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Abstract

Accurate lung tumor tracking in real time is a keystone to image-guided
radiotherapy of lung cancers. Existing lung tumor tracking approaches can
be roughly grouped into three categories: (1) deriving tumor position from
external surrogates; (2) tracking implanted fiducial markers fluoroscopically
or electromagnetically; (3) fluoroscopically tracking lung tumor without
implanted fiducial markers. The first approach suffers from insufficient
accuracy, while the second may not be widely accepted due to the risk
of pneumothorax. Previous studies in fluoroscopic markerless tracking are
mainly based on template matching methods, which may fail when the tumor
boundary is unclear in fluoroscopic images. In this paper we propose a novel
markerless tumor tracking algorithm, which employs the correlation between
the tumor position and surrogate anatomic features in the image. The positions
of the surrogate features are not directly tracked; instead, we use principal
component analysis of regions of interest containing them to obtain parametric
representations of their motion patterns. Then, the tumor position can be
predicted from the parametric representations of surrogates through regression.
Four regression methods were tested in this study: linear and two-degree
polynomial regression, artificial neural network (ANN) and support vector
machine (SVM). The experimental results based on fluoroscopic sequences of
ten lung cancer patients demonstrate a mean tracking error of 2.1 pixels and
a maximum error at a 95% confidence level of 4.6 pixels (pixel size is about
0.5 mm) for the proposed tracking algorithm.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Lung cancer radiotherapy is challenging even for patients with localized disease limited to
the thorax. In-field recurrences are common, despite the use of concurrent chemotherapy and
increasing doses of radiation. While tumor biology likely influences the aggressive clinical
course of most lung cancers, targeting inaccuracies may also cause geographical miss, resulting
in poor locoregional control with radiotherapy. A major source of targeting inaccuracy is from
the respiration-induced lung tumor motion (Jiang 2006).

Two major classes of techniques have been developed to manage respiratory tumor motion.
The main idea for the first class of techniques is to allow the tumor to move freely relative to the
treatment beams and try to integrate the motion effect into the treatment plan (geometrical or
dosimetric). These techniques include: (1) patient population based internal margin; (2) patient
specific internal margin; (3) internal target volume (ITV) method; (4) IMRT optimization using
a motion probability density function (PDF) (Trofimov et al 2005, Jiang 2006). The main
idea for the other class of techniques is to ‘freeze’ the tumor motion relative to the treatment
beams, which includes two categories: (1) control the tumor motion, using techniques such
as breath holding, forced shallow breathing or abdominal compression; (2) allow free tumor
motion but adjust the treatment equipment to maintain a constant target position in the beam’s
eye view when the beam is on, through respiratory gating, beam tracking or couch-based
motion compensation (Jiang 2006).

The beam tracking technique follows the target dynamically with the radiation beam
(Murphy 2004). It was first implemented in a robotic radiosurgery system (Adler et al 1999,
Ozhasoglu et al 2000, Schweikard et al 2000, Murphy 2002, Murphy et al 2003). For
linac-based radiotherapy, tumor motion can be compensated for using a dynamic multi-leaf
collimator (MLC) (Keall et al 2001, 2005, Neicu et al 2003, Papiez 2003, Suh et al 2004,
Papiez and Rangaraj 2005, Rangaraj and Papiez 2005, Webb 2005a, 2005b, Wijesooriya
et al 2005, Neicu et al 2006). Beam tracking could be the best technique for stereotactic
body radiation therapy (SBRT) due to its potentially high treatment efficiency and precision,
although there are still many technical challenges, one of which is how to track the tumor
location in real time with high precision.

Previous tumor tracking approaches can be roughly grouped into three categories:
(1) deriving the tumor position based on external surrogates, such as the patient abdominal
surface or lung volume (e.g., Jiang 2006). The relationship between the external surrogates
and the internal tumor position can vary from day to day, and even during the treatment of
the same day. Therefore, this approach is often considered to suffer from lack of accuracy.
(2) Fluoroscopic tracking of radiopaque fiducial markers implanted inside or near the tumor
(Shirato et al 2003, Tang et al 2007). The accuracy of this technology is better than 1.5 mm
for tracking moving targets (Shirato et al 2000), which is much higher than the external
surrogates approach. Another implementation of marker tracking is based on non-ionizing
electromagnetic fields, using small wireless transponders implanted in human tissue (e.g.,
Balter et al 2005). However, no matter how marker tracking is realized, as long as the
percutaneous marker implantation is involved, the clinical implementation of this technology
in lung cancer radiotherapy is limited due to the risk of pneumothorax (Arslan et al 2002,
Geraghty et al 2003). (3) Fluoroscopic tracking of the lung tumor without implanted fiducial
markers. We have tested some conventional motion tracking methods, such as template
matching, optical flow and active shape model (Cui et al 2007, Xu et al 2007, 2008) and
achieved promising results when the tumor has reasonably high contrast and clear boundary
in the images. However, these methods fail when the image quality is poor and the tumor is
hard to identify in the images, which is often the case for lung cancer fluoroscopic images.
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Figure 1. First frames of ten fluoroscopic image sequences used for testing the proposed tracking
algorithm.

Tracking the lung tumor in fluoroscopic image sequences is a very challenging task
because, compared to the colored video sequences that are often seen in the field of computer
vision, the fluoroscopic image sequences have much less information (gray scale versus
true color and less texture), and also in most cases the tumors do not have clear shapes.
Additionally, the image quality is poor in many situations. Therefore, traditional tracking
algorithms developed for computer vision applications may not be applied to fluoroscopic
tumor images. In this paper, we propose a novel tumor tracking algorithm to solve this
problem.

2. Methods and materials

2.1. Image data

To develop and evaluate the proposed algorithm, fluoroscopic image sequences for ten lung
cancer patients were acquired at a rate of 15 frames per second using an on-board x-ray imaging
(OBI) system (Varian Medical Systems, Palo Alto, CA, USA) and were used retrospectively.
Figure 1 shows the first frames of these ten fluoroscopic image sequences. The average
video length is about 40 s (i.e. 600 frames). For each patient, 15 s of fluoroscopic images
(225 frames) at the beginning of the sequence are used as training data. The remaining data
are used for testing the algorithm. The tumor positions are manually identified by expert
observers to serve as the ground truth. In patients where the tumor was hard to identify
visually in the fluoroscopic images, an anatomical structure nearby the tumor was considered
instead of the tumor. Position of the tumor or anatomical structure (referred to as tumor
hereafter) was identified using the center-of-mass of the tumor. The average diameter of the
tumor or anatomical structure was 6.7 mm (range 4.8–13.9 mm), and they were mostly located
in the middle or lower lobe. It was observed that the average motion range in the lateral and
superior–inferior directions was 5.7 mm and 16.9 mm, respectively. All our algorithms are
implemented on Matlab 7.3 platform.

2.2. Outline of the method

The proposed algorithm is based on the observation that the motion of some anatomic features
in the images (called surrogates) may be well correlated to the tumor motion. The correlation
between the tumor position and the motion pattern of surrogates can be captured by regression
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Figure 2. Left: the selection of surrogate ROIs (green rectangular regions—the tumor area is
marked in red) on the first frame of the fluoroscopic image sequence. Right: the selected three
surrogate ROIs.

analysis techniques. The proposed algorithm consists of four main steps: (1) selecting
surrogate regions of interest (ROIs); (2) extracting spatiotemporal patterns from the surrogate
ROIs; (3) establishing regression between the tumor position and the spatiotemporal patterns;
and (4) predicting the tumor location using the established regression model. In a clinical
setting, the first three steps would be performed using training image data before the treatment
while the fourth step would be performed in real time using the image data acquired during
treatment delivery. In this retrospective analysis, the first three steps are done using the first
225 frames in each sequence, and the fourth step is done with the remaining frames.

A few surrogate ROIs are created in the first frame of the training image sequence, which
are assumed to be more or less correlated with the tumor motion. In the remaining training
frames, the location of every surrogate ROI is the same while the image moves inside it.
One ROI can be placed to contain the diaphragm, if visible in the image, which usually has
a strong correlation with tumor motion in the superior–inferior (SI) direction (y-direction in
this proposal). Other ROIs can contain any visible moving anatomic structures such as the
lung boundary or even the tumor itself. In our preliminary experiments, only three surrogates
are selected and placed on the diaphragm, the lung boundary and the tumor itself, as shown
in figure 2. The diaphragm is closely related to the tumor motion in the y-direction, and the
nearby lung wall correlates to the tumor motion in the x-direction (lateral). If the image quality
is acceptable and the tumor itself has clear shape, the surrogate ROI placed on the tumor can
also be helpful to predict the tumor position.

The features in the selected surrogate ROIs are not tracked directly. Instead, we use
the principal component analysis (PCA) to map each surrogate ROI intensity map to a low-
dimensional space to get a parametric representation (Alpaydin 2004). In our experiments,
based on the obtained eigenvalues, we choose to use the first three principal components
to represent a surrogate ROI. This 3D parametric representation of three surrogate ROIs is
denoted as (z1, z2, . . . , z9), where (z1, z2, z3) is the parametric representation for the first ROI,
(z4, z5, z6) is for the second and (z7, z8, z9) is for the last. Figure 3 shows the 3D representations
of the three surrogate ROIs in PCA embedding space. We can see that a surrogate ROI is
reduced to a point in 3D PCA space, which follows a well-defined trajectory. We can also see
that the clearer the anatomic feature in the ROI, the better defined the trajectory. The location of
a surrogate ROI selected on the first training frame is fixed for the remaining frames while the
image moves inside it, leading to the trajectory in PCA space. This is illustrated in figure 4,
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Figure 3. 3D representations of the three surrogate ROIs in the PCA embedding space. Left:
ROI containing the diaphragm; middle: ROI containing the lung boundary and right: the ROI
containing the tumor itself.

Figure 4. 3D embedding of the diaphragm images using PCA, and representative images are
shown next to red circled points at different location in the 3D PCA space, representing different
positions of the diaphragm.

where representative images are shown next to red circled points at different parts of the
trajectory in 3D PCA space. As the diaphragm moves up and down, the corresponding point
in 3D PCA space moves along the trajectory from one end to the other.

Figure 5 illustrates the curve representations of tumor positions (x, y) and 3D coordinates of
three surrogate ROIs in PCA space. We can observe that there is a strong correlation between
tumor positions and surrogate coordinates. The third step mentioned earlier is to build a
regression model to predict the tumor position (x, y) based on the parametric representations
of surrogate ROIs (z1, z2, . . . , z9).

2.3. Principal component analysis (PCA)

PCA is a technique to reduce dimensionality with minimum loss of information. In this
analysis, the dimension is the size (number of pixels) in the ROIs, that is, if an ROI consists of
50 × 50 pixels, the dimension is n = 50 × 50 = 2500. Let Σ = 1

N

∑N
i=1 (xi − x̄)(xi − x̄)T be
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Figure 5. Curve representations of tumor positions (x, y) and 3D coordinates of three surrogates
(z1, z2, . . . , z9) in PCA space.

the n × n data covariance matrix, where xi is an n-dimensional data point (a vector containing
the pixel intensities for the ROI at time point i), x̄ is the sample mean and N is the number
of images in the sequence. Let U = [u1, u2, . . . , ud] be the matrix with unit eigenvectors
corresponding to the d largest eigenvalues � = diag[λ1, λ2, . . . , λd ] of the covariance matrix,
such that ΣU = UΛ (each eigenvector ui has dimension n × 1). Then we obtain the PCA
projection Y = UTX̃, where X̃ = X(I − eeT /N) is the zero mean version of the original data,
X is an n × N matrix with the N vectors xi, and Y is a point in the PCA space representing the
image in the surrogate ROI coordinates. Here e is a column vector of all ones. Geometrically,
U = [u1, u2, . . . , ud] forms a set of incomplete orthonormal basis for the data space, and the
original data points are most spread out in these basis directions.

2.4. Regression analysis

In order to predict the tumor position, a regression model between the tumor position and the
parametric representation of ROIs in PCA space needs to be built. Four regression methods are
tested in this work, including linear regression, two-degree polynomial regression, artificial
neural network (ANN) and support vector machine (SVM). Note that ANN and SVM can
be used for both regression and classification. In regression, target outputs can be any real
numbers, whereas in classification, target outputs have to be integers to indicate different
classes.

2.4.1. Linear regression. Suppose we want to predict the target y from an n-dimensional
input vector z = [z1, z2, . . . , zn] with a linear model y = a0 +

∑n
i=1 aizi . We can set up a

linear model in matrix forms: y = Zα + ε, where y is an m-by-1 vector of observations, Z is
an m × p matrix of predictors, α is a p × 1 vector of parameters and ε is an m × 1 vector of
random disturbances. The parameter vector α can be computed with the least-squares solution
α = (ZT Z)−1ZT y or with QR decomposition of Z.
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2.4.2. Two-degree polynomial regression. In this case we predict the target y from
an n-dimensional input vector z = [z1, z2, . . . , zn] with a two-degree polynomial model
y = a0 +

∑n
i=1 aizi +

∑n
i=1,j�i aij zizj . This can be treated as a linear predictor where the

dimension of the input is increased to z = [z1, z2, . . . , zn, z1z1, z1z2, . . . , z1zn, z2z2, z2z3, . . . ,

z2zn, . . . , znzn]. The procedure is then the same as with the linear model.

2.4.3. The artificial neural network (ANN). A typical neural network has three layers: input
layer, hidden layer and output layer (Alpaydin 2004). The output values of the output neurons
represent target labels (discrete numbers) for classification or target values (real numbers) for
regression. In our regression application, there are two output neurons to provide prediction
results of the tumor position (x and y coordinates). Each hidden neuron emits an output
yj = f (wj0 +

∑n
i=1 ziwji), where [z1, z2, . . . , zn] is the n-dimensional input sample, wji

denotes the input-to-hidden weights at the hidden neuron j from the input neuron i and
f (·) is a nonlinear activation function. A commonly used activation function is a sigmoid
function f (x) = 1/(1 + exp(−ax)), where a is a slope function. The relationship between
an output neuron and hidden neurons can be defined similarly. The weights of this network
can be initialized to zeros or to random numbers, and can be trained by the most general
backpropagation method. Backpropagation attempts to minimize the square error between
the desired outputs and the actual outputs, and the minimization problem can be efficiently
solved by stochastic gradient descent algorithm.

2.4.4. Support vector machine (SVM). (Drucker et al 1997, Burges 1998, Cristianini and
Shawe-Taylo 2000, Alpaydin 2004). Given a set of data points {(z1, y1), (z2, y2), . . . , (zn, yn)},
SVM can be used for classification (yi ∈ {1, −1}) or regression (yi ∈ R1). In classification
applications, SVM seeks to maximize the margin between two classes of samples

max
2

‖w‖2 subject to yi(w
Tzi + b) � 1, i = 1, 2, . . . , n.

This is equivalent to the minimizing problem

min 1
2 ‖w‖2 subject to yi(w

Tzi + b) � 1, i = 1, 2, . . . , n.

In the case where the data is not linearly separable, the classification task can be solved by
introducing some nonnegative slack variables

min
1

2
‖w‖2 + C

n∑

i=1

ξi subject to yi(w
Tzi + b) � 1, ξi � 0, i = 1, 2, . . . , n,

where C > 0 is the penalty parameter of the error term. In the nonlinear case, SVM utilizes
a nonlinear mapping φ(·) to map the data into a higher dimensional space. The optimization
problem is reduced to

min
1

2
‖w‖2 + C

n∑

i=1

ξi subject to yi(w
Tφ(zi) + b) � 1, ξi � 0, i = 1, 2, . . . , n.

K(zi, zj) = φ(zi)
T φ(zj) is called the kernel function, and four basic kernels are commonly

used:

(1) Linear: K(zi, zj) = zT
i zj.

(2) Polynomial: K(zi, zj) = (
γ zT

i zj + r
)d

, γ > 0.
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Figure 6. Tracking results of four regression methods for patient 1 as a function of frame index
number. (x, y) are the ground truth (in pixels) and (u, v) are the predicted results.

(3) Radial basis function (RBF): K(zi, zj) = exp(−‖zi − zj‖2), γ > 0.
(4) Sigmoid: K(zi, zj) = tanh

(
γ zT

i zj + r
)
.

Here r, d, and γ are kernel parameters.
For regression tasks, the standard form of support vector regression is

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

n∑

i=1

ξi + C

n∑

i=1

ξ ∗
i ,

subject to wTφ(zi) + b − yi � ε + ξi,

yi − wTφ(zi) − b � ε + ξ ∗
i ,

ξi � 0, ξ ∗
i � 0, i = 1, 2, . . . , n.

3. Experimental results

In our experiments, we use Matlab neural network toolbox for ANN implementation and
Libsvm for SVM implementation (Chang and Lin 2007, Hsu et al 2007). Figure 6 shows
tracking results of the four regression methods for patient 1. We can see that all four methods
perform better on the first 225 frames of training data than on the remaining testing data. The
two-degree polynomial regression may suffer from the over-fitting problem, as the tracking
errors for the testing data are much higher than that of the training data. For comparison, we
compute the mean tracking errors, ē and the maximum tracking error at a 95% confidence
level, e95. Table 1 summarizes the tracking results of the four methods on ten fluoroscopic
videos. We can see that the performance of all four regression methods is about the same, with
ANN regression performing slightly better than others at ē = 2.1 pixels and e95 = 4.6 pixels
(the pixel size is about 0.5 mm). It is worth noticing that ANN is also more robust than other
methods, with the maximum e95 of 6.5 pixels, while for the other three methods the maximum
e95 at least doubles this value.

We observed the time performance of our algorithm. For this study, three ROIs were
selected with a total of 9794 pixels. The average time needed to project the ROIs onto the
PCA space and to obtain the tumor position was 8.2 ms in a PC with 1.80 GHz CPU and 1.97 GB
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Table 1. Tracking results for the four regression methods. ē is the mean localization error, and e95
is the maximum localization error at a 95% confidence level. Pixel size is 0.486 mm for patients
2, 8 and 10, and 0.518 mm for the rest.

One-degree Two-degree ANN SVM
Moving range linear regression linear regression regression regression

Patient (x, y) in pixels ē, e95 ē, e95 ē, e95 ē, e95

1 10, 25 1.7, 3.2 1.8, 3.9 1.9, 3.4 1.8, 3.6
2 7, 28 1.9, 3.7 1.9, 4.5 1.3, 2.9 1.7, 3.9
3 9, 29 2.4, 5.5 2.4, 7.2 2.3, 6.2 2.2, 5.8
4 25, 41 6.0, 12.9 6.1, 14.2 4.0, 6.5 6.9, 11.6
5 8, 28 1.4, 2.9 1.4, 3.4 1.7, 4.5 1.2, 2.5
6 11, 32 1.5, 3.2 1.2, 2.6 2.3, 4.5 0.9, 2.0
7 12, 37 1.6, 3.2 1.7, 3.9 1.8, 3.8 1.4, 3.0
8 10, 38 1.4, 2.8 1.6, 4.1 2.4, 5.7 1.5, 3.3
9 8, 24 1.5, 3.1 1.3, 2.6 1.3, 3.1 1.4, 2.7

10 11, 51 2.5, 6.8 2.6, 7.6 2.3, 5.8 2.8, 13.8

Average 11.1, 33.3 2.2, 4.7 2.2, 5.4 2.1, 4.6 2.2, 5.2

of RAM. The time required to find the estimated tumor position in a new acquired image is in
the same order of magnitude as the time achieved by Moser et al (2008) of 6.4 ms, which is
short enough for real-time tracking.

4. Discussion and conclusions

We have proposed a novel tumor mass tracking algorithm without implanted fiducial markers.
Three surrogate ROIs are selected, and then the correlation between the tumor position and
the surrogate representations can be captured by regression analysis techniques. Experimental
results demonstrated the feasibility of the proposed tracking algorithm, which can be clinically
used for respiratory gating or beam tracking in the future.

The tumor tracking technique proposed in this paper has been compared with a previous
markerless tracking technique, the multiple template technique (Cui et al 2007). The tumor
localization results obtained here are comparable with the results of template matching. We
have tracked tumors which are visible to the observers or some visible anatomical structures
when the tumor is not distinguishable. Although the performance of both methods is
comparable, we believe that the method presented here will perform better than template
matching when tracking a non-distinguishable tumor. In that case, we would expect the
template matching technique, or any other methods that directly track the tumor, to fail;
however, with the current approach, as long as good surrogates are selected in some of the
ROIs, we would still be able to derive the tumor position.

The results presented in this paper indicate great promise for the development of
algorithms that can track lung tumors in real time, in a non-invasive way, with high accuracy.
Nevertheless, the achievement of these goals requires a number of further developments.
First, the current work can be expanded to design regression functions capable of taking
the smoothness of PCA trajectories (rather than single point locations) into account for the
prediction of tumor positions. Second, surrogate ROIs should be selected automatically in an
optimal way. Right now, we empirically selected three surrogate ROIs. There is no guarantee
that the manually selected surrogates are the best ones for a particular patient, in terms of their
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predictive power with respect to the tumor position. Since the motion of surrogate features
is used to predict tumor motion, the quality of tumor tracking is very likely to improve if the
ROIs are carefully selected.

There is also a need to determine the number of surrogates on which to base the prediction.
We have used three ROIs in the paper. There is, however, no reason to believe that this is the
optimal number of surrogates. In contrast, as is well known in statistics, improved predictions
can typically be obtained with recourse to the law of large numbers, by taking averages over
large numbers of measurements. In the context of fluoroscopic image tracking, this advises
the adoption of regression functions based on a large number of surrogate ROIs. However,
the amount of training data required to estimate the regression function grows exponentially
with the number of variables of the regression problem. This number is the product of
the number of surrogate ROIs with the number of PCA coefficients per ROI. When too
large a number of ROIs are used, the training requirements become practically infeasible.
This implies that there is a trade-off between the prediction accuracy and dimensionality
problem. Finding the optimal value for this trade-off requires a careful selection of both the
number of surrogates and the number of coefficients per surrogate. We have, so far avoided
dimensionality problems by resorting to three surrogates and three PCA coefficients. Once
again, there is no reason to believe that those are optimal numbers which will lead to the best
possible predictions. A better strategy is to rely on statistical learning techniques to determine
which coefficients are most informative for the prediction, and limit the regression problem to
these.

The technique presented here finds the regression between tumor and surrogate
representation based on knowledge of the tumor position ground truth of the training set. The
clinical implementation of this method has to be well thought in order to reduce treatment time.
The regression could potentially be performed before the first treatment from a fluoroscopic
sequence uniquely acquired for this purpose. However, PCA is sensitive to the tumor size and
position, so if the tumor changes size or relative position with respect to the chosen surrogates,
this regression needs to be re-calculated. These issues will be addressed in the future work.

One may note that all the image sequences used in this work are only from anterior–
posterior (AP) views. This is because tumors in images from other views, such as lateral view,
are often much more difficult to identify even by expert observers. Thus for those images it
is impossible to develop ground truth to test the developed algorithm. In the future work, we
plan to use images with carefully implanted fiducial markers as the ground truth in order to
test our algorithms in different views.

Finally one should note that due to the nature of fluoroscopic images, only 2D information
of the tumor position can be extracted from them. Although superior–inferior motion is
normally the largest one of all motions, and it is captured in fluoroscopic images, of the other
two motions (lateral and anterior–posterior) only one will be captured by fluoro. In order to
achieve complete 3D tracking, either a good correlation between the third coordinate and the
planar image is obtained, for example from a 4D-CT scan of the patient, or another imaging
method is used for the third coordinate. This will also be addressed in the future work.
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