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a b s t r a c t

The biological plausibility of statistical inference and learning, tuned to the statistics of natural images, is
investigated. It is shown that a rich family of statistical decision rules, confidence measures, and risk esti-
mates, can be implemented with the computations attributed to the standard neurophysiological model
of V1. In particular, different statistical quantities can be computed through simple re-arrangement of lat-
eral divisive connections, non-linearities, and pooling. It is then shown that a number of proposals for the
measurement of visual saliency can be implemented in a biologically plausible manner, through such re-
arrangements. This enables the implementation of biologically plausible feedforward object recognition
networks that include explicit saliency models. The potential of combined attention and recognition is
illustrated by replacing the first layer of the HMAX architecture with a saliency network. Various saliency
measures are compared, to investigate whether (1) saliency can substantially benefit visual recognition
and (2) the benefits depend on the specific saliency mechanisms implemented. Experimental evaluation
shows that saliency does indeed enhance recognition, but the gains are not independent of the saliency
mechanisms. Best results are obtained with top-down mechanisms that equate saliency to classification
confidence.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The effectiveness and speed of biological solutions to the object
recognition problem have long been a source of inspiration for rec-
ognition algorithms. The introduction of the back-propagation
algorithm (Rumelhart, Smolenksy, Mcclelland, & Hinton, 1986)
established a framework for the automated design of recognition
networks, and was highly successful for a number of problems.
In particular, convolutional networks were shown to be highly
competitive with the best non-biological classifiers for tasks such
as hand-written character recognition (Lecun, Bottou, Bengio, &
Haffiner, 1998). More recent results, by Thorpe, Fize, and Marlot
(1996), on the ability of human subjects to categorize natural
scenes, showed that such tasks can be performed with high accu-
racy (close to 94%) and very quickly (in less than 150 ms). The fact
that such low recognition times leave no room for propagation of
feedback across cortical areas, reinforced the significance of feed-
forward networks in visual recognition, at least in its early stages.
It also spurred a renewed interest in the family of feedforward
architectures, of which the most recent popular element is the
HMAX network of Riesenhuber and Poggio (1999) and Serre et al.
(2007). This network emulates the organization of the visual sys-
tem as a cascade of layers of simple and complex cells (Hubel &
Wiesel, 1962), and has been recently shown to achieve state-of-
ll rights reserved.
the-art performance for a number of recognition tasks (Mutch &
Lowe, 2008).

There are, however, two important limitations of the HMAX
model. First, because the organization of the network lacks a clear
computational justification, HMAX networks also lack a principled
optimality criterion and training algorithm. This limits their
relevance as an explanation for the underlying biological computa-
tions. Second, HMAX networks do not account for the psychophys-
ical evidence on the important role played by visual attention in
top-down processes such as object recognition (Yarbus, 1967). This
limitation has been somewhat mitigated by research on recogni-
tion within multi-object displays, which complements the HMAX
network with serial attention mechanisms (Miau, Papageorgiou,
& Itti, 2001; Walther & Koch, 2006). In these methods, saliency is
computed with an independent bottom-up network, which (1) acts
as a ‘‘front-end” to the HMAX network, selecting patches of the vi-
sual field to recognize (Miau et al., 2001) or (2) modulates the con-
nections of some HMAX units, serially directing attention to
different proto-objects in the field of view (Walther & Koch,
2006). None of these works can account for the role of top-down
attention in recognition, or the benefits of saliency in single object
displays. These benefits have been documented in the computer vi-
sion literature (Kadir & Brady, 2001; Mikolajczyk & Schmid, 2004;
Sebe & Lew, 2003), but with recourse to interest-point detectors
that are not biologically plausible. Within the HMAX literature, it
has been shown that limiting the spatial pooling performed by
some of the HMAX units can lead to non-trivial recognition
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improvements (Mutch & Lowe, 2008). This, however, has been
done in a somewhat ad-hoc form, by restricting the receptive fields
of these units to a pre-defined window size. To the best of our
knowledge, no formal connection has been established between
HMAX itself and visual attention.

In this work, we suggest a modification of the HMAX architec-
ture that makes the connection between recognition and visual
saliency explicit. We start by investigating the biological plausibil-
ity of statistical inference and learning tuned to the statistics of
natural images. Building on prior work by Gao and Vasconcelos
(2009), we show that a rich family of statistical decision rules, con-
fidence measures, and risk estimates, can be implemented with the
computations attributed to the standard neurophysiological mod-
el of V1 (Carandini, Heeger, & Movshon, 1997; Carandini et al.,
2005; Heeger, 1992; Hubel & Wiesel, 1962): a combination of lin-
ear filtering, divisive normalization, non-linearities, and spatial
pooling. In fact, it is shown that all these computations have pre-
cise statistical meaning, contributing to an overall probabilistic
interpretation where simple cells compute posterior probabilities
and complex cells estimate statistical risks. It follows that a
number of statistical operators can be implemented with biological
hardware, through simple re-arrangement of lateral divisive con-
nections, non-linearities, and pooling. We next establish a con-
nection to saliency mechanisms, by showing that various
proposals for the measurement of visual saliency, from both the
biological and computer vision literatures, can be implemented
with biologically plausible reconfigurations of the standard
neurophysiological model. By replacing the first layer of the
HMAX architecture with these saliency networks, we conduct a
rigorous experimental study of three questions at the intersection
of attention and feedforward object recognition: (1) whether sal-
iency benefits visual recognition, (2) whether the gains depend on
the type of saliency considered (e.g. top-down vs. bottom-up) or
even the specific saliency algorithms, and (3) whether max-based
pooling has an advantage over the classical linear operator. We
note that the goal is not to investigate whether saliency is bene-
ficial as a means to serialize recognition when there are multiple
objects within the field of view, as has been done in Miau et al.
(2001), Walther and Koch (2006), or whether there are gains in
complementing recognition with an independent saliency path.
Instead, we consider the question of whether saliency is intrinsi-
cally important for recognition, even when there is a single object
in the field of view, as is suggested by computer vision research.
Or, in other words, whether in addition to its predominant role
within the ‘‘where” pathway, saliency also plays a role within
the ‘‘what” pathway of object recognition. It is shown that the
addition of saliency can significantly improve recognition perfor-
mance, but that this is not independent of the saliency principle
adopted. Best results are obtained with top-down saliency mech-
anisms that equate saliency to classification confidence.
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Fig. 1. Histogram of responses of a set of Gabor filters to a collection of natural
images, and its MAP fit by the GGD model with b = .5.
2. Method

We study the biological plausibility of statistical inference
tuned to the statistics of natural images. We start by reviewing
some known properties of these statistics, then consider statistical
inference, and finally the learning problem.

2.1. Natural image statistics

Various authors have shown that the empirical distribution of
the response X of a band-pass filter to a wide variety of natural
imagery is accurately modeled by the generalized Gaussian distri-
bution (GGD) (Buccigrossi & Simoncelli, 1999; Do & Vetterli, 2002;
Huang & Mumford, 1999). This distribution is defined as
PXðx;a; bÞ ¼ b
2aCð1=bÞ e

� jxj
að Þ

b

ð1Þ

where CðzÞ ¼
R1

0 e�ttz�1 dt, t > 0 is the Gamma function, a a scale
parameter, and b a parameter that controls the shape of the
distribution.

The parameters a, b can be learned in multiple ways, including
the method of moments (Huang & Mumford, 1999), maximum
likelihood (Do & Vetterli, 2002), or Bayesian maximum a posteriori
(MAP) estimation (Gao & Vasconcelos, 2009). We adopt the latter,
using a (Gamma distributed) conjugate prior for the scale parame-
ter a. Given a sample of training observations D ¼ fx1; . . . ; xng, this
leads to Gao and Vasconcelos (2009)

âb
MAP ¼

1
j

Xn

j¼1

jxjjb þ m

 !
; with j ¼ nþ g

b
ð2Þ

where g and m are prior hyper-parameters. The details of the prior
are not crucially important, as its role is simply to regularize the
feature responses, so as to prevent a null scale estimate. In our
implementation we use g = 1 and m = 10�3. The MAP estimate of
the shape parameter b is more complex. However, for natural
images this parameter tends to be fairly stable, usually taking val-
ues between .5 and .8 (Srivastava, Lee, Simoncelli, & Zhu, 2003).
We have found b = .5 to maximize the likelihood of a large sample
of responses of a set of Gabor filters to a random collection of nat-
ural images. This is illustrated in Fig. 1, which shows the log–prob-
ability histogram of the Gabor responses and the MAP GGD fit for
b = .5. This value was used in all experiments reported in this work.

2.2. Statistical inference

The biological plausibility of probabilistic inference with GGD
stimuli was studied in Gao and Vasconcelos (2009). This work
has shown that, for such stimuli, the fundamental computations
of probabilistic inference and learning can be implemented with
the standard computational model of simple and complex cells
(Carandini et al., 1997, 2005; Heeger, 1992; Hubel & Wiesel,
1962). In what follows, we extend the procedures introduced by
Gao and Vasconcelos (2009) to show that a much broader set of
computations, summarized in Table 1, is biologically plausible.
These computations are described in the second column of the ta-
ble. Although their biological implementation turns out to be pos-
sible with subtle modifications to the computations of Gao and
Vasconcelos (2009), namely the introduction of various non-linear-



Table 1
Operations of statistical inference under the GGD model. w(x) is defined as wðxÞ ¼ 1

2 log x
1�x

Operation Definition Under GGD statistics Notes

Single observation x inference
Neg. log-likelihood (NLL) �logPX(x)

lbaðxÞ ¼
jxj
a

� �b
þ K K ¼ log 2aCð1=bÞ

b

Log-likelihood ratio (LLR) log PXjY ðxj1Þ
PXjY ðxj0Þ

gðxÞ ¼ lba0
ðxÞ � lba1

ðxÞ
Target posterior (TP) PYjX(1jx) r[g(x)] r(x) = (1 + e�x)�1

Information I(Y; X = x) n{r[g(x)]} nðxÞ ¼ log 2þ x log xþ ð1� xÞ logð1� xÞ

Measures of detection confidence
LLRC(x) ~wfPY jXð1jxÞg ~wfr½gðxÞ�g ~wðxÞ ¼ wðxÞ; x P :5

0; x < :5

�
IC(x) ~nfPY jXð1jxÞg ~nfr½gðxÞ�g ~nðxÞ ¼ nðxÞ; x P :5

0; x < :5

�

Empirical risks based on sample R ¼ fx1; . . . ; xng
Expected NLL EX[ � logPX(x)] 1

n

Pn
i¼1a;bðxiÞ H[X]

Expected LLR EX log PXjY ðxj1Þ
PXjY ðxj0Þ

h i
1
n

Pn
i¼1gðxiÞ KL[PX(x)kPXjY(xj0)] �KL[PX(x)kPXjY(xj1)]

MI EX[I(Y; X = x)] 1
n

Pn
i¼1nfr½gðxiÞ�g I(Y; X)

Expected confidence (LLR) EX[LLR(x)] 1
n

Pn
i¼1

~wfr½gðxiÞ�g KL[PXjy(xj1)kPXjY(xj0)]

Expected confidence (MI) EX[IC(x)] 1
n

Pn
i¼1

~nfr½gðxiÞ�g
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ities, this extension substantially broadens the scope of the under-
lying computational framework. For example, the operations now
considered are critical to the design of networks that address
top-down problems such as object recognition. In fact, as will be
shown in Section 3.3, the performance of such top-down networks
can be quite sensitive to the precise choice of statistical inference
principle, and associated non-linearities.

Table 1 is organized in three sections. The first reports to infer-
ence from a single observation x. It starts with the most atomic
computation of statistical inference: the evaluation of the log–
probability logPX(x) of an observation x. A perceptual system can
use this probability to make optimal decisions regarding the clas-
sification of x with respect to a target and a null hypothesis. These
are identified by a class label Y that takes the values Y = 1 for the
target and Y = 0 for the null hypothesis. Optimal decision-making
is frequently defined in the minimum probability of error (MPE)
sense, under which the optimal procedure is the Bayes decision
rule (Duda, Hart, & Stork, 2001). This consists of thresholding the
log-likelihood ratio (LLR)

log
PXjYðxj1Þ
PXjYðxj0Þ

ð3Þ

and selecting the target hypothesis whenever this ratio is above
threshold. An equivalent implementation of this decision rule is to
choose the target hypothesis when the posterior target probability,
PYjX(1jx), is above 1/2. The process is illustrated in Fig. 2, for an ob-
ject recognition problem where the target is the class of airplanes.
Given a set of example images from this class, and a set of examples
from the null hypothesis (in this case any object other than a plane),
the visual system relies on a set of bandpass (e.g. Gabor) filters to
extract visual features characteristic of the two classes. The GGDs
that best fit the distributions, PXjY(xji),i 2 {0,1}, of filter responses
under the two hypotheses are then estimated. Given a new image,
the corresponding features are extracted, and the LLR of (3) is com-
puted, using these GGDs. Thresholding this quantity then produces
a binary map that indicates the locations of the target within the vi-
sual field.

The LLR is one of various quantities that play an important role
in statistical inference and optimal decision making. Table 1 in-
cludes a number of others, which we review in more detail in
the remainder of this section. A graphical illustration of these mea-
sures, in the context of object recognition, is presented in Figs. 4
and 5. An alternative optimality criteria for decision making, com-
monly referred as infomax (Linsker, 1988), is to maximize the
information about the class label Y. This criterion underlies many
classification procedures proposed in the machine learning litera-
ture, including logistic regression and some forms of boosting (log-
itBoost) (Friedman, Hastie, & Tibshirani, 2000; Hastie, Tibshirani, &
Friedman, 2001). Its maximization has also been proposed as a fun-
damental principle for the organization of perceptual systems
(Barlow, 2001; Linsker, 1988). In this case, inference is based on
the information

IðY; X ¼ xÞ ¼
X

i

PY jXðijxÞ log
PX;Y ðx; iÞ

PXðxÞPY ðiÞ
ð4Þ

that the observation x provides about the class Y.
The second section of Table 1 refers to the evaluation of confi-

dence measures. These complement the decision that x belongs
to the target class (target detection), by quantifying how confident
the classifier is about this decision. Obviously, the confidence mea-
sure should be derived from the principle used for inference. This
leads to two confidence measures based on the likelihood ratio

LLRCðxÞ ¼
1
2 log PYjX ð1jxÞ

PYjX ð0jxÞ
; PY jXð1jxÞP :5

0 PY jXð1jxÞ < :5;

(
ð5Þ

and the information measure

ICðxÞ ¼
IðY; X ¼ xÞ; PY jXð1jxÞP :5
0 PY jXð1jxÞ < :5:

�
ð6Þ

An important property is that, in both cases, the confidence
measure is ‘‘one-sided”, i.e. non-zero only if x is classified as a tar-
get. Although undesirable for the bottom-up problems considered
in Gao and Vasconcelos (2009), we will see that this property be-
comes quite important for success in top-down problems, such
as recognition. The two measures can be expressed as a transfor-
mation of the posterior target probability PYjX(1jx). As indicated
in Table 1, these transformations are

~wðxÞ ¼
1
2 log x

1�x ; x P :5
0; x < :5

(
ð7Þ

for LLRC(x) and

~nðxÞ ¼
log 2þ x log xþ ð1� xÞ logð1� xÞ; x P :5
0; x < :5

�
ð8Þ

for IC(x). They are shown in Fig. 3.
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Fig. 2. Object recognition with the LLR measure. The learning stage is shown at the top of the figure. Gabor filtering is applied to examples of the target and null class. In this
example, the target is the class of airplane objects. The probability distributions of the filter responses are then modelled with the GGD distribution. This enables the detection
of objects from the target class in previously unseen images, as shown at the bottom. Given the filter responses to an unseen image, and the GGD estimates learned during
training, the LLR is computed at each location of the visual field. Simple thresholding of this measure produces a binary map indicating the region of the vision field covered
by the object.
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Fig. 3. Non-linear transformations of the posterior target probability that produce the information I(Y; X = x) (left) and the confidence measures LLRC(x) (center) and IC(x)
(right).
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The third section of Table 1 addresses the characterization of
the random variable X. This enables tasks like (1) feature selection,
e.g. the identification of the most discriminant Gabor filters for a
particular detection problem or (2) the determination of the entro-
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py of X, e.g. to evaluate the uncertainty of the feature responses.
This characterization usually requires the computation of empiri-
cal averages of the statistical inference operators discussed above,
from a sample of observations R ¼ fx1; . . . ; xng. Such averages are
empirical estimates of popular statistical risks, which are refer-
enced in the right-most column. These include the entropy

H½X� ¼ �
Z

PXðxÞ log PXðxÞdx ¼ EX ½� log PXðxÞ� ð9Þ

the mutual information

IðY; XÞ ¼
X

i

Z
PX;Yðx; iÞ log

PX;Yðx; iÞ
PXðxÞPYðiÞ

dx ¼ EX ½IðY; X ¼ xÞ� ð10Þ

or the Kullback-Leibler (KL) divergence

KL½PXðxÞkQXðxÞ� ¼
Z

PXðxÞ log
PXðxÞ
Q XðxÞ

dx ¼ EX log
PXðxÞ
Q XðxÞ

� �
ð11Þ

Once again, each inference principle leads to a different risk. For
example, the expected LLR is a difference of two KL divergences

KL½PXðxÞkPXjY ðxj0Þ� � KL½PXðxÞkPXjYðxj1Þ� ð12Þ

while the expected value of the information measure I(Y; X = x) is
the mutual information I(Y; X) between the observation X and the
class label Y. Finally, it is also possible to rely on expectations of
the confidence measures of (5) and (6). These can be seen as one-
sided versions of the KL difference and mutual information, which
only average sample points identified as belonging to the target
class (by the Bayes decision rule). Such averaging is equivalent to
computing expectations with respect to the target class conditional
distribution PYjX(xj1), rather than PX(x). It, for example, simplifies
the KL difference of (12) into the more standard KL divergence
KL[PXjY(xj1)kPXjY(xj0)]. Again, their one-sided nature makes these
risks particularly effective for top-down problems, such as target
detection or recognition.

All risks based on KL divergences or mutual informations mea-
sure the discriminant power of X for target detection, and can be
used for feature selection. When X = {X1,. . .,Xk} is a set of bandpass
features, the dependencies of the feature responses to natural
images tend to carry little information about the class label
(Vasconcelos & Vasconcelos, 2009). This can be exploited to sim-
plify the joint mutual information of the features with the class la-
bel into

IðX; YÞ �
X

k

IðXk; YÞ ð13Þ

and justifies the computation of the overall discriminant power of X
by adding the discrimination measures derived from each feature
channel. We use this procedure to integrate the empirical risks of
Table 1 across feature channels.

2.3. Inference under the GGD

When X follows a GGD, the computations above can be simpli-
fied into the form shown in the third column of Table 1. Here, all
equations assume that X is either a GGD random variable of param-
eters (a, b), or a GGD random variable when conditioned on the
class Y. In this case, the class conditionals PXjY(xji) have parameters
(ai, bi), i 2 {0, 1}. It is also assumed that PY(0) = PY(1) = 1/2, but this
could be generalized into any label distribution. As noted by Gao
and Vasconcelos (2009), the form of the negative log-likelihood

lbaðxÞ ¼
jxjb

ab
þ K ð14Þ

is a straightforward consequence of (1). It follows that large values
of jxj indicate the locations of visual stimuli of low probability with-
in the field of view. This is illustrated in Figs. 4 and 5a–c, which
present two images, the magnitude jxj of their convolution with a
Gabor filter, and the NLL lbaðxÞ for the MAP GGD fit with b = .5. Note
that the latter emphasizes details of the object or background which
have very distinctive appearance from the rest of the image. In this
sense, the log-likelihood operator behaves as an interest point oper-
ator, similar to a number of interest point operators currently pop-
ular in computer vision (& Stephens, 1988; Kadir & Brady, 2001;
Mikolajczyk & Schmid, 2004; Sebe & Lew, 2003).

By definition, the LLR is a difference of two negative log likeli-
hoods. It can be written as

gðxÞ ¼ log
PXjYðxj1Þ
PXjYðxj0Þ

¼ jxj
a0

� �b

� jxj
a1

� �b

þ T; ð15Þ

where T ¼ log a0
a1

� �
. Figs. 4d and 5d show the LLR for motorbike

detection on the images of (a). In both cases, a1 was learned from
a collection of bike images (target hypothesis), and a0 from a ran-
dom collection of natural images (null hypothesis). The LLR empha-
sizes the region of the motorbike, which is approximately uniformly
highlighted, and inhibits the background.

Simple application of Bayes rule leads to the well known
relation

PY jXð1jxÞ ¼
1

1þ PXjY ðxj0Þ
PXjY ðxj1Þ

¼ r½gðxÞ�

where r(x) = (1 + e�x)�1 is the sigmoid function. Hence, the target
posterior is a sigmoidal transformation of the LLR. Similarly, (4)
can be written as I(Y;X = x) = n[PYjX(1jx)], with the non-linearity

nðxÞ ¼ log 2þ x log xþ ð1� xÞ logð1� xÞ

shown in Fig. 3. The application of these non-linearities to the
images of Figs. 4d and 5d are shown in Figs. 4 and 5(e–f). They re-
map the LLR into the range [0–1]. While Gao and Vasconcelos
(2009) have combined r(x) and n(x) into a single non-linearity,
there are non-trivial benefits in decoupling the two components.
Note, in particular, that while the sigmoidal transformation main-
tains the emphasis on the bike region, the non-linearity associated
with the information measure re-emphasizes some of the back-
ground. This is due to the fact that the latter is insensitive to the
sign of the LLR (or, equivalently, to the sign of PYjX(1jx) � 1/2). In a
strict information theoretic sense, the absence of an object is as
informative as its presence for object detection (the classifier is sim-
ply very confident in the assignment of the image pixels to the
background class). This is, however, undesirable for object detec-
tion, where the role is to detect object, and not background. When
the two non-linearities are decoupled, this problem can be cor-
rected by resorting to the measures of classification confidence of
(5) and (6), which can be computed by composition of the sigmoid
with the non-linearities of (7) and (8). The result, shown in Figs. 4
and 5(g–h) is a strong suppression of regions that belong to the
background. This suppression enables very non-trivial gains in rec-
ognition accuracy, as will be shown in Section 3.3. Finally, all empir-
ical risks can be computed by averaging some combination of these
non-linearities. In summary, as noted in Table 1, most operations of
statistical inference with GGD stimuli are non-linear mappings of
the LLR g(x) of (15).

2.4. Biological plausibility

Gao and Vasconcelos (2009) have shown that, given a sample R

from a GGD distribution and using the estimate of (2) in (14),

lbaðxÞ ¼ j
jxjbP

jjxjjb þ m
þ K ð16Þ
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The absolute value of x can be computed by half-wave rectifica-
tion, i.e. as jxj = x+ + x� where x+ = max(x, 0) and x� = max(�x, 0).
This leads to the sequence of computations attributed to simple
cells by the standard neurophysiological model of V1 (Carandini
et al., 1997, 2005; Heeger, 1992; Hubel & Wiesel, 1962): linear fil-
tering to produce a filter response x, half-wave rectification, and
divisive normalization by the responses of other cells. For simplic-
ity, we omit the decomposition into the rectified components
(x+, x�) from all equations and network diagrams, working with
jxj instead. The combination of absolute value and divisive normal-
ization as in (16) has recently been found to substantially improve
the recognition accuracy of classical convolutional networks (Jar-
rett, Kavukcuoglu, Ranzato, & LeCun, 2009; Pinto, Cox, & DiCarlo,
2008; Pinto, Doukhan, DiCarlo, & Cox, 2009). However, no princi-
pled justification has been given for the importance of these oper-
ations. The discussion above suggests that this importance follows
from their interpretation as estimators of the fundamental quan-
tity of statistical inference (log–probability). The network repre-
sentation of the simple cell is shown in Fig. 6.

Since the LLR is the difference of two log-probabilities, given
two samples R0 and R1 from the null and target class, respectively,
it follows that
gðxÞ ¼ jxjb
1
j
P

xj2R0
jxjjb þ m

� jxjb
1
j
P

xj2R1
jxjjb þ m

þ T ð17Þ

This leads to the biologically plausible implementation of the
LLR with the network of Fig. 7. The main difference with respect
to the network of Fig. 6 is that the filter responses are now dif-
ferentially normalized by the units in the two dashed boxes.
These boxes pool the response of other cells in a region T where
the training sample R is collected. The bottom (top) units collect
positive (negative) examples, producing an estimate of the GGD
scale for the target class (null hypothesis). The region T localizes
the cell computations. If T is the entire field of view, the GGD
models are average distributions for the feature responses across
the latter. For smaller T, the cell response is tuned to the statis-
tics of a sub-region of the field of view. Hence, the LLR can be
computed by a differentially normalized simple cell. This
prompted (Gao & Vasconcelos, 2009) to propose the LLR network
as a model for simple cells. There are, however, two significant
advantages in further including a sigmoidal non-linearity at the
network output, as is now proposed in Fig. 7. First, this turns
the cell into an estimator of the posterior target probability
PYjX(1jx), a more central quantity to the computations of Bayesian
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Fig. 6. The NLL is computed by a simple cell that normalizes a feature response x by
the responses of its spatially neighboring units.

Fig. 7. A LLR unit divisively normalizes a feature response x differentially, using the
outputs of two units that estimate GGD parameters under the target and null
hypothesis. With the inclusion of the output non-linearity r(�), this unit computes
posterior target probabilities.
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decision theory than the LLR. Second, it strengthens the biological
plausibility of the simple cell model, by accounting for the satu-
ration effects that are well known to hold for simple cell outputs,
but are not replicated by the LLR.

Most risk estimates in the lower third of Table 1 consist of pool-
ing some non-linear transformation of the posteriors r[g(xi)], with-
in some region R of the field of view. This makes the associated
computations good candidates for complex cells. An example is
the MI, for which the pooling operation is represented in Fig. 8.
This network pools the responses of its afferent simple cells, after
passing them through the non-linearity n(�). As shown in Fig. 3, this
non-linearity is very close to quadratic, making the network a very
good approximation of the standard energy model of complex cells
by Adelson and Bergen (1985). The remaining empirical expecta-
tions of Table 1 can be implemented by replacing n(�) with the
non-linearities ~wð�Þ or ~nð�Þ, also shown in Fig. 3. The only exception
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Fig. 8. A complex unit pools the responses of simple units within some region R,
after passing them through a non-linearity.
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is the entropy network, which does not rely on the LLR g(x). In this
case, the complex cell pools the response of the NLL units in R.

2.5. Saliency

A number of proposals for the measurement of visual saliency
can be implemented by the networks of Table 1. We consider
two bottom-up saliency methods, based on the detection of rare
features, and a top-down approach, discriminant saliency, which
accounts for the classes of the objects to detect.

2.5.1. Detection of rare features
A number of authors have advocated the detection of features of

low probability as a criterion for visual saliency (Bruce & Tsotsos,
2006; Rosenholtz, 1999; Zhang et al., 2008). As discussed above,
this criterion can be implemented with the NLL unit of Fig. 6.
The detection of low probability features is also closely related to
the most popular strategy for the detection of interest points in
computer vision. A number of detectors from this literature iden-
tify image structure such as corners (Harris & Stephens, 1988),
locations of strong image derivatives (Mikolajczyk & Schmid,
2004), wavelet coefficients of large magnitude (Sebe & Lew,
2003), or local maxima of image entropy (Kadir & Brady, 2001) that
have low probability of occurrence. The features that elicit a strong
response by NLL units generalize all these types of structure. For
example (see Table 1), the combination of NLL units with a com-
plex cell that pools its afferents linearly measures the entropy of
the underlying feature responses.

It should be noted, however, that NLL units are technically not
feature detectors, since they only compute the likelihood of feature
responses. One possibility to transform them into detectors is to
consider a discriminant version, that tests two hypotheses. Under
the null hypothesis, x follows a GGD distribution PX(x) of parame-
ters (a, b) estimated from the visual field. Under the alternative
hypothesis, x follows a non-informative distribution PX(x) / 1.
The likelihood ratio is g(x)/ � logPX(x) and the posterior
PYjX(1jx) = r(�logPX(x)) = r(jxj/a + K). The null hypothesis is re-
jected when jxj

a is large, i.e. large responses are better explained
by the non-informative distribution. This implies that such re-
sponses are rare within the field of view. From an implementation
point of view, the discriminant unit is identical to the NLL of Fig. 6,
with the addition of an output sigmoid. We denote this combina-
tion as a rare feature detector (RFD).

2.5.2. Discriminant saliency
Discriminant saliency is defined with respect to a target and a

null hypothesis. In the object detection context, the target is the
class of objects to detect while the null hypotheses encompasses
all stimuli outside that class. Locations of the visual field that can
be assigned to the target class with minimal probability of error
are declared salient, with degree of saliency equal to the classifi-
cation confidence (Gao & Vasconcelos, 2009; Mahadevan, &
Vasconcelos, 2007; Gao, Han, & Vasconcelos, 2009)

SðxÞ ¼
IðY ; X ¼ xÞ if PY jXð1jxÞ > :5
0; otherwise;

�
ð18Þ

This is the IC(x) measure of Table 1. If multiple responses
{x1,. . .,xK} from feature X are available, the saliency of X is defined
as IðX; YÞ ¼ 1

K

P
iSðxiÞ, i.e. the expected confidence (MI) measure of

the table. Saliency measurements derived from multiple feature
channels are combined with (13). The last third of Table 1 suggests
a number of other discriminant possibilities for measuring feature
saliency: KL difference, mutual information I(X;Y), or KL diver-
gence. These measures differ from the expected confidence (MI),
adopted by discriminant saliency, in relatively small details
(mostly non-linearities). Such details could nevertheless be of con-
sequence. For example, Jarrett et al. (2009) has found that simply
taking the absolute value of the output of each unit of a classical
convolutional network can produce drastic improvements in its
recognition accuracy. The discussion above shows that these de-
tails can also completely alter the semantics of the network com-
putations. For example, unlike the expected confidence (MI), the
MI does not emphasize feature presence and could identify as sali-
ent a feature that is always absent from the target class. This is
desirable for bottom-up saliency (Gao & Vasconcelos, 2009) but
not necessarily for top-down applications, such as object detection
or localization. We evaluate the performance of these measures in
the following section, where it is shown that the choice of non-lin-
earities can indeed have a significant impact on recognition
performance.
3. Results

HMAX networks emulate the organization of the visual system
by a cascade of two layers of simple and complex cells. We inves-
tigated the role of saliency in recognition by replacing the first
HMAX layer with a saliency network. Under HMAX, this layer is
quite simple: simple units perform filtering, and complex units
pool simple unit responses within a spatial neighborhood, using
a maximum operator. While these simple units have no probabilis-
tic interpretation, max-based complex units are an interesting
alternative to the sample averages of Table 1. They act more like
a feature selection mechanism: rather than averaging responses,
max-based pooling identifies the location of most salient response.
This appears natural for detection-based saliency measures, e.g.
the RFD. By replacing the first HMAX layer with a saliency network
we can thus investigate three questions:

1. Is saliency important for visual recognition?
2. How do the various saliency criteria compare on an objective

task, such as object recognition?
3. Is there an advantage in using max vs. the classical linear

pooling?

In the broader neural network literature, there have been recent
showings that some details of the network computations, e.g. what
type of non-linearities or normalization is performed, can have a
substantial impact in recognition accuracy (Jarrett et al., 2009; Pin-
to et al., 2009). As discussed above, the statistical interpretation of
these operations makes it possible to assign semantics to all com-
putations, with respect to optimality principles for discrimination,
statistical inference, measurement of information, etc. This enables
a more efficient search for optimal computations than trial-and-er-
ror (Jarrett et al., 2009), or brute-force optimization (Pinto et al.,
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2009). To study these questions we performed a number of exper-
iments, which are discussed in the remainder of this section.

3.1. Experiments

We start with a simple synthetic problem that provides intui-
tion on the benefits of top-down discriminant saliency for recogni-
tion, and then present more extensive experiments on the
Caltech101 benchmark, commonly used to evaluate object recog-
nition performance. All experiments were based on the HMAX net-
work, whose first layer was replaced by a saliency network. On
Caltech101 we tested all saliency measures in the lower third of
Table 1, as well as RFD, and the saliency detector of Itti, Koch,
and Niebur (1998). For completeness, we also evaluated the use
of a classical sigmoidal layer (no complex units or pooling, simple
units a combination of filtering and a sigmoid) in the first HMAX
layer, and the HMAX network itself. To investigate the advantages
of max over linear pooling, all saliency networks were imple-
mented with both. On the synthetic experiment we compared an
HMAX network, HMAX with first layer replaced by a bottom-up
saliency network of RFD units (HMAX + RFD), and HMAX with first
layer replaced by a top-down saliency network of expected confi-
dence(LLR) units (HMAX + EC).

In all experiments, for saliency units that involve divisive nor-
malization, the pooling region T of the normalizing units was
the whole image. In the case of bottom-up saliency (NLL or RFD
units) the normalization is performed on-line, i.e. dividing by
neighboring responses to the image to recognize. For top-down
saliency (LLR units) the normalizing coefficients are learned during
training, when the network is exposed to images from the target
and null hypotheses. For complex units, the pooling region R

was as specified in Mutch and Lowe (2008).
The second layer of the HMAX network consists of a set of radial

basis function (RBF) units, centered at prototypes randomly sam-
pled from the responses of the first HMAX layer, during training.
On Caltech101 we used the implementation of Serre, Wolf, Bile-
schi, Riesenhuber, and Poggio (2007), which includes 4075 RBF
units. On the synthetic experiment we used a smaller network of
100 units. For LLR units, training produces two divisive normaliza-
Target
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Fig. 9. Detection of underlined characters. Top row: Training examples from target and no
class, and layer 1 responses from the three networks considered.
tion parameters ab
i

	 

per object class. For a given RBF prototype P,

the parameters of the afferent simple units are set to the values
ab

i ðPÞ with which P was learned (i.e. the parameters learned from
the image class which originated P). Other than these modifica-
tions, the network is exactly as described in Mutch and Lowe
(2008).
3.2. Synthetic problem

To gain some insight on the role of discriminant saliency in rec-
ognition, we considered the simple problem of learning to differen-
tiate underlined from non-underlined characters. This was
formulated as a two-class recognition problem, involving the stim-
uli of Fig. 9. Each network was trained with the top two images of
the figure, using underlined Xs as examples from the target class,
and regular Xs as example non-targets. This made the classes iden-
tical up to a salient feature of the underlining concept (the under-
line bar). The network was then used to classify 20 test images,
containing either targets or non-targets. To increase the difficulty
of the task, the character used on the test images (Y) was different
from that used for training (X), and random noise was added to all
images.

The recognition accuracy achieved by the three networks was
90% for HMAX + EC, 55% for HMAX+RFD, and 50% for HMAX. The
superior performance of the network with top-down saliency can
be understood by analyzing the intermediate network responses,
shown in Figs. 9 and 10. Consider the response of the first network
layer, shown in Fig. 9. The HMAX network only has access to Gabor
filter responses, which are very similar for target and non-target.
This makes it very difficult for the subsequent HMAX stages to dis-
tinguish between the two classes. Because none of the parts of the
underlined Xs pop-out within the target displays, the saliency re-
sponse of RFD is basically a contrast enhanced version of the filter
responses. This does not improve the recognition accuracy sub-
stantially, since contrast variability is not the reason for the poor
performance of HMAX on this classification problem (although it
can be a source of concern for problems involving natural images
where, as we will see in the next section, HMAX + RFD tends to
Non target

RFD LLR

n-target class. Bottom rows: Examples of test stimuli from the target and non-target
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Fig. 10. Top: Most discriminant filter (the four orientation channels are shown) of
the second network layer, for HMAX (left) and HMAX + EC (right). By most
discriminant it is meant that this is the filter given larger weight by the linear SVM
classifier at the network output. Bottom: Example output of the simple cells in layer
2, to target and non-target stimuli.
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outperform HMAX). Hence, the performance of HMAX and
HMAX + RFD is basically identical.

The underline bar is, however, salient in the top-down sense,
since it is the only part that distinguishes the target and non-target
examples. Because the units of the HMAX + EC network compute
the LLR between target and non-target hypothesis, they produce
a strong response to underline bars (plausible under target, but
not plausible under the non-target hypothesis) and a weak re-
sponse to everything else (equally plausible, or non-plausible, un-
der the two hypotheses). The network has thus learned that
horizontal bars are discriminant features for the detection of
underlined characters, and thus salient. Its first layer acts as a
detector of these bars, and its very different responses to targets
and non-targets are easily detected by the subsequent network
stages. Fig. 10 presents the most discriminant filter of the second
layer (four orientation channels shown), for the HMAX and
HMAX + EC networks. Note how the filter of HMAX + EC is a detec-
tor of horizontal bars, a property that does not hold for the other
networks. In result, the output of the second layer of HMAX + EC
is uniformly large for underlined carachters, and almost null for
non-targets. This is unlike the other two networks, whose second
layers respond to both targets and non-targets. It is thus not sur-
prising that HMAX + EC achieves a substantially higher recognition
accuracy.
Table 2
Recognition rates on Caltech101, using 30 training examples per class. All ab
confidence, ELLR expected LLR, ENLL expected NLL, RFD rare feature detection.

Network Simple units Compl

Divisive normalization Non-li

NLL LLR r(�) n(�)

EC (LLR)
p p
p p

EC (MI)
p p
p p

ELLR
p p
p p

MI
p p p
p p p

ENLL
p
p

RFD
p p
p p

Itti et al. (1998) – – – –
Sigmoid

p

HMAX

p
p

3.3. Caltech101 experiments

To evaluate the impact of the various saliency principles on the
classification of natural images, we performed a number of experi-
ments on Caltech101. All experiments were based on the experi-
mental protocol of Mutch and Lowe (2008). We considered the
multiclass recognition task, where 30 images per class are used
for training and a maximum 50 of the remaining for test. In all
experiments the reported recognition rate is the average over five
independent runs, with different train and test sets (randomly sam-
pled images). Table 2 presents the recognition accuracy achieved
with each variant of the first network layer. A graphic display of
these rates, as well as the associated error bars, is shown in Fig. 11.

A few interesting observations can be made. First, the two ex-
pected confidence criteria achieve the best results. Their perfor-
mance is similar, but EC(LLR) attains slightly higher recognition
rates. These methods can be implemented with simple units that
compute the target posterior probability, i.e. a combination of a dif-
ferentially and divisively normalized (LLR) unit and a sigmoid r(�).
The gains with respect to the remaining networks can be very sig-
nificant. Second, saliency criteria based on rare features (ENLL
and RFD) perform worse than saliency criteria based on discrimina-
tion (the expected confidence measures). On the other hand, both
rare feature criteria have clearly better performance than sigmoid
or HMAX. This suggests that rare feature (interest point) detection
can be useful when statistics of the target object class are not avail-
able. Note that, under the rare feature criteria, none of the two net-
work layers requires class-specific training. While the same holds
for the saliency detector of Itti et al. (1998), its performance
(51.8%) is substantially weaker than those of ENLL or RFD.

Third, the ‘‘one-sided” confidence measures EC(LLR) and EC(MI)
perform substantially better than their ‘‘two sided” counterparts,
such as the ELLR or the MI used in Gao and Vasconcelos (2009). This
implies that the choice of non-linearities (e.g. ~n instead of n or ~w in-
stead of w) can have a very non-trivial impact in recognition accu-
racy. It appears to be particularly important for the cells to fire
only when the target is present. Fourth, for most networks, max-
based pooling has inferior performance to averaging. This implies
that it is important to fully characterize features, and not only select
locations where they are informative for the classification. The only
breviations are the same as in Table 1. Furthermore, EC means expected

ex units

nearity Pooling

w(�) ~nð�Þ ~wð�Þ Sum Max Accuracy
p p

61.9p p
58.2p p
60.3p p
53.1

p p
54.6p p
53.1p
50.3p
52.3

p
58.2p
56.8p
55.1p
55.2

– – – – – 51.8
42

p
40.5p
43.4p
44.1p
46.6
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Fig. 11. Recognition rates on Caltech101, using 30 training examples per class.
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network for which max pooling consistently achieves better perfor-
mance is HMAX (where the lack of sophistication of the simple units
makes the network with average pooling linear). Furthermore, max-
based pooling is prone to large performance variability. For example,
the EC(MI) network drops from 60% to 53% recognition rate when
averaging is replaced by max pooling. Finally, the classical sigmoid
layer has the worst performance of all considered. However, the sim-
ple addition of a pooling stage can improve performance consider-
ably, especially when combined with max pooling.
3.4. Comparison to state-of-the-art results

To the best of our knowledge, the current state-of-the art re-
sults for object recognition with HMAX networks are those pre-
sented in Mutch and Lowe (2008). This work reported significant
improvements over the base HMAX performance, through a num-
ber of enhancements to the original network. Some of these in-
volved additional training, e.g. to select features, others are
heuristics that were shown to improve performance. Table 3 pre-
sents the contributions by these enhancements, as reported in
Mutch and Lowe (2008). As can be seen from the table, the simple
use of the saliency layer, without any further optimization, outper-
forms the gains of all enhancements of Mutch and Lowe (2008).
One of these improvements is a feature selection stage. Rather than
Table 3
Multiclass classification results for 101 categories.

Model 15/cat 30/cat

Base model of Serre et al. (2007) 33 42
+ sparse S2 inputs Mutch and Lowe (2008) 35 45
+ inhibited S1/C1 outputs Mutch and Lowe (2008) 40 49
+ limited C2 invariance Mutch and Lowe (2008) 48 54
+ feature selection Mutch and Lowe (2008) 51 56

EC (LLR) with sum pooling 56 62
+ feature selection described in Mutch and Lowe (2008) 58 64

Convolutional net of Pinto et al. (2008) – 42
+ second HMAX layer – 56

Convolutional net of Jarrett et al. (2009) – 56
+ random filters – 63
+ unsupervised filters – 64
+ back-propagation filters – 66

Lazebnik et al. (2006) 56 65
Zhang et al. (2006) 59 66
using 4075 randomly sampled prototypes, a larger set of 12,000 are
collected. The network is trained with this larger set, and a support
vector machine is used to select the most discriminant 4075. When
we retrained the network containing the saliency layer in this
manner, the performance increased to 64%, as opposed to the
56% reported by Mutch and Lowe. While we have not yet experi-
mented with any of their other suggestions, or performed any
other optimization, these results suggest that the inclusion of sal-
iency can significantly boost the performance of feedforward ob-
ject recognition.

In the broader area of convolutional networks, recent studies
have addressed the role of non-linearities and normalization in ob-
ject recognition (Jarrett et al., 2009; Pinto et al., 2008). These works
advocate the use of divisive normalization as a form of contrast
normalization, that improves the robustness of the neural network
when trained from small samples, as is the case of Caltech101 (Jar-
rett et al., 2009). This is a strictly bottom-up explanation for the
role of divisive normalization, and comparable to the ENLL and
RFD saliency measures discussed in this work. Comparison with
these methods should be performed with care, since the network
parameters are not the same. For example, while it has become
somewhat popular to claim that method of Pinto et al. (2008) beats
the state-of-the-art in computer vision, the truth is that its imple-
mentation is far from the standard in this area. For example, while
(for computational efficiency) most computer vision implementa-
tions rely on a relatively small set of filters (e.g. Gabor filters at four
orientations) and a relatively small number of network outputs
(4075 for the first HMAX network (Serre et al., 2007), 12,000 for
enhanced HMAX (Mutch & Lowe, 2008)), this method relies on a
much larger filter set (12 orientations), and a much larger output
dimensionality (86,400–116,400). The network has a single layer
and is complemented by a classifier that combines a principal com-
ponents analysis of very disputable biological plausibility, and an
SVM. While the recognition accuracy originally reported by the
authors is of 65% (30 images per category), our implementation
with (1) the Gabor filter front-end and (2) the output dimensional-
ity used by the HMAX networks only achieved 42%. Further inclu-
sion of the second HMAX layer raised recognition performance to
56%. We note that this is consistent with the results of Table 2,
as the network of Pinto et al. (2008) is similar to the RFD network.
Hence, it is not surprising that the results are in between those of
ENLL (58.2%) and RFD (55.1%).

Similar performance was documented by Jarrett et al. (2009),
who have obtained 55.8% accuracy with a two layer network
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including divisive normalization in the two layers (as opposed the
one we tested, where only the first layer was modified). This work
has tested a number of extensions, including the use of filters
learned from the training data, in both a bottom-up and top-down
manner. All results reported are lower than those achieved with
the EC(LLR) network, except when the filters are trained in a dis-
criminant manner. Note that, in this case, the convolutional net-
work has two layers of trained filters and divisive normalization,
network training is orders of magnitude more complex than that
required by the saliency network (back-propagation for the former
vs. the individual tuning of the divisive normalization weights of
each simple cell, according to (2), for the latter), and the gains
are very marginal (65.5% vs. 64%). The filters of the EC(LLR) net-
work could also have been trained in a discriminant manner, but
we have not attempted to perform this optimization.

For completeness, we also report the state-of-the-art results on
Caltech101 from the broader recognition literature in computer vi-
sion, where biological plausibility is not a constraint. We consider
here only methods that use a single image representation, and are
therefore comparable to the networks proposed above. In this
class, the best performance in the literature is in the range of
65–66% (Lazebnik, Schmid, & Ponce, 2006; Zhang, Berg, Maire, &
Malik, 2006) and barely superior to the 64% now reported for the
biologically plausible networks. Obviously, better performance
should be attainable by combining multiple image representations,
e.g. by adding features that capture color or shape properties to the
set of Gabor functions that we consider in this work. This is indeed
a popular strategy in the computer vision literature, where it has
been shown that substantial improvements over (Lazebnik et al.,
2006; Zhang et al., 2006) can be achieved with support vector
machines combining multiple kernels (Gehler & Nowozin, 2009;
Varma & Ray, 2007). Such combinations of multiple image repre-
sentations could also be applied to the networks that we have pro-
posed, but are beyond the scope of this work.
4. Discussion and conclusion

Overall, the results presented above support three main
conclusions:
Fig. 12. An image from the ‘‘accordion” class, and corresponding saliency outputs for Gab
Saliency maps produced by NLL units. Bottom: Saliency maps of LLR units.
� saliency (attention) has a significant positive impact on
recognition,
� but this impact is largest when saliency is discriminant (of a

top-down nature). Unsupervised learning of interest points
does not perform as well, although it consistently achieves bet-
ter performance than no saliency at all (standard HMAX);
� max-based pooling does not appear to have an advantage over

averaging, indicating that selecting discriminant features is
more important than locating them exactly.

It could be argued that replacing the raw filter outputs with dis-
criminant saliency measures is simply a form of normalization,
whose benefits have already been pointed out in the literature (Jar-
rett et al., 2009; Pinto et al., 2008). While normalization has advan-
tages of its own, as shown by the gains of the ENLL and RFD
networks over their sigmoidal counterpart, this is not the whole
story. The results above show that non-trivial additional gains
can be obtained with intelligent normalization, which tunes the cell
responses according to the target recognition class, at a very mar-
ginal cost in computation. This is a top-down saliency operation.

To illustrate the benefits of this type of saliency for classification
of natural images, we examined the intermediate computations of
the different types of networks. Fig. 12 shows the output of the sal-
iency layer for an example image of the ‘‘accordion” class. The fig-
ure shows the saliency maps produced for four Gabor orientation
channels. The first row presents the magnitude jxj of the Gabor re-
sponses (no saliency processing), the second row the output of the
NLL units (bottom-up processing), and the third row that of the LLR
units trained for accordion detection (top-down saliency). Note
that both types of saliency units reinforce the contrast of certain
areas of the image, leading to a more distinctive visual signature
than the simple magnitude of Gabor responses. The responses of
the two types of saliency units are, nevertheless, quite different.
NLL has no knowledge of the accordion class, and simply highlights
visual features that have low probability within the field of view.
These tend to be the keyboards that appear on each side of the
instrument. The diagonal edges, which are a distinctive pattern
of the accordion object but plentiful on this image, are suppressed.
This implies that there is some loss of information, a limitation of
bottom-up saliency for recognition: universal saliency criteria
or channels of four orientations. Top row: Magnitude of the Gabor responses. Center:
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(such as low probability, or contrast normalization) fail to capture
the salient attributes that are specific to any given object class.

The top-down LLR units exhibit a substantially different behav-
ior. For orientation channels that do not contain substantial dis-
criminant information about the target class, they behave
similarly to NLL units. However, for orientations that capture dis-
tinctive object patterns (such as the large density of parallel lines
in the accordion class), they respond very strongly throughout
the field of view, highlighting the whole object. The resulting sal-
iency patterns are thus much more distinctive templates than
those produced by Gabor filtering or NLL. When used in the second
HMAX layer, these templates are much more discriminant for the
target class, enabling better detection performance. In summary,
the attributes that are salient for object recognition vary from
one object class to another. The identification of such attributes re-
quires top-down processing informed by the class structure associ-
ated with the recognition problem. Discriminant saliency
implements this type of processing, leading to the extraction of
intermediate features that are highly informative for object recog-
nition. This results in higher recognition rates.

We finish by emphasizing one of the most interesting findings
of this work: that subtle modifications to the computations of
Gao and Vasconcelos (2009) can lead to substantial changes of net-
work behavior. These include (1) obtaining good performance on
top-down tasks such as recognition (rather than just bottom-up
saliency), (2) computing new statistical quantities of interest,
namely all measures of Table 1, (3) explaining properties such as
simple cell saturation, and (4) assigning semantics to all network
components. All of these help understand why network modifica-
tions that appear minor a-priori can have a dramatic impact in per-
formance. For example, while Gao and Vasconcelos (2009) have
shown that, among the non-linearities of Fig. 3, n(x) performs best
for bottom-up saliency, the results now presented show that ~nðxÞ is
clearly better for top-down saliency. This can be seen from Table 2,
where replacing ~nðxÞ by n(x) leads to a substantial decrease of rec-
ognition accuracy, e.g. from 60.3% (EC(MI)) to 50.3% (MI).

Although the dramatic influence of non-linearities on recogni-
tion performance has been documented in the literature (Jarrett
et al., 2009), it can be quite puzzling in the absence of the statistical
interpretation now provided. Why would simply changing a non-
linearity degrade the performance so much? And why does it mat-
ter so much that the non-linearity is ‘‘one sided”? The statistical
interpretation clarifies this behavior: while the EC(MI) is a detector
of target presence, the MI is equally happy to detect target pres-
ence or absence. The semantics of the network computations are,
therefore, completely different. Under MI, the network produces
large responses to background regions that can be classified as
either target or non-target with high confidence. This increases
the difficulty of target detection. On the other hand, under EC(MI)
the network only produces large responses to regions that contain
the target.
References

Adelson, E., & Bergen, J. (1985). Spatiotemporal energy models for the perception of
motion. Journal of the Optical Society of America, 2(2), 284–299.

Barlow, H. (2001). Redundancy reduction revisited. Network: Computation in Neural
Systems, 12.

Bruce, N., & Tsotsos, J. (2006). Saliency based on information maximization. Neural
Information Processing Systems.

Buccigrossi, R., & Simoncelli, E. (1999). Image compression via joint statistical
characterization in the wavelet domain. IEEE Transactions on Image Processing.

Carandini, M., Demb, J., Mante, V., Tolhurst, D., Dan, Y., Olshausen, B., et al. (2005).
Do we know what the early visual system does? Journal of Neuroscience, 25.

Carandini, M., Heeger, D., & Movshon, A. (1997). Linearity and normalization in
simple cells of the macaque primary visual cortex. Journal of Neuroscience, 17,
8621–8644.
Do, M., & Vetterli, M. m. (2002). Wavelet-based texture retrieval using generalized
Gaussian density and Kullback–Leibler distance. IEEE Transactions on Image
Processing, 11(2), 146–158.

Duda, R., Hart, P., & Stork, D. (2001). Pattern classification. John Wiley & Sons.
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A

statistical view of boosting. The Annals of Statistics, 28.
Gao, D., Han, S., & Vasconcelos, N. (2009). Discriminant saliency, the detection of

suspicious coincidences, and applications to visual recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Gao, D., & Vasconcelos, N. (2009). Decision-theoretic saliency:computational
principles, biological plausibility, and implications for neurophysiology and
psychophysics. Neural Computation, 21.

Gehler, P., & Nowozin, S. (2009). On feature combination for multiclass object
classification. In International conference on computer vision.

Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In Alvey
vision conference.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning;
data mining, inference and prediction. New York: Springer Verlag.

Heeger, D. (1992). Normalization of cell responses in cat striate cortex. Visual
Neuroscience, 9.

Huang, J., & Mumford, D. (1999). Statistics of natural images and models. In
Computer vision and pattern recognition.

Hubel, D., & Wiesel, T. (1962). Receptive field, binocular interaction, and functional
architecture of in the Cat’s visual cortex. Journal of Physiology, 160.

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for
rapid scene analysis. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 20.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-
stage architecture for object recognition? In International conference on
computer vision.

Kadir, T., & Brady, M. (2001). Scale, saliency and image description. International
Journal of Computer Vision, 45.

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In Computer vision and
pattern recognition, June 2006.

Lecun, Y., Bottou, L., Bengio, Y., & Haffiner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE.

Linsker, R. (1988). Self-organization in a perceptual Network. IEEE Computer, 21(3),
105–117.

Mahadevan, V., & Vasconcelos, N. (2007). The discriminant center-surround
hypothesis for bottom-up saliency. Neural Information Processing Systems.

Miau, K., Papageorgiou, C., & Itti, L. (2001). Neuromorphic algorithms for computer
vision and attention. In Proceedings of SPIE 46 annual international symposium on
optical science and technology (Vol. 4479, pp. 12–23).

Mikolajczyk, K., & Schmid, C. (2004). Scale and affine invariant interest point
detectors. International Journal of Computer Vision, 60(1), 63–86.

Mutch, J., & Lowe, D. (2008). Object class recognition and localization using sparse
features with limited receptive fields. International Journal of Computer Vision,
80, 45–57.

Pinto, N., Cox, D., & DiCarlo, J. (2008). Why is real-world visual object recognition
hard? PLoS Computational Biology, 4(1).

Pinto, N., Doukhan, D., DiCarlo, J., & Cox, D. (2009). A high-throughput screening
approach to discovering good forms of biologically-inspired visual
representation. PLoS Computational Biology, 5(11).

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2.

Rosenholtz, R. (1999). A simple saliency model predicts a number of motion popout
phenomena. Vision Research, 39, 3157–3163.

Rumelhart, D., Smolenksy, P., Mcclelland, J., & Hinton, G. (1986). Parallel distributed
processing: Explorations in the microstructure of cognition. MIT Press.

Sebe, N., & Lew, M. (2003). Comparing salient point detectors. Pattern Recognition
Letters, 24(Jan), 89–96.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object
recognition with cortex-like mechanisms. IEEE Transaction on Pattern Analysis
and Machine Intelligence.

Srivastava, A., Lee, A., Simoncelli, E., & Zhu, S. (2003). On advances in statistical
modeling of natural images. Journal of Mathematical Imaging and Vision, 18,
17–33.

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual
system. Nature, 381(6582), 520–522.

Varma, M., & Ray, D. (2007). Learning discriminative power-invariance trade-off. In
International conference on computer vision.

Vasconcelos, M., & Vasconcelos, N. (2009). Natural image statistics and low
complexity feature selection. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Walther, D., & Koch, C. (2006). Modeling attention to salient proto-objects. Neural
Networks, 19, 1395–1407.

Yarbus, A. (1967). Eye movements and vision. New York: Plenum.
Zhang, H., Berg, A., Maire, M., & Malik, J. (2006). Svm-knn: Discriminative nearest

neighbor classification for visual category recognition. In Computer vision and
pattern recognition, June 2006.

Zhang, L., Tong, M., Marks, H., Tim, K., Shan, H., & Cottrell, G. (2008). SUN: A
Bayesian framework for saliency using natural statistics. Journal of Vision, 8(7),
1–20.


	Biologically plausible saliency mechanisms improve feedforward object recognition
	Introduction
	Method
	Natural image statistics
	Statistical inference
	Inference under the GGD
	Biological plausibility
	Saliency
	Detection of rare features
	Discriminant saliency


	Results
	Experiments
	Synthetic problem
	Caltech101 experiments
	Comparison to state-of-the-art results

	Discussion and conclusion
	References


