotemporal patches (or
pixel trajectories). These are then modeled with dynamic
textures, or similar time-series representations, whose para-
meters are clustered to produce the desired segmentations.
Due to their local character, these representations cannot
account for globally homogeneous textures that exhibit sub-
stantial local heterogeneity. These types of textures are
common in both urban settings, where the video dynamics

1862 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

. The authors are with the Department of Electrical and Computer
Engineering, University of California, San Diego, 9500 Gilman Drive,
Mail Code 0407, La Jolla, CA 92093-0409.
E-mail: abchan@ucsd.edu, nuno@ece.ucsd.edu.

Manuscript received 15 Aug. 2008; revised 25 Dec. 2008; accepted 23 Apr.
2009; published online 5 May 2009.
Recommended for acceptance by Q. Ji, A. Torralba, T. Huang, E. Sudderth,
and J. Luo.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMISI-2008-08-0516.
Digital Object Identifier no. 10.1109/TPAMI.2009.110.

0162-8828/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

frequently combine global motion and stochasticity (e.g.,
vehicle traffic around a square, or pedestrian traffic around a
landmark), and natural scenes (e.g., a flame that tilts under
the influence of the wind, or water rotating in a whirlpool).

In this work, we address this limitation by introducing a
new generative model for videos, which we denote by the
layered dynamic texture (LDT) [13]. This consists of augment-
ing the dynamic texture with a discrete hidden variable that
enables the assignment of different dynamics to different
regions of the video. The hidden variable is modeled as a
Markov random field (MRF) to ensure spatial smoothness
of the regions, and conditioned on the state of this hidden
variable, each region of the video is a standard DT. By
introducing a shared dynamic representation for all pixels
in a region, the new model is a layered representation.
When compared with traditional layered models, it replaces
layer formation by “warping cardboard figures” with
sampling from the generative model (for both dynamics
and appearance) provided by the DT. This enables a much
richer video representation. Since each layer is a DT, the
model can also be seen as a multistate dynamic texture, which
is capable of assigning different dynamics and appearance
to different image regions. In addition to introducing the
model, we derive the EM algorithm for maximum-like-
lihood estimation of its parameters from an observed video
sample. Because exact inference is computationally intract-
able (due to the MRF), we present two approximate
inference algorithms: a Gibbs sampler and a variational
approximation. Finally, we apply the LDT to motion
segmentation of challenging video sequences.

The remainder of the paper is organized as follows: We
begin with a brief review of previous work in DT models in
Section 2. In Section 3, we introduce the LDT model. In
Section 4, we derive the EM algorithm for parameter
learning. Sections 5 and 6 then propose the Gibbs sampler
and variational approximation. Finally, in Section 7, we
present an experimental evaluation of the two approximate
inference algorithms and apply the LDT to motion
segmentation of both synthetic and real video sequences.

2 RELATED WORK

The DT is a generative model for videos, which accounts for
both the appearance and dynamics of a video sequence by
modeling it as an observation from a linear dynamical
system (LDS) [7], [14]. It can be thought of as an extension of
the hidden Markov models commonly used in speech
recognition, and is the model that underlies the Kalman
filter frequently employed in control systems. It combines
the notion of a hidden state, which encodes the dynamics of
the video, and an observed variable, from which the
appearance component is drawn at each time instant,
conditionally on the state at that instant. The DT and its
extensions have a variety of computer vision applications,
including video texture synthesis [7], [15], [16], video
clustering [17], image registration [18], and motion classi-
fication [9], [10], [16], [19], [20], [21], [22].

The original DT model has been extended in various
ways in the literature. Some of these extensions aim to
overcome limitations of the learning algorithm. For exam-
ple, Siddiqi et al. [23] learn a stable DT, which is more

suitable for synthesis, by iteratively adding constraints to
the least-squares problem of [7]. Other extensions aim to
overcome limitations of the original model. To improve the
DT’s ability for texture synthesis, Yuan et al. [15] model the
hidden state variable with a closed-loop dynamic system
that uses a feedback mechanism to correct errors with
respect to a reference signal, while Costantini et al. [24]
decompose videos as a multidimensional tensor using a
higher order SVD. Spatially and temporally, homogeneous
texture models are proposed in [25], using STAR models,
and in [26], using a multiscale autoregressive process.
Other extensions aim to increase the representational power
of the model, e.g., by introducing nonlinear observation
functions. Liu et al. [27], [28] model the observation
function as a mixture of linear subspaces (i.e., a mixture
of PCA), which are combined into a global coordinate
system, while Chan and Vasconcelos [20] learn a nonlinear
observation function with kernel PCA. Doretto and Soatto
[29] extend the DT to represent dynamic shape and
appearance. Finally, Ghanem and Ahuja [16] introduce a
nonparametric probabilistic model that relates texture
dynamics with variations in Fourier phase, capturing both
the global coherence of the motion within the texture and
its appearance. Like the original DT, all these extensions are
global models with a single-state variable. This limits their
ability to model a video as a composition of distinct regions
of coherent dynamics and prevents their direct application
to video segmentation.

A number of applications of DT (or similar) models to
segmentation have also been reported in the literature.
Doretto et al. [8] model spatiotemporal patches extracted
from a video as DTs, and cluster them using level sets and
the Martin distance. Ghoreyshi and Vidal [12] cluster pixel
intensities (or local texture features) using autoregressive
processes (AR) and level sets. Vidal and Ravichandran [11]
segment a video by clustering pixels with similar trajec-
tories in time using generalized PCA (GPCA), while Vidal
[30] clusters pixel trajectories lying in multiple moving
hyperplanes using an online recursive algorithm to estimate
polynomial coefficients. Cooper et al. [31] cluster spatio-
temporal cubes using robust GPCA. While these methods
have shown promise, they do not exploit the probabilistic
nature of the DT representation for the segmentation itself.
A different approach is proposed by [32], which segments
high-density crowds with a Lagrangian particle dynamics
model, where the flow field generated by a moving crowd
is treated as an aperiodic dynamical system. Although
promising, this work is limited to scenes where the optical
flow can be reliably estimated (e.g., crowds of moving
people, but not moving water).

More related to the extensions proposed in this work is
the dynamic texture mixture (DTM) that we have previously
proposed in [17]. This is a model for collections of video
sequences, and has been successfully used for motion-based
video segmentation through clustering of spatiotemporal
patches. The main difference with respect to the LDT now
proposed is that (like all clustering models) the DTM is not
a global generative model for videos of co-occurring textures
(as is the case of the LDT). Hence, the application of the
DTM to segmentation requires decomposing the video into
a collection of small spatiotemporal patches, which are then

CHAN AND VASCONCELOS: LAYERED DYNAMIC TEXTURES 1863

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

clustered. The localized nature of this video representation is
problematic for the segmentation of textures which are
globally homogeneous but exhibit substantial variation
between neighboring locations, such as the rotating motion
of the water in a whirlpool. Furthermore, patch-based
segmentations have poor boundary accuracy, due to the
artificial boundaries of the underlying patches, and the
difficulty of assigning a patch that overlaps multiple
regions to any of them.

On the other hand, the LDT models videos as a collection
of layers, offering a truly global model of the appearance
and dynamics of each layer, and avoiding boundary
uncertainty. With respect to time-series models, the LDT
is related to switching linear dynamical models, which are
LDSs that can switch between different parameter sets over
time [33], [34], [35], [36], [37], [38], [39], [40]. In particular, it
is most related to the switching state-space LDS [40], which
models the observed variable by switching between the
outputs of a set of independent LDSs. The fundamental
difference between the two models is that while Ghahra-
mani and Hinton [40] switch parameters in time using a
hidden-Markov model (HMM), the LDT switches para-
meters in space (i.e., within the dimensions of the observed
variable) using an MRF. This substantially complicates all
statistical inference, leading to very different algorithms for
learning and inference with LDTs.

3 LAYERED DYNAMIC TEXTURES

We begin with a review of the DT, followed by the
introduction of the LDT model.

3.1 Dynamic Texture

A DT [7] is a generative model, which treats a video as a
sample from an LDS. The model separates the visual
component and the underlying dynamics into two stochas-
tic processes; dynamics are represented as a time-evolving
hidden state process xt 2 IRn and observed video frames
yt 2 IRm as linear functions of the state vector. Formally, the
DT has the graphical model of Fig. 1a and system equations

xt ¼ Axt�1 þ vt;
yt ¼ Cxt þ wt þ �y;

�
ð1Þ

where A 2 IRn�n is a transition matrix, C 2 IRm�n is an
observation matrix, and �y 2 IRm is the observation mean.
The state and observation noise processes are normally

distributed, as vt � Nð0; QÞ and wt � Nð0; RÞ, where Q 2
SSnþ and R 2 SSmþ (typically, R is assumed i.i.d., R ¼ rIm) and
SSnþ is the set of positive-definite n� n symmetric matrices.
The initial state is distributed as x1 � Nð�;QÞ, where � 2 IRn

is the initial condition of the state sequence.1 There are
several methods for estimating the parameters of the DT
from training data, including maximum-likelihood estima-
tion (e.g., EM algorithm [41]), noniterative subspace
methods (e.g., N4SID [42], CCA [43]), or least squares [7].

One interpretation of the DT model, when the columns of
C are orthonormal (e.g., when learned with [7]), is that they
are the principal components of the video sequence. Under
this interpretation, the state vector is the set of PCA
coefficients of each video frame and evolves according to a
Gauss-Markov process (in time). An alternative interpreta-
tion considers a single pixel as it evolves over time. Each
coordinate of the state vector xt defines a one-dimensional
temporal trajectory, and the pixel value is a weighted sum of
these trajectories, according to the weighting coefficients in
the corresponding row of C. This is analogous to the discrete
Fourier transform, where a signal is represented as a
weighted sum of complex exponentials but, for the DT, the
trajectories are not necessarily orthogonal. This interpreta-
tion illustrates the ability of the DT to model a given motion
at different intensity levels (e.g., cars moving from the shade
into sunlight) by simply scaling rows of C. Regardless of the
interpretation, the DT is a global model, and thus, unable to
represent a video as a composition of homogenous regions
with distinct appearance and dynamics.

3.2 Layered Dynamic Textures

In this work, we consider videos composed of various
textures, e.g., the combination of fire, smoke, and water
shown on the right side of Fig. 2. As shown in Fig. 2, this
type of video can be modeled by encoding each texture as a
separate layer, with its own state sequence and observation
matrix. Different regions of the spatiotemporal video
volume are assigned to each texture, and conditioned on
this assignment, each region evolves as a standard DT. The
video is a composite of the various layers.

1864 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

Fig. 1. (a) Graphical model of the DT. xt and yt are the hidden state and observed video frame at time t. (b) Graphical model of the LDT. yi is an

observed pixel process and xðjÞ a hidden state process. zi assigns yi to one of the state processes, and the collection fzig is modeled as an MRF.

(c) Example of a 4� 4 layer assignment MRF.

1. By including the initial state � (i.e., initial frame), the DT represents
both the transient and stationary behaviors of the observed video.
Alternatively, the DT model that forces � ¼ 0 represents only the stationary
dynamics of the video. In practice, we have found that the DT that includes
the initial state � performs better at segmentation and synthesis, since it is a
better model for the particular observed video. The initial condition can also
be specified with x0 2 IRn, as in [7], where � ¼ Ax0.

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

Formally, the graphical model for the layered dynamic
texture is shown in Fig. 1b. Each of the K layers has a state
process xðjÞ ¼ fxðjÞt g

�
t¼1 that evolves separately, where � is

the temporal length of the video. The video Y ¼ fyigmi¼1

contains m pixels trajectories yi ¼ fyi;tg�t¼1, which are
assigned to one of the layers through the hidden variable
zi. The collection of hidden variables Z ¼ fzigmi¼1 is modeled
as an MRF to ensure spatial smoothness of the layer
assignments (e.g., Fig. 1c). The model equations are

x
ðjÞ
t ¼ AðjÞx

ðjÞ
t�1 þ v

ðjÞ
t ; j 2 f1; � � � ; Kg;

yi;t ¼ CðziÞi x
ðziÞ
t þ wi;t þ �y

ðziÞ
i ; i 2 f1; � � � ;mg;

(
ð2Þ

where C
ðjÞ
i 2 IR1�n is the transformation from the hidden

state to the observed pixel and �y
ðjÞ
i 2 IR is the observation

mean for each pixel yi and each layer j. The noise processes are

v
ðjÞ
t � Nð0; QðjÞÞ and wi;t � Nð0; rðziÞÞ, and the initial state is

given by x
ðjÞ
1 � Nð�ðjÞ; QðjÞÞ, where QðjÞ 2 SSnþ; r

ðjÞ 2 IRþ, and

�ðjÞ 2 IRn. Given layer assignments, the LDT is a super-

position of DTs defined over different regions of the video

volume, and estimating the parameters of the LDT reduces to

estimating those of the DT of each region. When layer

assignments are unknown, the parameters can be estimated

with the EM algorithm (see Section 4). We next derive the

joint probability distribution of the LDT.

3.3 Joint Distribution of the LDT

As is typical for mixture models, we introduce an indicator
variable z

ðjÞ
i of value 1 if and only if zi ¼ j, and 0 otherwise.

The LDT model assumes that the state processes X ¼
fxðjÞgKj¼1 and the layer assignments Z are independent, i.e.,
the layer dynamics are independent of its location. Under
this assumption, the joint distribution factors are

pðX;Y ; ZÞ ¼ pðY jX;ZÞpðXÞpðZÞ; ð3Þ

¼
Ym
i¼1

YK
j¼1

p
�
yijxðjÞ; zi ¼ j

�zðjÞi YK
j¼1

p
�
xðjÞ
�
pðZÞ: ð4Þ

Each state sequence is a Gauss-Markov process, with
distribution

p
�
xðjÞ
�
¼ p
�
x
ðjÞ
1

�Y�
t¼2

p
�
x
ðjÞ
t jx

ðjÞ
t�1

�
; ð5Þ

where the individual state densities are

p
�
x
ðjÞ
1

�
¼ G

�
x
ðjÞ
1 ; �ðjÞ; QðjÞ

�
; ð6Þ

p
�
x
ðjÞ
t jx

ðjÞ
t�1

�
¼ G

�
x
ðjÞ
t ; A

ðjÞx
ðjÞ
t�1; Q

ðjÞ�; ð7Þ

and Gðx; �;�Þ ¼ ð2�Þ�n=2 �j j�1=2e�
1
2 x��k k2

� is an n-dimen-

sional Gaussian distribution of mean � and covariance �,

and ak k2
�¼ aT��1a. When conditioned on state sequences

and layer assignments, pixel values are independent and

pixel trajectories distributed as

p
�
yijxðjÞ; zi ¼ j

�
¼
Y�
t¼1

p
�
yi;tjxðjÞt ; zi ¼ j

�
; ð8Þ

p
�
yi;tjxðjÞt ; zi ¼ j

�
¼ G

�
yi;t; C

ðjÞ
i x

ðjÞ
t þ �y

ðjÞ
i ; r

ðjÞ�: ð9Þ

Finally, the layer assignments are jointly distributed as

pðZÞ ¼ 1

ZZ
Ym
i¼1

ViðziÞ
Y
ði;i0Þ2E

Vi;i0 ðzi; zi0 Þ; ð10Þ

where E is the set of edges of the MRF, ZZ a normalization
constant (partition function), and Vi and Vi;i0 are the
potential functions of the form

ViðziÞ ¼
YK
j¼1

�
�
ðjÞ
i

�zðjÞi ¼
�
ð1Þ
i ; zi ¼ 1;

..

.

�
ðKÞ
i ; zi ¼ K;

8>><
>>:

Vi;i0 ðzi; zi0 Þ ¼ �2

YK
j¼1

�1

�2

� �zðjÞi zðjÞi0
¼

�1; zi ¼ zi0 ;
�2; zi 6¼ zi0 ;

� ð11Þ

CHAN AND VASCONCELOS: LAYERED DYNAMIC TEXTURES 1865

Fig. 2. Generative model for a video with multiple dynamic textures (smoke, water, and fire). The three textures are modeled with separate state

sequences and observation matrices. The textures are then masked and composited to form the layered video.

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

where Vi is the prior probability of each layer, while Vi;i0

attributes higher probability to configurations with neigh-

boring pixels in the same layer. In this work, we treat the

MRF as a prior on Z, which controls the smoothness of the

layers. The parameters of the potential functions of each

layer could be learned, in a manner similar to [44], but we

have so far found this to be unnecessary.

4 PARAMETER ESTIMATION WITH THE EM
ALGORITHM

Given a training video Y , the parameters � ¼
fCðjÞi ; AðjÞ; rðjÞ; QðjÞ; �ðjÞ; �y

ðjÞ
i g

K
j¼1 of the LDT are learned by

maximum-likelihood [45]

�� ¼ arg max
�

log pðY Þ ¼ arg max
�

log
X
X;Z

pðY ;X;ZÞ: ð12Þ

Since the data likelihood depends on hidden variables (state

sequence X and layer assignments Z), this problem can be

solved with the EM algorithm [46], which iterates between

E� Step : Qð�; �̂Þ ¼ IEX;ZjY ;�̂½‘ðX;Y ; Z; �Þ�; ð13Þ

M� Step : �̂0 ¼ arg max
�

Qð�; �̂Þ; ð14Þ

where ‘ðX;Y ; Z; �Þ ¼ log pðX;Y ; Z; �Þ is the complete-data

log-likelihood, parameterized by �, and IEX;ZjY ;�̂ the

expectation with respect to X and Z, conditioned on Y ,

parameterized by the current estimates �̂. We next derive

the E and M steps for the LDT model.

4.1 Complete Data Log-Likelihood

Taking the logarithm of (4), the complete data log-like-

lihood is

‘ðX;Y ; ZÞ ¼
Xm
i¼1

XK
j¼1

z
ðjÞ
i

X�
t¼1

log p
�
yi;tjxðjÞt ; zi ¼ j

�

þ
XK
j¼1

log p
�
x
ðjÞ
1

�
þ
X�
t¼2

log p
�
x
ðjÞ
t jx

ðjÞ
t�1

� !

þ log pðZÞ:

ð15Þ

Using (6), (7), and (9) and dropping terms that do not

depend on the parameters � (and thus, play no role in the

M-step)

‘ðX;Y ; ZÞ ¼ � 1

2

XK
j¼1

Xm
i¼1

z
ðjÞ
i

X�
t¼1

���yi;t � �y
ðjÞ
i � C

ðjÞ
i x

ðjÞ
t

��2

rðjÞ

þ log rðjÞ
	
� 1

2

XK
j¼1

 ��xðjÞ1 � �ðjÞ
��2

QðjÞ

þ
X�
t¼2

��xðjÞt �AðjÞxðjÞt�1

��2

QðjÞ
þ � log

QðjÞ

!
;

ð16Þ

where xk k2
�¼ xT��1x. Note that pðZÞ can be ignored since

the parameters of the MRF are constants. Finally, the

complete data log-likelihood is

‘ðX;Y ; ZÞ ¼ � 1

2

XK
j¼1

Xm
i¼1

z
ðjÞ
i

X�
t¼1

1

rðjÞ
�
yi;t � �y

ðjÞ
i

�2
�

� 2
�
yi;t � �y

ðjÞ
i

�
C
ðjÞ
i x

ðjÞ
t þ C

ðjÞ
i P

ðjÞ
t;t C

ðjÞ
i

T	

� 1

2

XK
j¼1

tr QðjÞ
�1

P
ðjÞ
1;1 � x

ðjÞ
1 �ðjÞ

T � �ðjÞxðjÞ1

T��

þ �ðjÞ�ðjÞT
		
� 1

2

XK
j¼1

X�
t¼2

tr QðjÞ
�1

P
ðjÞ
t;t

�h

� P ðjÞt;t�1A
ðjÞT �AðjÞP ðjÞt;t�1

T
þAðjÞP ðjÞt�1;t�1A

ðjÞT
	i

� �
2

XK
j¼1

Xm
i¼1

z
ðjÞ
i log rðjÞ � �

2

XK
j¼1

log QðjÞ

;

ð17Þ

where we define P
ðjÞ
t;t ¼ x

ðjÞ
t x

ðjÞ
t

T
and P

ðjÞ
t;t�1 ¼ x

ðjÞ
t x

ðjÞ
t�1

T
.

4.2 E-Step

From (17), it follows that the E-step of (13) requires

conditional expectations of two forms

IEX;ZjY
�
f
�
xðjÞ
��
¼ IEXjY

�
f
�
xðjÞ
��
;

IEX;ZjY
�
z
ðjÞ
i f
�
xðjÞ
��
¼ IEZjY

�
z
ðjÞ
i

�
IEXjY ;zi¼j

�
f
�
xðjÞ
��
;
ð18Þ

for some function f of xðjÞ, and where IEXjY ;zi¼j is the

conditional expectation of X given the observation Y and

that the ith pixel belongs to layer j. In particular, the

E-step requires

x̂
ðjÞ
t ¼ IEXjY

�
x
ðjÞ
t

�
; P̂

ðjÞ
t;t ¼ IEXjY

�
P
ðjÞ
t;t

�
;

ẑ
ðjÞ
i ¼ IEZjY

�
z
ðjÞ
i

�
; P̂

ðjÞ
t;t�1 ¼ IEXjY

�
P
ðjÞ
t;t�1

�
;

x̂
ðjÞ
tji ¼ IEXjY ;zi¼j

�
x
ðjÞ
t

�
; P̂

ðjÞ
t;tji ¼ IEXjY ;zi¼j

�
P
ðjÞ
t;t

�
:

ð19Þ

Defining, for convenience, the aggregate statistics

�
ðjÞ
1 ¼

P��1
t¼1 P̂

ðjÞ
t;t ; �

ðjÞ
2 ¼

P�
t¼2 P̂

ðjÞ
t;t ;

 ðjÞ ¼
P�

t¼2 P̂
ðjÞ
t;t�1; N̂j ¼

Pm
i¼1 ẑ

ðjÞ
i ;

�
ðjÞ
i ¼

P�
t¼1 P̂

ðjÞ
t;tji; �ðjÞ ¼

P�
t¼1 x̂

ðjÞ
tji ;

�
ðjÞ
i ¼

P�
t¼1

�
yi;t � �y

ðjÞ
i

�
x̂
ðjÞ
tji ;

ð20Þ

and substituting (20) and (17) into (13), leads to the

Q function

Qð�; �̂Þ ¼ � 1

2

XK
j¼1

1

rðjÞ

Xm
i¼1

ẑ
ðjÞ
i

 X�
t¼1

�
yi;t � �y

ðjÞ
i

�2

� 2C
ðjÞ
i �

ðjÞ
i þ C

ðjÞ
i �

ðjÞ
i C

ðjÞ
i

T

!
� 1

2

XK
j¼1

tr QðjÞ
�1

h

� P̂
ðjÞ
1;1 � x̂

ðjÞ
1 �ðjÞ

T � �ðjÞx̂ðjÞ1

T
þ �ðjÞ�ðjÞT þ �ðjÞ2

�
� ðjÞAðjÞT �AðjÞ ðjÞT þAðjÞ�ðjÞ1 AðjÞ

T
	i

� �
2

XK
j¼1

N̂j log rðjÞ � �
2

XK
j¼1

log QðjÞ

:

ð21Þ

1866 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

Since it is not known to which layer each pixel yi is
assigned, the evaluation of the expectations of (19) requires
marginalization over all configurations of Z. Hence, the Q
function is intractable. Two possible approximations are
discussed in Sections 5 and 6.

4.3 M-Step

The M-step of (14) updates the parameter estimates by
maximizing the Q function. As usual, a (local) maximum is
found by taking the partial derivative with respect to each
parameter and setting it to zero (see Appendix A for
complete derivation), yielding the estimates

C
ðjÞ
i

�
¼ �

ðjÞ
i

T
�
ðjÞ
i

�1
;

AðjÞ
� ¼ ðjÞ�ðjÞ1

�1
;

�ðjÞ� ¼ x̂ðjÞ1 ;

�y
ðjÞ�
i ¼ 1

�

X�
t¼1

yi;t �
1

�
C
ðjÞ
i �

ðjÞ
i ;

rðjÞ
� ¼ 1

�N̂j

Xm
i¼1

ẑ
ðjÞ
i

X�
t¼1

�
yi;t � �y

ðjÞ
i

�2 � CðjÞi
�
�
ðjÞ
i

 !
;

QðjÞ
� ¼ 1

�
P̂
ðjÞ
1;1 � �ðjÞ

��
�ðjÞ
��T þ �ðjÞ2 �AðjÞ

�
 ðjÞ

T
� 	

:

ð22Þ

The M-step of LDT learning is similar to that of LDS learning
[41], [47], with two significant differences: 1) Each rowC

ðjÞ
i of

CðjÞ is estimated separately, conditioning all statistics on the
assignment of pixel i to layer j (zi ¼ j) and 2) the estimate of
the observation noise rðjÞ of each layer is a soft average of the
unexplained variance of each pixel, weighted by the poster-
ior probability ẑ

ðjÞ
i that pixel i belongs to layer j.

4.4 Initialization Strategies

As is typical for the EM algorithm, the quality of the

(locally) optimal solution depends on the initialization of

the model parameters. In most cases, the approximate E-

step also requires an initial estimate of the expected layer

assignments ẑ
ðjÞ
i . If an initial segmentation is available, both

problems can be addressed easily: the model parameters can

be initialized by learning a DT for each region, using

[7], and the segmentation mask can be used as the initial

ẑ
ðjÞ
i . In our experience, a good initial segmentation can

frequently be obtained with the DTM of [17]. Otherwise,

when an initial segmentation is not available, we adopt a

variation of the centroid splitting method of [48]. The EM

algorithm is run with an increasing number of components.

We start by learning an LDT withK ¼ 1. A new layer is then

added by duplicating the existing layer with the largest state-

space noise (i.e., with the largest eigenvalue ofQðjÞ). The new

layer is perturbed by scaling the transition matrix A by 0.99,

and the resulting LDT used to initialize EM. For the

approximate E-step, the initial ẑ
ðjÞ
i are estimated by approx-

imating each pixel of the LDT with a DTM [17], where the

parameters of the jth mixture component are identical to the

parameters of the jth layer, fAðjÞ; QðjÞ; �ðjÞ; CðjÞi ; rðjÞ; �y
ðjÞ
i g. The

ẑ
ðjÞ
i estimate is the posterior probability that the pixel yi

belongs to the jth mixture component, i.e., ẑ
ðjÞ
i � pðzi ¼ jjyiÞ.

In successive E-steps, the estimates ẑ
ðjÞ
i from the previous

E-step are used to initialize the current E-step. This produces

an LDT with K ¼ 2. The process is repeated with the

successive introduction of new layers, by perturbation of

existing ones, until the desired K is reached. Note that

perturbing the transition matrix coerces EM to learn layers

with distinct dynamics.

5 APPROXIMATE INFERENCE BY GIBBS SAMPLING

The expectations of (19) require intractable conditional

probabilities. For example, P ðXjY Þ ¼
P

Z P ðX;ZjY Þ re-

quires the enumeration of all configurations of Z, an

operation of exponential complexity on the MRF dimensions,

and intractable for even moderate frame sizes. One com-

monly used solution to this problem is to rely on a Gibbs

sampler [49] to draw samples from the posterior distribution

pðX;ZjY Þ and approximate the desired expectations by

sample averages. Given some initial state ~Z, each iteration

of the Gibbs sampler for the LDT alternates between sampling
~X from pðXjY ; ~ZÞ and sampling ~Z from pðZj ~X;Y Þ.

5.1 Sampling from pðZjX; Y Þ
Using Bayes rule, the conditional distribution pðZjX;Y Þ can

be rewritten as

pðZjX;Y Þ ¼ pðX;Y ; ZÞ
pðX;Y Þ ¼

pðY jX;ZÞpðXÞpðZÞ
pðX;Y Þ ð23Þ

/ pðY jX;ZÞpðZÞ /
Ym
i¼1

YK
j¼1

p
�
yijxðjÞ; zi ¼ j

�zðjÞi
�
Ym
i¼1

ViðziÞ
Y
ði;i0Þ2E

Vi;i0 ðzi; zi0 Þ
�

¼
Ym
i¼1

YK
j¼1

�
�
ðjÞ
i p
�
yijxðjÞ; zi ¼ j

��zðjÞi Y
ði;i0Þ2E

Vi;i0 ðzi; zi0 Þ:

ð24Þ

Hence, pðZjX;Y Þ is equivalent to the MRF-likelihood

function of (10), but with modified self-potentials
~ViðziÞ ¼ �ðjÞpðyijxðjÞ; zi ¼ jÞ. Thus, samples from pðZjX;Y Þ
can be drawn using Markov-chain Monte Carlo (MCMC)

for an MRF grid [50].

5.2 Sampling from pðXjZ; Y Þ
Given layer assignments Z, pixels are deterministically

assigned to state processes. For convenience, we define I j ¼
fijzi ¼ jg as the index set for the pixels assigned to layer j,

and Yj ¼ fyiji 2 I jg as the corresponding set of pixel

values. Conditioning on Z, we have

pðX;Y jZÞ ¼
YK
j¼1

p
�
xðjÞ; YjjZ

�
: ð25Þ

Note that pðxðjÞ; YjjZÞ is the distribution of an LDS with

parameters ~�j ¼ fAðjÞ; QðjÞ; ~CðjÞ; rj; �
ðjÞ; ~yðjÞg, where ~CðjÞ ¼

½CðjÞi �i2I j is the subset of the rows of CðjÞ corresponding to

the pixels Yj, and likewise for ~yðjÞ ¼ ½�yðjÞi �i2I j . Marginalizing

(25) with respect to X yields

CHAN AND VASCONCELOS: LAYERED DYNAMIC TEXTURES 1867

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

pðY jZÞ ¼
Y
j

pðYjjZÞ; ð26Þ

where pðYjjZÞ is the likelihood of observing Yj from LDS ~�j.
Finally, using Bayes rule,

pðXjY ; ZÞ ¼ pðX;Y jZÞ
pðY jZÞ ¼

QK
j¼1 p

�
xðjÞ; YjjZ

�
QK

j¼1 pðYjjZÞ
ð27Þ

¼
YK
j¼1

p
�
xðjÞjYj; Z

�
: ð28Þ

Hence, sampling from pðXjY ; ZÞ reduces to sampling a
state-sequence xðjÞ from each pðxðjÞjYj; ZÞ, which is the
conditional distribution of xðjÞ, given the pixels Yj, under
the LDS parameterized by ~�j. An algorithm for efficiently
drawing these sequences is given in Appendix B.

5.3 Approximate Inference

The Gibbs sampler is first “burned-in” by running it for 100
iterations. This allows the sample distribution for f ~X; ~Zg to
converge to the true posterior distribution pðX;ZjY Þ.
Subsequent samples, drawn after every five iterations of
the Gibbs sampler, are used for approximate inference.

5.3.1 Approximate Expectations

The expectations in (19) are approximated by averages over

the samples drawn by the Gibbs sampler, e.g., IEXjY ½xðjÞt � �
1
S

PS
s¼1½~x

ðjÞ
t �s; where ½~xðjÞt �s is the value of x

ðjÞ
t in the

sth sample, and S is the number of samples.

5.3.2 Lower Bound on pðY Þ
The convergence of the EM algorithm is usually monitored
by tracking the likelihood pðY Þ of the observed data. While
this likelihood is intractable, a lower bound can be
computed by summing over the configurations of ~Z visited
by the Gibbs sampler

pðY Þ ¼
X
Z

pðY jZÞpðZÞ 	
X
~Z2ZG

pðY j ~ZÞpð ~ZÞ; ð29Þ

where ZG is the set of unique states of ~Z visited by the
sampler, pð ~ZÞ is given by (10), and pðY j ~ZÞ is given by (26),
where for each observation Yj, the likelihood pðYjjZÞ is
computed using the Kalman filter with parameters ~�j [17],
[41]. Because ZG tend to be the configurations of the largest
likelihood, the bound in (29) is a good approximation for
convergence monitoring.

5.3.3 MAP Layer Assignment

Finally, segmentation requires the MAP solution
fX�; Z�g ¼ argmaxX;Z pðX;ZjY Þ. This is computed with
deterministic annealing, as in [50].

6 INFERENCE BY VARIATIONAL APPROXIMATION

Using Gibbs sampling for approximate inference is fre-
quently too computationally intensive. A popular low-
complexity alternative is to rely on a variational approx-
imation. This consists of approximating the posterior
distribution pðX;ZjY Þ by an approximation qðX;ZÞ within

some class of tractable probability distributions F . Given an
observation Y , the optimal variational approximation
minimizes the Kullback-Leibler (KL) divergence between
the two posteriors [51]:

q�ðX;ZÞ ¼ arg min
q2F

KL qðX;ZÞ pðX;ZjY Þkð Þ: ð30Þ

Note that, because the data log-likelihood pðY Þ is constant

for an observed Y ,

KL qðX;ZÞ pðX;ZjY Þkð Þ

¼
Z
qðX;ZÞ log

qðX;ZÞ
pðX;ZjY Þ dXdZ

ð31Þ

¼
Z
qðX;ZÞ log

qðX;ZÞpðY Þ
pðX;Y ; ZÞ dXdZ ð32Þ

¼ LðqðX;ZÞÞ þ log pðY Þ; ð33Þ

where

LðqðX;ZÞÞ ¼
Z
qðX;ZÞ log

qðX;ZÞ
pðX;Y ; ZÞ dXdZ: ð34Þ

The optimization problem of (30) is thus identical to

q�ðX;ZÞ ¼ arg min
q2F

LðqðX;ZÞÞ: ð35Þ

We next derive an optimal approximate factorial posterior

distribution.

6.1 Approximate Factorial Posterior Distribution

The intractability of the exact posterior distribution stems
from the need to marginalize over Z. This suggests that a
tractable approximate posterior can be obtained by assum-
ing statistical independence between pixel assignments zi
and state variables xðjÞ, i.e.,

qðX;ZÞ ¼
YK
j¼1

qðxðjÞÞ
Ym
i¼1

qðziÞ: ð36Þ

Substituting into (34) leads to

LðqðX;ZÞÞ ¼
Z YK

j¼1

qðxðjÞÞ
Ym
i¼1

qðziÞ

� log

QK
j¼1 q

�
xðjÞ
�Qm

i¼1 qðziÞ
pðX;Y ; ZÞ dXdZ:

ð37Þ

Equation (37) is minimized by sequentially optimizing each

of the factors qðxðjÞÞ and qðziÞ, while holding the others

constant [51]. This yields the factorial distributions (see

Appendix C for derivations)

log qðxðjÞÞ ¼
Xm
i¼1

h
ðjÞ
i log pðyijxðjÞ; zi ¼ jÞ

þ log pðxðjÞÞ � logZðjÞq ;
ð38Þ

log qðziÞ ¼
XK
j¼1

z
ðjÞ
i logh

ðjÞ
i ; ð39Þ

1868 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

where ZðjÞq is a normalization constant (Appendix C.3) and
h
ðjÞ
i are the variational parameters

h
ðjÞ
i ¼ IEzi

�
z
ðjÞ
i

�
¼ �

ðjÞ
i g
ðjÞ
iPK

k¼1 �
ðkÞ
i g

ðkÞ
i

; ð40Þ

log g
ðjÞ
i ¼ IExðjÞ

�
log pðyijxðjÞ; zi ¼ jÞ

�
þ
X
ði;i0Þ2E

h
ðjÞ
i0 log

�1

�2
;

ð41Þ

and IExðjÞ and IEzi are the expectations with respect to qðxðjÞÞ
and qðziÞ.

The optimal factorial distributions can be interpreted as

follows. The variational parameters fhðjÞi g, which appear in

both qðziÞ and qðxðjÞÞ, account for the dependence betweenX

andZ (see Fig. 3). h
ðjÞ
i is the posterior probability of assigning

pixel yi to layer j and is estimated by the expected log-

likelihood of assigning pixel yi to layer j, with an additional

boost of log �1

�2
per neighboring pixel also assigned to layer j.

h
ðjÞ
i also weighs the contribution of each pixel yi to the factor

qðxðjÞÞ, which effectively acts as a soft assignment of pixel yi

to layer j. Also note that, in (38), h
ðjÞ
i can be absorbed into

pðyijxðjÞ; zi ¼ jÞ, making qðxðjÞÞ the distribution of an LDS

parameterized by �̂j ¼ fAðjÞ; QðjÞ; CðjÞ; Rj; �
ðjÞ; �yðjÞg, where

Rj is a diagonal matrix with entries ½rðjÞ
h
ðjÞ
1

; . . . ; r
ðjÞ

h
ðjÞ
m

�. Finally,

log g
ðjÞ
i is computed by rewriting (41) as

log g
ðjÞ
i ¼ IExðjÞ

"
�1

2rðjÞ

X�
t¼1

��yi;t � �y
ðjÞ
i � C

ðjÞ
i x

ðjÞ
t

��2

� �
2

log 2�rðjÞ

#
þ
X
ði;i0Þ2E

h
ðjÞ
i0 log

�1

�2

ð42Þ

¼ �1

2rðjÞ

X�
t¼1

�
yi;t � �y

ðjÞ
i

�2 � 2C
ðjÞ
i

X�
t¼1

�
yi;t � �y

ðjÞ
i

�

� IExðjÞ
�
x
ðjÞ
t

�
þ CðjÞi

X�
t¼1

IExðjÞ

h
x
ðjÞ
t x

ðjÞ
t

Ti
C
ðjÞ
i

T

!

� �
2

log 2�rðjÞ þ
X
ði;i0Þ2E

h
ðjÞ
i0 log

�1

�2
;

ð43Þ

where the expectations IExðjÞ ½x
ðjÞ
t � and IExðjÞ ½x

ðjÞ
t x

ðjÞ
t

T
� are

computed with the Kalman smoothing filter [17], [41] for an
LDS with parameters �̂j.

The optimal q�ðX;ZÞ is found by iterating through each
pixel i, recomputing the variational parameters h

ðjÞ
i accord-

ing to (40) and (41), until convergence. This might be
computationally expensive because it requires running a
Kalman smoothing filter for each pixel. The computational
load can be reduced by updating batches of variational
parameters at a time. In this work, we define a batch B as
the set of nodes in the MRF with nonoverlapping Markov
blankets (as in [52]), i.e., B ¼ fijði; i0Þ 62 E; 8i0 2 Bg. In
practice, batch updating typically converges to the solution
reached by serial updating, but is significantly faster. The
variational approximation using batch (synchronous) up-
dating is summarized in Algorithm 1.

Algorithm 1. Variational Approximation for LDT

1: Input: LDT parameters �, batches fB1; . . . ;BMg.
2: Initialize fhðjÞi g.
3: repeat

4: {Recompute variational parameters for each batch}

5: for B 2 fB1; . . . ;BMg do

6: compute IExðjÞ ½x
ðjÞ
t � and IExðjÞ ½x

ðjÞ
t x

ðjÞ
t

T
� by running

the Kalman smoothing filter with parameters �̂j,

for j ¼ f1; . . . ; Kg.
7: for i 2 B do

8: compute log g
ðjÞ
i using (43), for j ¼ f1; . . . ; Kg.

9: compute h
ðjÞ
i using (40), for j ¼ f1; . . . ; Kg.

10: end for

11: end for

12: until convergence of h
ðjÞ
i

6.2 Approximate Inference

In the remainder of the section, we discuss inference with
the approximate posterior q�ðX;ZÞ.

6.2.1 E-Step

In (19), expectations with respect to pðXjY Þ and pðZjY Þ can
be estimated as

x̂
ðjÞ
t � IExðjÞ

�
x
ðjÞ
t

�
; P̂

ðjÞ
t;t � IExðjÞ

h
x
ðjÞ
t x

ðjÞ
t

T i
;

ẑ
ðjÞ
i � h

ðjÞ
i ; P̂

ðjÞ
t;t�1 � IExðjÞ

h
x
ðjÞ
t x

ðjÞ
t�1

T i
;

ð44Þ

where IExðjÞ is the expectation with respect to q�ðxðjÞÞ. The
remaining expectations of (19) are with respect to
pðXjY ; zi ¼ jÞ, and can be approximated with q�ðXjzi ¼ jÞ
by running the variational algorithm with a binary h

ðjÞ
i , set

to enforce zi ¼ j. Note that if m is large (as is the case with
videos), fixing the value of a single zi ¼ j will have little
effect on the posterior, due to the combined evidence from
the large number of other pixels in the layer. Hence,
expectations with respect to pðXjY ; zi ¼ jÞ can also be
approximated with q�ðXÞ when m is large, i.e.,

x̂
ðjÞ
tji � IExðjÞjzi¼j

�
x
ðjÞ
t

�
� IExðjÞ

�
x
ðjÞ
t

�
;

P̂
ðjÞ
t;tji � IExðjÞjzi¼j

h
x
ðjÞ
t x

ðjÞ
t

T i
� IExðjÞ

h
x
ðjÞ
t x

ðjÞ
t

T i
;

ð45Þ

where IExðjÞjzi¼j is the expectation with respect to
q�ðxðjÞjzi ¼ jÞ. Finally, we note that the EM algorithm with
variational E-step is guaranteed to converge. However, the
approximate E-step prevents convergence to local maxima

CHAN AND VASCONCELOS: LAYERED DYNAMIC TEXTURES 1869

Fig. 3. Graphical model for the variational approximation of the layered
dynamic texture. The influences of the variational parameters are
indicated by the dashed arrows.

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

of the data log-likelihood [53]. Despite this limitation, the
algorithm still performs well empirically, as shown in
Section 7.

6.2.2 Lower Bound on pðY Þ
Convergence is monitored with a lower bound on pðY Þ,
which follows from the nonnegativity of the KL divergence
and (33)

KL qðX;ZÞ pðX;ZjY Þkð Þ ¼ LðqðX;ZÞÞ þ log pðY Þ 	 0

) log pðY Þ 	 �LðqðX;ZÞÞ:
ð46Þ

Evaluating L for the optimal q� (see Appendix C.4 for
derivation), the lower bound is

log pðY Þ 	
X
j

logZðjÞq �
X
j;i

h
ðjÞ
i log

h
ðjÞ
i

�
ðjÞ
i

þ
X
ði;i0Þ2E

log �2 þ
X
j

h
ðjÞ
i h

ðjÞ
i0 log

�1

�2

 !
� logZZ:

ð47Þ

6.2.3 MAP Layer Assignment

Given the observed video Y , the maximum a posteriori layer
assignment Z (i.e., segmentation) is

Z� ¼ arg max
Z

pðZjY Þ ¼ arg max
Z

Z
pðX;ZjY ÞdX ð48Þ

� arg max
Z

Z
q�ðX;ZÞdX ð49Þ

¼ arg max
Z

Z YK
j¼1

q�ðxðjÞÞ
Ym
i¼1

q�ðziÞdX ð50Þ

¼ arg max
Z

Ym
i¼1

q�ðziÞ: ð51Þ

Hence, the MAP solution for Z is approximated by the
individual MAP solutions for zi, i.e.,

z�i � arg max
j

h
ðjÞ
i ; 8i: ð52Þ

7 EXPERIMENTAL EVALUATION

In this section, we present experiments that test the efficacy of

the LDT model and the approximate inference algorithms.

We start by comparing the two approximate inference

algorithms on synthetic data, followed by an evaluation of

EM learning with approximate inference. We conclude with

experiments on segmentation of both synthetic and real

videos. To reduce the memory and computation required to

learn the LDT, we make a simplifying assumption in these

experiments. We assume that �y
ðjÞ
i can be estimated by the

empirical mean of the observed video, i.e., �y
ðjÞ
i � 1

�

P�
t¼1 yi;t.

This holds as long as � is large and AðjÞ is stable,2 which are

reasonable assumptions for stationary video. Since the

empirical mean is fixed for a given Y , we can effectively

subtract the empirical mean from the video and set �y
ðjÞ
i ¼ 0

in the LDT. In practice, we have seen no difference in

segmentation performance when using this simplified

model.

7.1 Comparison of Approximate Inference Methods

We present a quantitative comparison of approximate
inference on a synthetic data set, along with a comparison
in the context of EM learning.

7.1.1 Synthetic Data Set

A synthetic data set of LDT samples was generated as
follows. A number of LDTs of K ¼ 2 components was
produced by randomly sampling parameter values for each
component j ¼ f1; 2g, according to

rðjÞ � Wð1; 1Þ; QðjÞ � WðIn; nÞ; �ðjÞ � Unð�5; 5Þ;
SðjÞ ¼ QðjÞ; CðjÞ � Nm;nð0; 1Þ; A

ðjÞ
0 � N n;nð0; 1Þ;

	
ðjÞ
0 � U1ð0:1; 1Þ; AðjÞ ¼ 	ðjÞ0 A

ðjÞ
0 =	max

�
A
ðjÞ
0

�
;

where Nm;nð�;
2Þ is a distribution on IRm�n matrices with

each entry distributed as Nð�;
2Þ;Wð�; dÞ is a Wishart

distribution with covariance � and d degrees of freedom,

Udða; bÞ is a distribution on IRd vectors with each

coordinate distributed uniformly between a and b, and

	maxðAðjÞ0 Þ is the magnitude of the largest eigenvalue of

A
ðjÞ
0 . Note that AðjÞ is a random scaling of A

ðjÞ
0 such that the

system is stable (i.e., the poles of AðjÞ are within the unit

circle). The MRF used first order connectivity (see Fig. 4a),

with parameters log �1 ¼ � log �2 ¼ 0:4 and log�
ðjÞ
i ¼ 0 8i; j.

1870 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

2. Note that IE½xt� ¼ At�1� and IE½yt� ¼ CAt�1� þ �y. Hence, the expected

empirical mean is IE½1�
P�

t¼1 yt� ¼ Cð1�
P�

t¼1 A
t�1Þ� þ �y. For large � and stable

A (poles within the unit circle), At�1 ! 0, and it follows that
1
�

P�
t¼1 A

t�1 ! 0. Hence, �y
ðjÞ
i � IE½1�

P�
t¼1 yi;t�.

Fig. 4. MRF connectivity for node zi. (a) First order (four neighbors). (b) Second order (eight neighbors). (c) Third order (12 neighbors). (d) Fourth

order (20 neighbors). The nodes connected to zi are highlighted in white.

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

A set of 200 LDT parameters was sampled for all

combinations of n ¼ f10; 15; 20g and m ¼ f600; 1200g (cor-

responding to a grid size of 30� 20 and 40� 30), and a

time-series sample fX;Y ; Zg, with temporal length 75, was

drawn from each LDT, forming a synthetic data set of 1,200

time series. Finally, additional data sets, each with 1,200

time series, were formed by repeating with K ¼ f3; 4g.

7.1.2 Inference Experiments

In this experiment, we compare the variational approxima-
tion (denoted as “Var”) with Gibbs sampling (Gibbs). For
Gibbs, expectations were approximated by averaging over
100 samples.3 Each inference method was initialized with
the DTM approximation for ẑ

ðjÞ
i discussed in Section 4.4.

The conditional means of the hidden variables ẑi ¼ IEðzijY Þ
and x̂

ðjÞ
t ¼ IEðxðjÞt jY Þ were estimated and the standard

deviations with respect to the ground-truth values of zi
and x

ðjÞ
t were computed. The average value of the lower

bound L̂ of logP ðY Þ was also computed, along with the
Rand index [54] between the true segmentation Z and the
approximate MAP solution Ẑ. The Rand index is a measure
of clustering performance and intuitively is the probability
of pairwise agreement between the clustering and the
ground truth. Finally, the performance metrics were
averaged over the synthetic data set for K ¼ 2.

The estimation errors of the two approximate inference
algorithms are presented in Table 1. Var and Gibbs have
comparable performance, with the exception of a slight
difference in the estimates of x

ðjÞ
t . However, Var is signifi-

cantly faster than Gibbs, with a speedup of over 40 times.
Finally, although the estimation error of the DTM approx-
imation is large for x̂

ðjÞ
t , the error of the layer assignments ẑi is

reasonable. This makes the DTM approximation a suitable
initialization for the other inference algorithms.

7.1.3 EM Experiments

We next compare approximate inference in the context of
the EM algorithm. LDT models were learned from the
observed Y , using EM with the two approximate E-steps,
which we denote as “VarEM” and “GibbsEM.” The LDTs
learned from the two EM algorithms were compared via
their segmentation performance: the MAP solution Ẑ was
compared with the ground truth Z using the Rand index.
Finally, the Rand index was averaged over all LDTs in each
synthetic data set K ¼ f2; 3; 4g.

Fig. 5 presents the plots of Rand index versus the median
runtime obtained for each method. VarEM and GibbsEM
perform comparably (Rand of 0.998) for K ¼ 2. However,
GibbsEM outperforms VarEM when K ¼ f3; 4g, with Rand

0.959 and 0.929 versus 0.923 and 0.881, respectively. This
difference is due to the unimodality of the approximate
variational posterior; given multiple possible layer assign-
ments (posterior modes), the variational approximation can
only account for one of the configurations, effectively
ignoring the other possibilities. While this behavior is
acceptable when computing MAP assignments of a learned
LDT (e.g., the inference experiments in Section 7.1.2), it may
be detrimental for LDT learning. VarEM is not allowed to
explore multiple configurations, which may lead to conver-
gence to a poor local maximum. Poor performance of VarEM
is more likely when there are multiple possible configura-
tions, i.e., when K is large (empirically, when K 	 3).
However, the improved performance of GibbsEM comes at
a steep computational cost, with runtimes that are 150 to
250 times longer than those of VarEM. Finally, for compar-
ison, the data were segmented with the GPCA method of [11],
which is shown to perform worse than both VarEM and
GibbsEM for all K. This is most likely due to the “noiseless”
assumption of the underlying model, which makes the
method susceptible to outliers, or other stochastic variations.

7.2 Motion Segmentation

In this section, we present results on motion segmentation
using the LDT. All segmentations were obtained by learning
an LDT with the EM algorithm and computing the posterior
layer assignments Ẑ ¼ argmaxZ pðZjY Þ. The MRF para-
meters of the LDT were set to �1 ¼ ��2 ¼ 5 and �

ðjÞ
i ¼

0; 8i; j, and the MRF used a first, second, or fourth order
connectivity neighborhood (see Fig. 4), depending on the
task. Unless otherwise noted, EM was initialized with the
component splitting method of Section 4.4. Due to the
significant computational cost of Gibbs sampling, we only
report on the variational E-step. We also compare the LDT
segmentations with those produced by various state-of-the-
art methods in the literature: DTM with a patch size of 5� 5
[17]; GPCA on the PCA projection of the pixel trajectories, as
in [11]; level sets [12] on AR models (with order n) of Ising
models (Ising), pixel intensities (AR), and mean-subtracted
pixel intensities (AR0). Segmentations are evaluated by
computing the Rand index [54] with the ground truth. We
first present results on synthetic textures containing

CHAN AND VASCONCELOS: LAYERED DYNAMIC TEXTURES 1871

3. Twenty five samples were drawn from four different runs of the Gibbs
sampler.

4. Ising [12] could not be applied since there are more than two
segments.

Fig. 5. Trade-off between runtime and segmentation performance using

approximate inference.

TABLE 1
Comparison of Approximate Inference Algorithms

on Synthetic Data

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

different types of circular motion. We then present a
quantitative evaluation on a large texture database from
[17], followed by results on real-world video. Video results
are available online [55].

7.2.1 Synthetic Circular Motion

We first demonstrate LDT segmentation of sequences with
motion that is locally varying but globally homogenous,
e.g., a dynamic texture subject to circular motion. These
experiments were based on videos containing several rings
of distinct circular motion, as shown in Fig. 6a. Each video
sequence Ix;y;t has dimensions 101� 101, and was gener-
ated according to

Ix;y;t ¼ 128 cos cr�þ
2�

Tr
tþ vt

� �
þ 128þ wt; ð53Þ

where � ¼ arctanðy�51
x�51Þ is the angle of the pixel ðx; yÞ relative

to the center of the video frame, vt � Nð0; ð2�=50Þ2Þ is the
phase noise, and wt � Nð0; 102Þ is the observation noise.
The parameter Tr 2 f5; 10; 20; 40g determines the speed of
each ring, while cr determines the number of times the
texture repeats around the ring. Here, we select cr such that
all the ring textures have the same spatial period. Sequences
were generated with f2; 3; 4g circular or square rings, with a
constant center patch (see Fig. 6 left and middle). Finally, a
third set of dynamics was created by allowing the textures
to move only horizontally or vertically (see Fig. 6 right).

The sequences were segmented with LDT (using an MRF
with first order connectivity), DTM, and GPCA,4 with n ¼ 2
for all methods. The segmentation results are shown in
Figs. 6b, 6c, and 6d. LDT (Fig. 6b) correctly segments all the
rings, favoring global homogeneity over localized grouping
of segments by texture orientation. On the other hand, DTM
(Fig. 6c) tends to find incorrect segmentations based on
local direction of motion. In addition, DTM sometimes
incorrectly assigns one segment to the boundaries between
rings, illustrating how the poor boundary accuracy of the
patch-based segmentation framework can create substantial
problems. Finally, GPCA (Fig. 6d) is able to correctly

segment two rings, but fails when there are more. In these
cases, GPCA correctly segments one of the rings, but
randomly segments the remainder of the video. These
results illustrate how LDT can correctly segment sequences
whose motion is globally (at the ring level) homogeneous,
but locally (at the patch level) heterogeneous. Both DTM
and GPCA fail to exhibit this property. Quantitatively, this
is reflected by the much higher average Rand scores of the
segmentations produced by LDT (1.00, as compared to
0.482 and 0.826 for DTM and GPCA, respectively).

7.2.2 Texture Database

We next present results on the texture database of [17],
which contains 299 sequences with K ¼ f2; 3; 4g regions of
different video textures (e.g., water, fire, and vegetation), as
illustrated in Fig. 7a. In [17], the database was segmented
with DTM, using a fixed initial contour. Although DTM was
shown to be superior to other state-of-the-art methods [12],
[11], the segmentations contain some errors due to the poor
boundary localization discussed above. To test if using the
LDT to refine the segmentations produced by DTM could
substantially improve the results of [17], the LDT was
initialized with the existing DTM segmentations, as
described in Section 4.4. For comparison, we also applied
the level-set methods of [12] (Ising, AR, and AR0),
initialized with the DTM segmentations. The database was
also segmented with GPCA [11], which does not require
any initialization. Each method was run for several values
of n (where n is the state-space dimension for LDT and
DTM, and the AR model order for the level-set methods),
and the average Rand index was computed for each K. In
this experiment, the LDT used an MRF with the fourth
order connectivity. Finally, the video was also segmented
by clustering optical flow vectors [3] (GMM-OF) or motion
profiles [56] (GMM-MP), averaged over time, with a
Gaussian mixture model. No postprocessing was applied
to the segmentations.

Table 2 shows the performance obtained, with the best n,
by each algorithm. It is clear that LDT segmentation
significantly improves the initial segmentation produced
by DTM: the average Rand increases from 0.912 to 0.944,
from 0.844 to 0.894, and from 0.857 to 0.916, for
K ¼ f2; 3; 4g, respectively. LDT also performs best among

1872 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

Fig. 6. Segmentation of synthetic circular motion: (a) video; segmentation using (b) LDT, (c) DTM [17], and (d) GPCA [11].

4. Ising [12] could not be applied since there are more than two
segments.

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

all algorithms, with Ising as the closest competitor (Rand
0.927). In addition, LDT and DTM both outperform the
optical-flow-based methods (GMM-OF and GMM-MP),
indicating that optical flow is not a suitable representation
for video texture analysis. Fig. 8 shows a plot of the Rand
index versus the dimension n of the models, demonstrating
that LDT segmentation is robust to the choice of n.

Qualitatively, LDT improves the DTM segmentation in
three ways: 1) Segmentation boundaries are more precise,
due to the region-level modeling (rather than patch level);
2) segmentations are less noisy, due to the inclusion of the
MRF prior; and 3) gross errors, e.g., texture borders marked
as segments, are eliminated. Several examples of these
improvements are presented in Figs. 7b and 7c. From left to
right, the first example is a case where the LDT corrects a
noisy DTM segmentation (imprecise boundaries and spur-
ious segments). The second and third examples are cases
where the DTM produces a poor segmentation (e.g., the
border between two textures erroneously marked as a
segment), which the LDT corrects. The final two examples
are very difficult cases. In the fourth example, the initial
DTM segmentation is very poor. Albeit a substantial
improvement, the LDT segmentation is still noisy. In the
fifth example, the DTM splits the two water segments
incorrectly (the two textures are very similar). The LDT
substantially improves the segmentation, but the difficulties
due to the great similarity of water patterns prove too

difficult to overcome completely. More segmentation
examples are available online [55].

Finally, we examine the LDT segmentation performance
versus the connectivity of the MRF in Fig. 9. The average
Rand increases with the order of MRF connectivity, due to
the additional spatial constraints, but the gain saturates at
fourth order.

7.2.3 Real Video

We next present segmentation experiments with real-video
sequences. In all cases, the MRF used second order
connectivity, and the state-space dimension n was set to
the value that produced the best segmentation for each
sequence. Fig. 10a presents the segmentation of a moving
ferris wheel, using LDT and DTM for K ¼ f2; 3g. For K ¼ 2,
both LDT and DTM segment the static background from the
moving ferris wheel. However, for K ¼ 3 regions, the
plausible segmentation by LDT of the foreground into two
regions corresponding to the ferris wheel and a balloon
moving in the wind is not matched by DTM. Instead, the
latter segments the ferris wheel into two regions, according
to the dominant direction of its local motion (either moving
up or down), ignoring the balloon motion. This is identical
to the problems found for the synthetic sequences of Fig. 6:
the inability to uncover global homogeneity when the video
is locally heterogeneous. On the other hand, the preference
of LDT for two regions of very different sizes illustrates its
robustness to this problem. The strong local heterogeneity
of the optical flow in the region of the ferris wheel is well
explained by the global homogeneity of the corresponding
layer dynamics. Fig. 10b shows another example of this
phenomenon. For K ¼ 3 regions, LDT segments the wind-
mill into regions corresponding to the moving fan blades,
parts of the shaking tail piece, and the background. When
segmenting into K ¼ 4 regions, LDT splits the fan blade
segment into two regions, which correspond to the fan
blades and the internal support pieces. On the other hand,
the DTM segmentations for K ¼ f3; 4g split the fan blades
into different regions based on the orientation (vertical or
horizontal) of the optical flow.

We next illustrate an interesting property of LDT
segmentation with the proposed initialization: that it tends
to produce a sequence of segmentations which captures a

CHAN AND VASCONCELOS: LAYERED DYNAMIC TEXTURES 1873

TABLE 2
Average Rand Index for Various Segmentation Algorithms

on the Texture Database (Value of n in Parenthesis)

Fig. 7. Results on the texture database: (a) video; motion segmentations using (b) DTM [17], and (c) LDT. r is the Rand index of the segmentation.

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

hierarchy of scene dynamics. The whirlpool sequence of
Fig. 11a contains different levels of moving and turbulent
water. For K ¼ 2 layers, the LDT segments the scene into
regions containing moving water and still background (still
water and grass). Adding another layer splits the “moving
water” segment into two regions of different water
dynamics: slowly moving ripples (outside of the whirlpool)
and fast turbulent water (inside the whirlpool). Finally, for
K ¼ 4 layers, LDT splits the “turbulent water” region into
two regions: the turbulent center of the whirlpool and the
fast water spiraling into it. Fig. 11b shows the final
segmentation, with the four layers corresponding to
different levels of turbulence.

Finally, we present six other examples of LDT segmenta-
tion in Fig. 12. The first four are from the UCF database [57].
Figs. 12a, 12b, and 12c show segmentations of large
pedestrian crowds. In Fig. 12a, a crowd moves in a circle
around a pillar. The left side of the scene is less congested and
the crowd moves faster than on the right side. In Fig. 12b, the
crowd moves with three levels of speed, which are stratified
into horizontal layers. In Fig. 12c, a crowd gathers at the
entrance of an escalator, with people moving quickly around
the edges. These segmentations show that LDT can distin-
guish different speeds of crowd motion, regardless of the
direction in which the crowd is traveling. In Fig. 12d, the LDT
segments a highway scene into still background, the fast
moving traffic on the highway, and the slow traffic that
merges into it. Another whirlpool is shown in Fig. 12e, where
the turbulent water component is segmented from the
remaining moving water. Finally, Fig. 12f presents a wind-

mill scene from [58], which the LDT segments into regions
corresponding to the windmill (circular motion), the trees
waving in the wind, and the static background. These
examples demonstrate the robustness of the LDT representa-
tion and its applicability to a wide range of scenes.

8 CONCLUSIONS

In this work, we have introduced the layered dynamic
texture, a generative model which represents a video as a
layered collection of dynamic textures of different appear-
ance and dynamics. We have also derived the EM algorithm
for estimation of the maximum-likelihood model para-
meters from training video sequences. Because the posterior
distribution of layer assignments given an observed video is
computationally intractable, we have proposed two alter-
natives for inference with this model: a Gibbs sampler and
an efficient variational approximation. The two approxi-
mate inference algorithms were compared experimentally,
along with the corresponding approximate EM algorithms,
on a synthetic data set. The two approximations were
shown to produce comparable marginals (and MAP
segmentations) when the LDT is given, but the Gibbs
sampler outperformed the variational approximation in the
context of EM-based model learning. However, this
improvement comes with a very significant computational
cost. This trade-off between computation and performance
is usually observed when there is a need to rely on
approximate inference with these two methods.

We have also conducted extensive experiments, with
both mosaics of real textures and real-video sequences, that
tested the ability of the proposed model (and algorithms) to
segment videos into regions of coherent dynamics and
appearance. The combination of LDT and variational
inference has been shown to outperform a number of
state-of-the-art methods for video segmentation. In parti-
cular, it was shown to possess a unique ability to group
regions of globally homogeneous but locally heterogeneous
stochastic dynamics. We believe that this ability is unmatched
by any video segmentation algorithm currently available in
the literature. The new method has also consistently
produced segmentations with better spatial-localization
than those possible with the localized representations, such
as the DTM, that have previously been prevalent in the area
of dynamic texture segmentation. Finally, we have demon-
strated the robustness of the model, by segmenting real-
video sequences depicting different classes of scenes:
various types of crowds, highway traffic, and scenes
containing a combination of globally homogeneous motion
and highly stochastic motion (e.g., rotating windmills plus
waving tree branches, or whirlpools).

1874 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

Fig. 9. Segmentation performance versus the MRF connectivity of the

LDT.

Fig. 8. Results on the texture database: Rand index versus n for videos with K ¼ f2; 3; 4g segments.

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

APPENDIX A

DERIVATION OF THE M-STEP FOR LAYERED DYNAMIC

TEXTURES

The maximization of the Q function with respect to the
LDT parameters leads to two optimization problems. The
first is a maximization with respect to a square matrix X

of the form

X� ¼ arg max
X

� 1

2
tr X�1A
� �

� b
2

log Xj j: ð54Þ

Taking derivatives and setting to zero yield

@

@X

�1

2
tr X�1A
� �

� b
2

log Xj j ¼ 0 ð55Þ

¼ 1

2
X�TATX�T � b

2
X�T) X� ¼ 1

b
A: ð56Þ

The second is a maximization with respect to a matrix X of

the form

X� ¼ arg max
X

� 1

2
tr Dð�BXT �XBT þXCXT Þ
� �

; ð57Þ

where D and C are the symmetric and invertible matrices.

The solution is

@

@X

�1

2
tr Dð�BXT �XBT þXCXT Þ
� �

¼ 0

¼ � 1

2
ð�DB�DTBþDTXCT þDXCÞ

ð58Þ

¼ DB�DXC ¼ 0) X� ¼ BC�1: ð59Þ

The optimal parameters are found by collecting the relevant

terms in (21) and maximizing. This leads to a number of

problems of the form of (21), namely,

CHAN AND VASCONCELOS: LAYERED DYNAMIC TEXTURES 1875

Fig. 12. Examples of motion segmentation using LDT. (a) Crowd moving around a pillar (K ¼ 3; n ¼ 5). (b) Crowd moving at different speeds

(K ¼ 4; n ¼ 15). (c) Crowd around an escalator (K ¼ 5; n ¼ 20). (d) Highway on ramp (K ¼ 3; n ¼ 10). (e) Whirlpool (K ¼ 3; n ¼ 10). (f) Windmill and

trees (K ¼ 4; n ¼ 2). The video is on the left and segmentation on the right.

Fig. 11. Segmentation of a whirlpool using layered dynamic textures with K ¼ f2; 3; 4g and n ¼ 5.

Fig. 10. Segmentation of (a) a ferris wheel and (b) a windmill, using LDT (n ¼ 2 and n ¼ 10) and DTM (both n ¼ 10).

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

AðjÞ� ¼ arg max
AðjÞ

� 1

2
tr QðjÞ

�1
�
� ðjÞAðjÞT

h
�AðjÞ ðjÞT þAðjÞ�ðjÞ1 AðjÞ

T
	i
;

ð60Þ

�ðjÞ� ¼ arg max
�ðjÞ

� 1

2
tr QðjÞ

�1 �x̂ðjÞ1 �ðjÞ
T

�h

� �ðjÞx̂ðjÞ1

T
þ �ðjÞ�ðjÞT

	i
;

ð61Þ

C
ðjÞ�
i ¼ arg max

C
ðjÞ
i

� 1

2

1

rðjÞ
ẑ
ðjÞ
i �2C

ðjÞ
i �

ðjÞ
i

�

þ CðjÞi �
ðjÞ
i C

ðjÞ
i

T	
;

ð62Þ

�y
ðjÞ�
i ¼ arg max

�y
ðjÞ
i

� ẑ
ðjÞ
i

2rðjÞ

�
� 2�y

ðjÞ
i

�X�
t¼1

yi;t � CðjÞi �
ðjÞ
i

�

þ �ð�yðjÞi Þ
2

�
:

ð63Þ

Using (59) leads to the solutions of (14) in (22). The
remaining problems are of the form of (54)

QðjÞ� ¼ arg max
QðjÞ

� 1

2
tr QðjÞ

�1
P̂
ðjÞ
1;1 � x̂

ðjÞ
1 �ðjÞ

T
�h

� �ðjÞx̂ðjÞ1

T
þ �ðjÞ�ðjÞT þ �ðjÞ2 � ðjÞAðjÞ

T

�AðjÞ ðjÞT þAðjÞ�ðjÞ1 AðjÞ
T
	i
� �

2
log QðjÞ

;

rðjÞ� ¼ arg max
rðjÞ

�1

2rðjÞ

Xm
i¼1

ẑ
ðjÞ
i

�X�
t¼1

�
yi;t � �y

ðjÞ
i

�2

� 2C
ðjÞ
i �

ðjÞ
i þ C

ðjÞ
i �

ðjÞ
i C

ðjÞ
i

T
�
� �

2
N̂j log rðjÞ:

In the first case, it follows from (56) that

QðjÞ� ¼ 1

�
P̂
ðjÞ
1;1 � x̂

ðjÞ
1 �ðjÞ

T � �ðjÞx̂ðjÞ1

T
þ �ðjÞ�ðjÞT

�
þ �ðjÞ2 � ðjÞAðjÞ

T �AðjÞ ðjÞT þAðjÞ�ðjÞ1 AðjÞ
T
	 ð64Þ

¼ 1

�
P̂
ðjÞ
1;1 � �ðjÞ��ðjÞ�

T þ �ðjÞ2 �AðjÞ� ðjÞ
T

� 	
: ð65Þ

In the second case,

rðjÞ� ¼ 1

�N̂j

Xm
i¼1

ẑ
ðjÞ
i

�X�
t¼1

�
yi;t � �y

ðjÞ
i

�2 � 2C
ðjÞ
i �

ðjÞ
i

þ CðjÞi �
ðjÞ
i C

ðjÞ
i

T
�

¼ 1

�N̂j

Xm
i¼1

ẑ
ðjÞ
i

�X�
t¼1

�
yi;t � �y

ðjÞ
i

�2 � CðjÞ�i �
ðjÞ
i

�
:

APPENDIX B

SAMPLING A STATE SEQUENCE FROM AN LDS CON-

DITIONED ON THE OBSERVATION

In this appendix, we present an algorithm to efficiently
sample a state sequence x1:� ¼ fx1; � � � ; x�g from an LDS

with parameters � ¼ fA;Q;C;R; �; �yg, conditioned on the

observed sequence y1:� ¼ fy1; � � � ; y�g. The sampling algo-

rithm first runs the Kalman filter [59] to compute state

estimates conditioned on the current observations

x̂t�1
t ¼ IEðxtjy1:t�1Þ; V̂ t�1

t ¼ covðxtjy1:t�1Þ;
x̂tt ¼ IEðxtjy1:tÞ; V̂ t

t ¼ covðxtjy1:tÞ;
ð66Þ

via the recursions

V̂ t�1
t ¼ AV̂ t�1

t�1 A
T þQ;

Kt ¼ V̂ t�1
t CT

�
CV̂ t�1

t CT þR
��1

;

V̂ t
t ¼ V̂ t�1

t �KtCV̂
t�1
t ;

x̂t�1
t ¼ Ax̂t�1

t�1; x̂tt ¼ x̂t�1
t þKt

�
yt � �y� Cx̂t�1

t

�
;

ð67Þ

where t ¼ 1; . . . ; � and the initial conditions are x̂0
1 ¼ � and

V̂ 0
1 ¼ Q. From the Markovian structure of the LDS (Fig. 1a),

pðx1:� jy1:�Þ can be factored in reverse order

pðx1:� jy1:�Þ ¼ pðx� jy1:�Þ
Y��1

t¼1

pðxtjxtþ1; y1:� Þ ð68Þ

¼ pðx� jy1:� Þ
Y��1

t¼1

pðxtjxtþ1; y1:tÞ; ð69Þ

where pðx� jy1:�Þ is a Gaussian with parameters already

computed by the Kalman filter, x� � Nðx̂�� ; V̂ �
� Þ. The

remaining distributions pðxtjxtþ1; y1:tÞ are Gaussian with

mean and covariance given by the conditional Gaussian

theorem [45]:

�t ¼ IE½xtjxtþ1; y1:t�
¼ IE½xtjy1:t� þ covðxt; xtþ1jy1:tÞcovðxtþ1jy1:tÞ�1

� ðxtþ1 � IE½xtþ1jy1:t�Þ

¼ x̂tt þ V̂ t
t A

T
�
V̂ t
tþ1

��1�
xtþ1 � x̂ttþ1

�
;

ð70Þ

�t ¼ covðxtjxtþ1; y1:tÞ
¼ covðxtjy1:tÞ � covðxt; xtþ1jy1:tÞcovðxtþ1jy1:tÞ�1

� covðxtþ1; xtjy1:tÞ

¼ V̂ t
t � V̂ t

t A
T
�
V̂ t
tþ1

��1
AV̂ t

t :

ð71Þ

where we have used covðxt; xtþ1jy1:tÞ ¼ covðxt; Axtjy1:tÞ ¼
V̂ t
t A

T . A state sequence fx1; � � � ; x�g can thus be sampled in

reverse order, with x� � Nðx̂�� ; V̂ �
� Þ and xt � Nð�t;�tÞ for

0 < t < � .

APPENDIX C

DERIVATION OF THE VARIATIONAL APPROXIMATION

FOR LDT

In this appendix, we derive a variational approximation for

the LDT. The L function of (37) is minimized by sequentially

optimizing each of the factors qðxðjÞÞ and qðziÞ, while holding

the remaining constant [51]. For convenience, we define the

variableW ¼ fX;Zg. Rewriting (37) in terms of a single factor

qðwlÞ, while holding all others constant,

1876 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

LðqðW ÞÞ /
Z
qðwlÞ log qðwlÞdwl

�
Z
qðwlÞ

Z Y
k 6¼l

qðwkÞ log pðW;Y ÞdW
ð72Þ

¼
Z
qðwlÞ log qðwlÞdwl �

Z
qðwlÞ log p̂ðwl; Y Þdwl

¼ KL qðwlÞ p̂ðwl; Y Þkð Þ;
ð73Þ

where in (72), we have dropped terms that do not depend

on qðwlÞ (and hence, do not affect the optimization), and

defined p̂ðwl; Y Þ as

log p̂ðwl; Y Þ / IEWk6¼l ½log pðW;Y Þ�; ð74Þ

where

IEWk 6¼l ½log pðW;Y Þ� ¼
Z Y

k6¼l
qðwkÞ log pðW;Y ÞdWk6¼l: ð75Þ

Since (73) is minimized when q�ðwlÞ ¼ p̂ðwl; Y Þ, the optimal

factor qðwlÞ is equal to the expectation of the joint log-

likelihood with respect to the other factors Wk 6¼l. We next

derive the forms of the optimal factors qðxðjÞÞ and qðziÞ. For

convenience, we ignore normalization constants during the

derivation and reinstate them after the forms of the factors

are known.

C.1 Optimization of qðxðjÞÞ
Rewriting (74) with wl ¼ xðjÞ,

log q�
�
xðjÞ
�
/ log p̂

�
xðjÞ; Y

�
¼ IEZ;Xk6¼j ½log pðX;Y ; ZÞ�

/ IEZ;Xk 6¼j

Xm
i¼1

z
ðjÞ
i log p

�
yijxðjÞ; zi ¼ j

�
þ log p

�
xðjÞ
�" #

¼
Xm
i¼1

IEzi

�
z
ðjÞ
i

�
log p

�
yijxðjÞ; zi ¼ j

�
þ log p

�
xðjÞ
�
;

ð76Þ

where we have dropped the terms of the complete data log-

likelihood (15) that are not a function of xðjÞ. Defining

h
ðjÞ
i ¼ IEzi ½z

ðjÞ
i � ¼

R
qðziÞzðjÞi dzi, and the normalization term

ZðjÞq ¼
Z
pðxðjÞÞ

Ym
i¼1

p
�
yijxðjÞ; zi ¼ j

�hðjÞi dxðjÞ; ð77Þ

the optimal qðxðjÞÞ is given by (38).

C.2 Optimization of qðziÞ
Rewriting (74) with wl ¼ zi and dropping terms that do not

depend on zi,

log q�ðziÞ / log p̂ðzi; Y Þ ¼ IEX;Zk6¼i ½log pðX;Y ; ZÞ� ð78Þ

/ IEX;Zk6¼i

XK
j¼1

z
ðjÞ
i log p

�
yijxðjÞ; zi ¼ j

�"

þ logðViðziÞ
Y
ði;i0Þ2E

Vi;i0 ðzi; zi0 ÞÞ

3
5 ð79Þ

¼
XK
j¼1

z
ðjÞ
i IExðjÞ ½log p

�
yijxðjÞ; zi ¼ j

�
�

þ
X
ði;i0Þ2E

IEzi0 ½logVi;i0 ðzi; zi0 Þ� þ logViðziÞ:
ð80Þ

Looking at the last two terms, we haveX
ði;i0Þ2E

IEzi0 ½logVi;i0 ðzi; zi0 Þ� þ logViðziÞ ð81Þ

¼
X
ði;i0Þ2E

IEzi0

XK
j¼1

z
ðjÞ
i z
ðjÞ
i0 log

�1

�2
þ log �2

" #

þ
XK
j¼1

z
ðjÞ
i log�

ðjÞ
i

ð82Þ

¼
XK
j¼1

z
ðjÞ
i

X
ði;i0Þ2E

h
ðjÞ
i0 log

�1

�2
þ log�

ðjÞ
i

0
@

1
A: ð83Þ

Hence, log q�ðziÞ /
PK

j¼1 z
ðjÞ
i logðgðjÞi �

ðjÞ
i Þ, where g

ðjÞ
i is de-

fined in (41). This is a multinomial distribution of normal-
ization constant

PK
j¼1ð�

ðjÞ
i g
ðjÞ
i Þ, leading to (39) with h

ðjÞ
i as

given in (40).

C.3 Normalization Constant for qðxðjÞÞ
Taking the log of (77),

logZðjÞq ¼ log

Z
pðxðjÞÞ

Ym
i¼1

Y�
t¼1

p
�
yi;tjxðjÞt ; zi ¼ j

�hðjÞ
i dxðjÞ:

Note that the term pðyi;tjxðjÞ; zi ¼ jÞ
h
ðjÞ
i does not affect the

integral when h
ðjÞ
i ¼ 0. Defining I j as the set of indices with

nonzero h
ðjÞ
i , i.e., I j ¼ fijhðjÞi > 0g, we have

logZðjÞq ¼ log

Z
pðxðjÞÞ

Y
i2I j

Y�
t¼1

p
�
yi;tjxðjÞt ; zi ¼ j

�hðjÞi dxðjÞ; ð84Þ

where

p
�
yi;tjxðjÞt ; zi ¼ j

�hðjÞi ¼ G�yi;t; CðjÞi x
ðjÞ
t þ �y

ðjÞ
i ; r

ðjÞ�hðjÞi ð85Þ

¼
�
2�rðjÞ

��1
2h
ðjÞ
i

2�rðjÞ

h
ðjÞ
i

 !1
2

�G yi;t; C
ðjÞ
i x

ðjÞ
t þ �y

ðjÞ
i ;

rðjÞ

h
ðjÞ
i

 !
:

ð86Þ

For convenience, we define an LDS over the subset I j
parameterized by �̂j ¼ fAðjÞ; QðjÞ; ĈðjÞ; R̂j; �

ðjÞ; ŷðjÞg, where

ĈðjÞ ¼ ½CðjÞi �i2I j ; ŷ
ðjÞ ¼ ½�yðjÞi �i2I j and R̂j is a diagonal with

entries r̂
ðjÞ
i ¼ rðjÞ

h
ðjÞ
i

for i 2 I j. Noting that this LDS has

conditional observation likelihood

p̂
�
yi;tjxðjÞt ; zi ¼ j

�
¼ G

�
yi;t; C

ðjÞ
i x

ðjÞ
t þ �y

ðjÞ
i ; r̂

ðjÞ
i

�
; ð87Þ

we can rewrite

CHAN AND VASCONCELOS: LAYERED DYNAMIC TEXTURES 1877

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

p
�
yi;tjxðjÞt ; zi ¼ j

�hðjÞi ¼ �2�rðjÞ�1
2ð1�h

ðjÞ
i Þ�hðjÞi ��1

2

� p̂
�
yi;tjxðjÞt ; zi ¼ j

�
;

ð88Þ

and from (84),

logZðjÞq ¼ log

Z
p
�
xðjÞ
�Y
i2I j

Y�
t¼1

h�
2�rðjÞ

�1
2ð1�h

ðjÞ
i Þ

�
�
h
ðjÞ
i

��1
2p̂
�
yi;tjxðjÞt ; zi ¼ j

�i
dxðjÞ:

ð89Þ

Under the LDS �̂j, the likelihood of Yj ¼ ½yi�i2I j is

p̂jðYjÞ ¼
Z
p
�
xðjÞ
�Y
i2I j

Y�
t¼1

p̂
�
yi;tjxðjÞt ; zi ¼ j

�
dxðjÞ; ð90Þ

and hence, it follows that

logZðjÞq ¼
�

2

X
i2I j

�
1� hðjÞi

�
logð2�rðjÞÞ

� �
2

X
i2I j

logh
ðjÞ
i þ log p̂jðYjÞ:

ð91Þ

C.4 Lower Bound on pðY Þ
To lower bound pðY Þ as in (46), we compute the L function

of (34). We start with

log
qðX;ZÞ
pðX;Y ; ZÞ ¼ log qðX;ZÞ � log pðX;Y ; ZÞ ð92Þ

¼
X
j

log q
�
xðjÞ
�
þ
X
i

log qðziÞ
" #

�
X
j;i

z
ðjÞ
i

"

� log p
�
yijxðjÞ; zi ¼ j

�
þ
X
j

log p
�
xðjÞ
�
þ log pðZÞ

#
:

ð93Þ

Substituting the optimal q� of (38) and (39),

log
qðX;ZÞ
pðX;Y ; ZÞ ¼

X
j;i

h
ðjÞ
i log p

�
yijxðjÞ; zi ¼ j

�

þ
X
j

log p
�
xðjÞ
�
�
X
j

logZðjÞq þ
X
j;i

z
ðjÞ
i logh

ðjÞ
i

�

�
X

j;i

z
ðjÞ
i � log p

�
yijxðjÞ; zi ¼ j

�
þ
X
j

log p
�
xðjÞ
�

þ log pðZÞ
�

ð94Þ

¼
X
j;i

�
h
ðjÞ
i � z

ðjÞ
i

�
log p

�
yijxðjÞ; zi ¼ j

�
�
X
j

logZðjÞq

þ
X
j;i

z
ðjÞ
i logh

ðjÞ
i � log pðZÞ:

ð95Þ

From (10),

log pðZÞ ¼
X
j;i

z
ðjÞ
i log�

ðjÞ
i

þ
X
ði;i0Þ2E

log �2 þ

X
j

z
ðjÞ
i z
ðjÞ
i0 log

�1

�2

�
� logZZ:

Substituting this into (95) and taking the expectation with

respect to q�ðX;ZÞ yields the KL divergence:

KL qðX;ZÞ pðX;Y ; ZÞkð Þ ¼ �
X
j

logZðjÞq þ
X
j;i

h
ðjÞ
i � log

h
ðjÞ
i

�
ðjÞ
i

�
X
ði;i0Þ2E

log �2 þ
X
j

h
ðjÞ
i h

ðjÞ
i0 log

�1

�2

" #
þ logZZ:

ð96Þ

Substituting into (46) yields the log-likelihood lower

bound (47).

ACKNOWLEDGMENTS

The authors thank Rene Vidal for the code from [11], [12],

Mubarak Shah for the crowd videos [32], [57], Renaud

Péteri, Mark Huiskes, and Sándor Fazekas for the windmill

video [58], and the anonymous reviewers for insightful

comments. This work was funded by a US National Science

Foundation (NSF) award IIS-0534985 and an NSF IGERT

award DGE-0333451.

REFERENCES

[1] B.K.P. Horn, Robot Vision. McGraw-Hill Book Company, 1986.
[2] B. Horn and B. Schunk, “Determining Optical Flow,” Artificial

Intelligence, vol. 17, pp. 185-204, 1981.
[3] B. Lucas and T. Kanade, “An Iterative Image Registration

Technique with an Application to Stereo Vision,” Proc. DARPA
Image Understanding Workshop, pp. 121-130, 1981.

[4] J. Barron, D. Fleet, and S. Beauchemin, “Performance of Optical
Flow Techniques,” Int’l J. Computer Vision, vol. 12, pp. 43-77, 1994.

[5] J. Wang and E. Adelson, “Representing Moving Images with
Layers,” IEEE Trans. Image Processing, vol. 3, no. 5, pp. 625-638,
Sept. 1994.

[6] B. Frey and N. Jojic, “Estimating Mixture Models of Images and
Inferring Spatial Transformations Using the EM Algorithm,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, pp. 416-422,
1999.

[7] G. Doretto, A. Chiuso, Y.N. Wu, and S. Soatto, “Dynamic
Textures,” Int’l J. Computer Vision, vol. 51, no. 2, pp. 91-109, 2003.

[8] G. Doretto, D. Cremers, P. Favaro, and S. Soatto, “Dynamic
Texture Segmentation,” Proc. Int’l Conf. Computer Vision, vol. 2,
pp. 1236-1242, 2003.

[9] P. Saisan, G. Doretto, Y. Wu, and S. Soatto, “Dynamic Texture
Recognition,” Proc. IEEE. Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 58-63, 2001.

[10] A.B. Chan and N. Vasconcelos, “Probabilistic Kernels for the
Classification of Auto-Regressive Visual Processes,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 846-851,
2005.

[11] R. Vidal and A. Ravichandran, “Optical Flow Estimation &
Segmentation of Multiple Moving Dynamic Textures,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 516-521,
2005.

[12] A. Ghoreyshi and R. Vidal, “Segmenting Dynamic Textures with
Ising Descriptors, ARX Models and Level Sets,” Proc. Dynamical
Vision Workshop in the European Conf. Computer Vision, 2006.

[13] A.B. Chan and N. Vasconcelos, “Layered Dynamic Textures,”
Advances in Neural Information Processing Systems, vol. 18, pp. 203-
210, 2006.

[14] S. Soatto, G. Doretto, and Y.N. Wu, “Dynamic Textures,” Proc.
IEEE Int’l Conf. Computer Vision, pp. 439-446, 2001.

[15] L. Yuan, F. Wen, C. Liu, and H.-Y. Shum, “Synthesizing Dynamic
Textures with Closed-Loop Linear Dynamic Systems,” Proc.
European Conf. Computer Vision, pp. 603-616, 2004.

[16] B. Ghanem and N. Ahuja, “Phase Based Modelling of Dynamic
Textures,” Proc. IEEE Int’l Conf. Computer Vision, 2007.

1878 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

[17] A.B. Chan and N. Vasconcelos, “Modeling, Clustering, and
Segmenting Video with Mixtures of Dynamic Textures,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 5,
pp. 909-926, May 2008.

[18] A.W. Fitzgibbon, “Stochastic Rigidity: Image Registration for
Nowhere-Static Scenes,” Proc. Int’l Conf. Computer Vision, vol. 1,
pp. 662-670, 2001.

[19] S.V.N. Vishwanathan, A.J. Smola, and R. Vidal, “Binet-cauchy
Kernels on Dynamical Systems and Its Application to the Analysis
of Dynamic Scenes,” Int’l J. Computer Vision, vol. 73, no. 1, pp. 95-
119, 2007.

[20] A.B. Chan and N. Vasconcelos, “Classifying Video with Kernel
Dynamic Textures,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2007.

[21] E. Cetingul, R. Chaudhry, and R. Vidal, “A System Theoretic
Approach to Synthesis and Classification of Lip Articulation,”
Proc. Int’l Workshop Dynamical Vision, 2007.

[22] R. Vidal and P. Favaro, “Dynamicboost: Boosting Time Series
Generated by Dynamical Systems,” Proc. Int’l Conf. Computer
Vision, 2007.

[23] S.M. Siddiqi, B. Boots, and G.J. Gordon, “A Constraint Generation
Approach to Learning Stable Linear Dynamical Systems,”
Advances in Neural Information Processing Systems, 2007.

[24] R. Costantini, L. Sbaiz, and S. Süsstrunk, “Higher Order SVD
Analysis for Dynamic Texture Synthesis,” IEEE Trans. Image
Processing, vol. 17, no. 1, pp. 42-52, Jan. 2008.

[25] M. Szummer and R. Picard, “Temporal Texture Modeling,” Proc.
IEEE Conf. Image Processing, vol. 3, pp. 823-826, 1996.

[26] G. Doretto, E. Jones, and S. Soatto, “Spatially Homogeneous
Dynamic Textures,” Proc. European Conf. Computer Vision, 2004.

[27] C.-B. Liu, R.-S. Lin, and N. Ahuja, “Modeling Dynamic Textures
Using Subspace Mixtures,” Proc. Int’l Conf. Multimedia and Expo,
pp. 1378-1381, 2005.

[28] C.-B. Liu, R.-S. Lin, N. Ahuja, and M.-H. Yang, “Dynamic Texture
Synthesis as Nonlinear Manifold Learning and Traversing,” Proc.
British Machine Vision Conf., vol. 2, pp. 859-868, 2006.

[29] G. Doretto and S. Soatto, “Dynamic Shape and Appearance
Models,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 12, pp. 2006-2019, Dec. 2006.

[30] R. Vidal, “Online Clustering of Moving Hyperplanes,” Advances in
Neural Information Processing Systems, 2006.

[31] L. Cooper, J. Liu, and K. Huang, “Spatial Segmentation of
Temporal Texture Using Mixture Linear Models,” Proc. Dynamical
Vision Workshop in the IEEE Intl. Conf. Computer Vision, 2005.

[32] S. Ali and M. Shah, “A Lagrangian Particle Dynamics Approach
for Crowd Flow Segmentation and Stability Analysis,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2007.

[33] R. Shumway and D. Stoffer, “Dynamic Linear Models with
Switching,” J. Am. Statistical Assoc., vol. 86, pp. 763-769, 1991.

[34] Y. Wu, G. Hua, and T. Yu, “Switching Observation Models for
Contour Tracking in Clutter,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 295-302, 2003.

[35] M. Isard and A. Blake, “A Mixed-State Condensation Tracker with
Automatic Model-Switching,” Proc. Int’l Conf. Computer Vision,
pp. 107-112, 1998.

[36] V. Pavlovi�c, B.J. Frey, and T.S. Huang, “Time-Series Classification
Using Mixed-State Dynamic Bayesian Networks,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 1999.

[37] V. Pavlovi�c, J. Rehg, and J. MacCormick, “Learning Switching
Linear Models of Human Motion,” Advances in Neural Information
Processing Systems, vol. 13, 2000.

[38] C.-J. Kim, “Dynamic Linear Models with Markov-Switching,”
J. Econometrics, vol. 60, pp. 1-22, 1994.

[39] S.M. Oh, J.M. Rehg, T. Balch, and F. Dellaert, “Learning and
Inferring Motion Patterns Using Parametric Segmental Switching
Linear Dynamic Systems,” Int’l J. Computer Vision, special issue on
learning for vision, vol. 77, nos. 1-3, pp. 103-124, 2008.

[40] Z. Ghahramani and G.E. Hinton, “Variational Learning for
Switching State-Space Models,” Neural Computation, vol. 12,
no. 4, pp. 831-864, 2000.

[41] R.H. Shumway and D.S. Stoffer, “An Approach to Time Series
Smoothing and Forecasting Using the EM Algorithm,” J. Time
Series Analysis, vol. 3, no. 4, pp. 253-264, 1982.

[42] P.V. Overschee and B.D. Moor, “N4SID: Subspace Algorithms for
the Identification of Combined Deterministic-Stochastic Systems,”
Automatica, vol. 30, pp. 75-93, 1994.

[43] D. Bauer, “Comparing the CCA Subspace Method to Pseudo
Maximum Likelihood Methods in the Case of No Exogenous
Inputs,” J. Time Series Analysis, vol. 26, pp. 631-668, 2005.

[44] N. Vasconcelos and A. Lippman, “Empirical Bayesian Motion
Segmentation,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 23, no. 2, pp. 217-221, Feb. 2001.

[45] S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice-Hall, 1993.

[46] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,” J. Royal
Statistical Soc. B, vol. 39, pp. 1-38, 1977.

[47] Z. Ghahramani and G. Hinton, “Parameter Estimation for Linear
Dynamical Systems,” Technical Report CRG-TR-96-2, Dept. of
Computer Science, Univ. of Toronto, 1996.

[48] R.M. Gray, “Vector Quantization” IEEE Trans. Acoustics, Speech,
and Signal Processing Magazine, vol. 1, no. 2, pp. 4-29, Apr. 1984.

[49] D.J.C. MacKay, “Introduction to Monte Carlo Methods,” Learning
in Graphical Models, pp. 175-204, MIT Press, 1999.

[50] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribu-
tion, and the Bayesian Restoration of Images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721-741, Nov.
1984.

[51] C.M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[52] J. Besag, “Spatial Interaction and the Statistical Analysis of Lattice
Systems,” J. Royal Statistical Soc., Series B (Methodological), vol. 36,
no. 2, pp. 192-236, 1974.

[53] A. Gunawardana and W. Byrne, “Convergence Theorems for
Generalized Alternating Minimization Procedures,” J. Machine
Learning Research, vol. 6, pp. 2049-2073, 2005.

[54] L. Hubert and P. Arabie, “Comparing Partitions,” J. Classification,
vol. 2, pp. 193-218, 1985.

[55] “Layered Dynamic Textures,” http://www.svcl.ucsd.edu/
projects/layerdytex, 2009.

[56] J. Shi and J. Malik, “Motion Segmentation and Tracking Using
Normalized Cuts,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1154-
1160, 1999.

[57] “UCF Crowd Motion Database,” http://www.cs.ucf.edu/~sali/
Projects/CrowdSegmentation, 2009.

[58] “Dyntex: A Comprehensive Database of Dynamic Textures,”
http://www.cwi.nl/projects/dyntex, 2009.

[59] A. Gelb, Applied Optimal Estimation. MIT Press, 1974.

Antoni B. Chan received the BS and MEng
degrees in electrical engineering from Cornell
University in 2000 and 2001, respectively, and
the PhD degree in electrical and computer
engineering from the University of California,
San Diego (UCSD), in 2008. He is a postdoctoral
researcher in the Statistical Visual Computing
Lab at UCSD. From 2001 to 2003, he was a
visiting scientist in the Vision and Image
Analysis Lab at Cornell University. From 2006

to 2008, he was the recipient of a US National Science Foundation
(NSF) IGERT Fellowship. His research interests are in computer vision
and machine learning. He is a member of the IEEE.

Nuno Vasconcelos received the Licenciatura
degree in electrical engineering and computer
science from the Universidade do Porto,
Portugal, in 1988, and the MS and PhD
degrees from the Massachusetts Institute of
Technology in 1993 and 2000, respectively.
From 2000 to 2002, he was a member of the
research staff at the Compaq Cambridge
Research Laboratory, which in 2002 became
the HP Cambridge Research Laboratory. In

2003, he joined the Electrical and Computer Engineering Department
at the University of California, San Diego, where he heads the
Statistical Visual Computing Laboratory. He is the recipient of a US
National Science Foundation CAREER Award and a Hellman Fellow-
ship. He has authored more than 75 peer-reviewed publications. His
work spans various areas, including computer vision, machine
learning, signal processing and compression, and multimedia systems.
He is a senior member of the IEEE.

CHAN AND VASCONCELOS: LAYERED DYNAMIC TEXTURES 1879

Authorized licensed use limited to: CityU. Downloaded on October 12, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

