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Abstract We propose an adaptive model for backgrounds

containing significant stochastic motion (e.g. water). The

new model is based on a generalization of the Stauffer–

Grimson background model, where each mixture compo-

nent is modeled as a dynamic texture. We derive an online

K-means algorithm for updating the parameters using a set of

sufficient statistics of the model. Finally, we report on experi-

mental results, which show that the proposed background

model both quantitatively and qualitatively outperforms

state-of-the-art methods in scenes containing significant

background motions.

Keywords Dynamic textures · Background models ·
Background subtraction · Mixture models · Adaptive models

1 Introduction

Background subtraction is an important first step for many

vision problems. It separates objects from background clut-

ter, usually by comparing motion patterns, and facilitates

subsequent higher-level operations, such as tracking, object

identification, etc. Because the environment can change sub-

stantially, both in the short term and throughout the lifetime

of the vision system, background subtraction algorithms are

expected to be robust. This is not always easy to guarantee,

and many methods have been proposed in the literature (see

[1] for a recent review). One approach, which was first intro-

duced by Stauffer and Grimson (SG) in [2] and has since
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gained substantial popularity, is to model the distribution of

colors (over time) of each pixel as a mixture of Gaussians.

This accounts for the fact that, in scenes with multiple objects,

pixel colors change as objects traverse the scene. For exam-

ple, if an object stops, it should at some point be consid-

ered part of the background. As it departs, the un-occluded

area should be quickly reassigned to the background. Some

objects may even exhibit cyclic motion, e.g. a flickering light

display, making a number of background pixels undergo

cyclic variations of color over time. The mixture model cap-

tures these state transitions very naturally, while providing

a compact summary of the color distribution. This simpli-

fies the management of the background model, namely the

problems of updating the distribution over time, or deciding

which components of the mixture model should be dropped

as the background changes (due to variable scene lighting,

atmospheric conditions, etc.).

Nevertheless, the algorithm proposed by SG is not with-

out problems. One of its main drawbacks is the assumption

that the background is static over short time scales. This is

a strong limitation for scenes with spatiotemporal dynam-

ics, such as those of Fig. 1. Although the model allows each

pixel to switch state, and tolerates some variability within

the state, the Gaussian mixture assumes that the variability

derives from noise, not the structured motion patterns that

characterize moving water, burning fire, swaying trees, etc.

One approach that has shown promise for modeling these

spatiotemporal dynamic processes is the dynamic texture rep-

resentation of [3]. Dynamic textures model a spatiotemporal

volume as a sample from a linear dynamical system (LDS),

and have shown surprising robustness for video synthesis

[3], classification [4,5], segmentation [6,7], and image reg-

istration [8]. Not surprisingly, background models based on

dynamic textures, or close relatives, have appeared in the lit-

erature. These utilize dynamic textures to model the whole
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Fig. 1 A scene with dynamic

background. The background

consists of water waves, which

are changed by the turbulent

wake of a boat

video [9], or video patches extracted from the neighborhood

of each location [10].

While able to capture background dynamics, these

approaches lack the two most compelling (and dynamic)

aspects of the SG method: (1) the ability to account for

transitory events, due to motion of foreground objects; and

(2) simple model management. Consider, for example, the

aquatic scene of Fig. 1. As the jet-skier traverses a video

patch, the video goes through the following state sequence:

normal waves, occluded by jet-ski, turbulent waves that trail

the jet-ski, return to normal waves. In the absence of a hid-

den discrete state variable, the dynamic texture will slowly

interpolate through all these states. Both the transition from

occluded to turbulent, and turbulent to normal waves, will

generate outliers which are incorrectly marked as foreground.

If the jet-ski cyclically passes through the same location,

these errors will repeat with the same periodicity.

In summary, background subtraction requires both a state-

based representation (as in SG) and the ability to capture

scene dynamics within the state (as in the dynamic texture

methods). This suggests a very natural extension of the two

lines of work: to represent spatiotemporal video cubes as

samples from a mixture of dynamic textures [11]. However,

as in the static case, exact learning of the mixture parameters

is computationally infeasible in an online setting. To address

this problem, we combine two observations. The first is the

main insight of SG: that parameter updates of a Gaussian

mixture model only require a small set of sufficient statistics.

The second is that, because the dynamic texture is a member

of the exponential family [12], it exhibits the same property.

We then derive the sufficient statistics required for online

learning of the dynamic texture, and use them to general-

ize the SG algorithm to dynamic scenes. The generalized

SG (GSG) algorithm inherits the advantages of [2]: (1) it

adapts to long-term variations via online estimation; (2) it

can quickly embrace new background motions through the

addition of mixture components; and (3) it easily discards

outdated information by dropping mixture components with

small priors. The online, recursive, procedure for the esti-

mation of dynamic texture parameters is of potential interest

for any application of dynamic textures that requires online

video processing. Experimental results show that background

modeling with the mixture of dynamic textures substantially

outperforms both static background models, and those based

on a single dynamic texture.

The remainder of the paper is organized as follows: Sect. 2

briefly reviews related work in background subtraction. In

Sect. 3, we review the SG method and introduce the pro-

posed generalization. A novel online algorithm for the least

squares estimation of dynamic texture parameters, based on

recursive sufficient statistics, is derived in Sect. 4. In Sect. 5,

we introduce the adaptive background subtraction algorithm

based on mixtures of dynamic textures. Finally, an experi-

mental evaluation is described in Sect. 6, and conclusions

are drawn in Sect. 7.

2 Previous work

A number of extensions to the background subtraction

method of SG have appeared in the literature. One of the

main drawbacks of the original approach was the difficulty

of detecting foreground objects of color similar to that of the

background. This motivated a number of extensions based on

properties of local image neighborhoods, e.g. texture infor-

mation [13], optical flow [14,15], or spatiotemporal blocks

[16,17]. Another drawback of [2] is the lack of consistency

between the state of adjacent pixels, which sometimes leads

to noisy foreground-background segmentations. This moti-

vated various extensions that encourage global consistency,

either through global image modeling (e.g. eigen-background

methods [18,19]), by introducing priors that enforce global

consistency (e.g. the combination of Markov random fields

and maximum a posteriori probability decision rules [1]),

or by allowing pixels to influence neighboring GMMs [20].

While most of these models can adapt to slow background

changes (e.g. due to illumination) they share, with the mix-

ture model of SG, the assumption that the background is

static over short time scales.

Other methods of background subtraction are based on

separating “salient” (foreground) motion from the back-

ground motion. Wixson [21] defines saliency as the distance

that a pixel travels in a consistent direction, measured by

accumulating the optical flow over several frames. When a

pixel reverses direction, the saliency is reset to zero, and

hence short oscillating motion (e.g. swaying tree branches)

will have low saliency compared to foreground objects that

move in a consistent direction. Tian and Hampapur [22]

defines saliency in a similar way, but implements it with a

combination of difference images, optical flow, and temporal
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filters. The disadvantage with these methods is that salient

motion is defined as motion with a consistent direction. Thus,

foreground objects that change direction will be marked as

background, and backgrounds that move in a consistent direc-

tion (e.g. water waves) will be marked as foreground. Fur-

thermore, it may not be possible to reliably compute optical

flow on moving non-rigid backgrounds that do not obey the

smoothness or brightness constancy constraints (e.g. moving

water).

In the realm of dynamic models, two main methods have

been proposed. In [9], the video is modeled with a robust

Kalman filter. A dynamic texture models the entire video

frame, and pixels that are not well explained by the LDS (ı.e.

outliers), conditioned on the previous frame, are marked as

foreground. This method has limited effectiveness, because a

global fit usually demands excessive representational power

from the dynamic texture: background dynamics are seldom

homogeneous throughout the scene, due to a combination

of 3D effects (perspective and motion parallax) and back-

ground variability (e.g. trees swaying with different dynam-

ics, or waves with normal and turbulent motions). A natural

improvement is to rely on a localized representation. This was

first proposed in [10], where the dynamic texture is applied

to video patches, reducing the dimensionality of the model

and producing a simpler learning problem. This work also

exploits the principal component analysis (PCA) performed

within the LDS to achieve computational efficiency. In par-

ticular, all model updates are performed with an incremental

PCA algorithm. A spatial patch in the current frame is marked

as foreground if either: (1) it is not well modeled by the PCA

basis (ı.e. large residual pixel error); or (2) the PCA coeffi-

cients extracted from the observed frame are different than

those predicted from the previous frame (ı.e. poor single-step

prediction of the state variable).

The procedure now proposed makes three main contribu-

tions with respect to the state-of-the-art in dynamic back-

ground modeling [9,10]. The first is the derivation of a novel

online algorithm for estimating the parameters of a dynamic

texture, using sufficient statistics. This is an exact algorithm,

which produces least-squares parameter estimates identical

to those of [3]. Although incremental PCA-type of approxi-

mations are possible (and derived in the Appendix), they are

not optimal or advisable when this exact solution is compu-

tationally feasible. The sufficient statistics are computed in

recursive form and the procedure is suitable for any appli-

cation of dynamic textures that requires online video pro-

cessing, not just background subtraction. The second is a

background subtraction algorithm with the ability to clas-

sify the background according to the statistics of the whole

spatiotemporal cube, instead of single-step predictions. This

leads to foreground-background assignments that account for

motion over multiple frames, and is more robust. Finally,

the generalized Stauffer–Grimson framework now proposed

fully exploits the probabilistic modeling subjacent to the

dynamic texture. This is unlike [9], which classifies pixels

individually, or [10] which ignores the stochastic nature of

the state variable. In result, the new algorithm is shown to

substantially outperform the previous approaches.

3 Adaptive background modeling with online mixtures

In this section, we briefly review the static background sub-

traction method of SG [2]. The review emphasizes the insight

that the background model can be updated using sufficient

statistics. This suggests a natural generalization to dynamic

scenes, which is introduced at the end of the section.

3.1 Probabilistic model

The method of SG models each background pixel with an

adaptive mixture of Gaussians. The probability of observing

pixel y is:

p(y) =
K

∑

j=1

ω j G(y, µ j , � j ) (1)

where K is the number of mixture components, ω j the weight

of each component, and G(y, µ,�) a multivariate Gaussian

distribution of mean µ and covariance � (typically � = σ I ).

Given a video frame, this GMM is updated through an online

approximation to the K-means algorithm.

3.2 Online parameter estimation

A newly observed pixel value y′ is classified in a two-step

procedure. First, the Mahalanobis distance to each Gaussian

component

d j =
∥

∥y′ − µ j

∥

∥

� j
=

√

(y′ − µ j )T �−1
j (y′ − µ j ) (2)

is computed. The closest component

k = argmin
j

d j (3)

is then identified. The pixel is considered to match this com-

ponent if the distance is within a threshold θ , i.e. dk ≤ θ ([2]

sets θ = 2.5).

An online update of the model is performed after each

pixel classification. If no match can be found, the model com-

ponent of lowest weight ω j is replaced with a new Gaussian

of mean y′, an initially high variance, and a low initial weight.

If y′ matches the kth component, then its parameters are

updated according to

µk ← (1 − α)µk + αy′, (4)

�k ← (1 − α)�k + α(y′ − µk)(y′ − µk)
T , (5)
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and the component weights adjusted with

w j ← (1 − β)w j + βI( j = k), ∀ j (6)

where I(·) is the indicator function, and re-normalized to sum

to one.

It can be shown that the successive application of these

online updates is equivalent to batch K-means estimation

with exponentially decaying weights on the observations.

This allows the mixture model to adjust to gradual non-

stationary background changes (e.g. due to illumination). The

adaptivity of the model is determined by the learning rates

α and β: α controls how quickly each component adjusts

to background changes, and β controls the speed at which

components become relevant.1 One appealing property of

this online procedure is that the existing components of the

background model do not have to be destroyed as new pixel

processes are added. This is useful when pixels revert to a

previously-observed process. Because the associated mix-

ture component still exists (although with a small weight), it

can be quickly re-incorporated into the background model.

3.3 Background detection

Because the online learning algorithm incorporates all pixel

observations, the mixture model does not distinguish compo-

nents that correspond to background from those associated

with foreground objects, or simply due to noise. Due to this,

background detection requires a list of “active” background

components. In the method of SG [2], these are heuristically

chosen as the Gaussians of most supporting evidence (high

prior weight) and low variance. This is done by sorting com-

ponents by decreasing ratio w j/σ j , and selecting the first B

that explain T percent of the probability
(

∑B
j=1 w j > T

)

.

Finally, the observed pixel is marked as background if its

likelihood under these “active” background components is

above a threshold, and foreground otherwise.

3.4 Extending Stauffer–Grimson to other distributions

The choice of Gaussian mixture components is suitable when

background pixels are static or change slowly over time.

While this assumption sometimes holds (e.g. a fixed camera

overlooking a roadway), there are numerous scenes where

it does not (e.g. outdoors scenes involving water or vegeta-

tion). Such scenes require extensions of the SG model, using

mixtures of component distributions that are appropriate for

the particular background process. The main insight of the

procedure proposed by SG is that, for Gaussian components,

all parameter estimates can be obtained efficiently, through

online updates of a small set of sufficient statistics.

1 Stauffer and Grimson [2] adaptively sets α = βG(y′, µk , �k).

The extension of the procedure to more complex distri-

butions p(y|�) requires the satisfaction of two conditions:

(1) that the parameters � of these distributions can be esti-

mated through a set of sufficient statistics ζ , and (2) that these

statistics can be computed through efficient online updates,

such as those of (4). The first condition is well known to be

satisfied by any model in the exponential family [12]. Since

the dynamic texture is a Gaussian model, and therefore in

this family, it immediately satisfies this condition. The deter-

mination of the statistics is, however, not trivial. It is also

not trivial that they can be computed in an efficient recursive

form, so as to satisfy the second condition. We address these

issues in the remainder of the paper.

4 Sufficient statistics for estimation of dynamic texture

parameters

We start by deriving the set of sufficient statistics for the esti-

mation of parameters of the dynamic texture model. For this,

we briefly review the dynamic texture and the least-squares

parameter estimation algorithm of [3]. We then derive a set of

recursive sufficient statistics for the efficient implementation

of this algorithm.

4.1 Dynamic textures

The dynamic texture [3] is a generative model for video,

which it models as a sample from a linear dynamical system.

The model separates appearance and dynamics (motion) into

two stochastic processes. The dynamics are represented as a

time-evolving state process xt ∈ R
n
, while the appearance

of frame yt ∈ R
m

is modeled as a linear function of the cur-

rent state vector and observation noise. Formally, the system

equations are:
{

xt = Axt−1 + vt

yt = Cxt + wt + ȳ
(7)

where A ∈ R
n×n

is the state transition matrix, C ∈ R
m×n

the

observation matrix, and ȳ ∈ R
m

the video mean. The state

and observation noise are modeled as Gaussian processes

vt ∼ N (0, Q,) and wt ∼ N (0, R), respectively. Finally, the

initial condition is distributed as x1 ∼ N (µ, S).

The dynamic texture parameters are frequently learned

with a least-squares algorithm proposed in [3]. Given an

observed video sequence Y1:τ = [y1 . . . yτ ], the mean is first

estimated by the sample mean

ȳ = 1

τ

τ
∑

t=1

yt (8)

and the mean-subtracted video sequence

Ỹ1:τ = [ỹ1 . . . ỹτ ], (9)
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where ỹt = yt − ȳ, ∀t , is used in all subsequent computa-

tions.

To estimate the model parameters, the video sequence is

subject to a PCA, performed with recourse to the singular

value decomposition (SVD)

Ỹ1:τ = U SV T . (10)

The observation matrix is estimated from the n principal com-

ponents of the largest eigenvalues:

Ĉ = [u1 . . . un] (11)

where ui is the i th column of U , and it was assumed that the

diagonal entries of S are ordered by decreasing value. The

state-space variables are then estimated with:

X̂1:τ =
[

x̂1 . . . x̂τ

]

= ĈT Ỹ1:τ (12)

leading to the least square estimate of the state-transition

matrix:

Â = X̂2:τ (X̂1:τ−1)
†, (13)

where X† = X T (X X T )−1 is the Moore–Penrose pseudo-

inverse of X . The state noise is estimated from the state-pre-

diction residual error:

V̂1:τ−1 = X̂2:τ − Â X̂1:τ−1, (14)

Q̂ = 1

τ − 1
V̂1:τ−1

(

V̂1:τ−1

)T

, (15)

and the initial state is assumed constant

µ̂ = x̂1, (16)

Ŝ = 0. (17)

Finally, the observation noise is estimated from the recon-

struction error

Ŵ1:τ = Ỹ1:τ − Ĉ X̂1:τ , (18)

R̂ = 1

τ
Ŵ1:τ Ŵ T

1:τ . (19)

The covariance of the observation noise is usually assumed

diagonal, R = r Im . In this case, the variance estimate r̂ is the

mean of the diagonal elements of the full covariance estimate

R̂, i.e. r̂ = 1
m

∑m
i=1[R̂]i,i .

Although suboptimal in the maximum-likelihood sense,

this procedure has been shown to lead to good estimates of

dynamic texture parameters in various applications, includ-

ing video synthesis [3] and recognition [4,5].

4.2 Estimation from sufficient statistics

The estimates of the state-space variables X̂1:τ play a central

role in the least-squares algorithm of the previous section.

However, because (1) they depend on the principal compo-

nent basis (through the matrix Ĉ), and (2) this basis changes

at each time step, they are not suitable sufficient statistics

for online parameter estimation. An online version of the

least-squares procedure requires an alternative set of suffi-

cient statistics, which can be updated at each time-step and

do not depend on Ĉ . We first look at computing the PCA

basis. It suffices to note that the SVD computation of (10)

is equivalent to computing the n principal components of


̂ = Ỹ1:τ Ỹ T
1:τ . Hence Ĉ can be estimated as:

Ĉ = PCA
(


̂, n
)

, (20)

where PCA(�, n) returns the top n principal components of

�. Hence, 
̂ is a sufficient statistic for computing the PCA

basis, given data Y1:τ . Note that 
̂ can be updated recursively,

according to


̂(τ+1) = Ỹ1:τ+1Ỹ T
1:τ+1 (21)

=
τ+1
∑

t=1

ỹt ỹT
t =

τ
∑

t=1

ỹt ỹT
t + ỹτ+1 ỹT

τ+1 (22)

= 
̂(τ ) + ỹτ+1 ỹT
τ+1, (23)

where the superscript indicates the time-step to which the

statistic refers. We next substitute (12) into (13) to rewrite

the estimate of the state-transition matrix as:

Â =
(

ĈT Ỹ2:τ
) (

ĈT Ỹ1:τ−1

)†
(24)

=
(

ĈT Ỹ2:τ Ỹ T
1:τ−1Ĉ

) (

ĈT Ỹ1:τ−1Ỹ T
1:τ−1Ĉ

)−1
(25)

=
(

ĈT ψ̂Ĉ
) (

ĈT φ̂Ĉ
)−1

, (26)

where we define the sufficient statistics φ̂ = Ỹ1:τ−1Ỹ T
1:τ−1

and ψ̂ = Ỹ2:τ Ỹ T
1:τ−1. Note that this is an estimate of A at

time τ , which only depends on the estimate Ĉ of the PCA

basis at this time step, and the sufficient statistics φ̂ and ψ̂ .

The latter, again, can be updated recursively, e.g.

ψ̂ (τ+1) = Ỹ2:τ+1Ỹ T
1:τ = Ỹ2:τ Ỹ T

1:τ−1 + ỹτ+1 ỹT
τ (27)

= ψ̂ (τ ) + ỹτ+1 ỹT
τ . (28)

To derive an online estimate of the covariance Q, we note

that:

Q̂ = 1

τ − 1

(

X̂2:τ − Â X̂1:τ−1

) (

X̂2:τ − Â X̂1:τ−1

)T

(29)

= 1

τ − 1

(

X̂2:τ X̂ T
2:τ − Â X̂1:τ−1 X̂ T

2:τ

−X̂2:τ X̂ T
1:τ−1 ÂT + Â X̂1:τ−1 X̂ T

1:τ−1 ÂT
)

(30)

= 1

τ − 1

(

X̂2:τ X̂ T
2:τ − Â X̂1:τ−1 X̂ T

2:τ
)

(31)

= 1

τ − 1

(

ĈT Ỹ2:τ Ỹ T
2:τ Ĉ − ÂĈT Ỹ1:τ−1Ỹ T

2:τ Ĉ
)

(32)

= 1

τ − 1

(

ĈT ϕ̂Ĉ − ÂĈT ψ̂T Ĉ
)

, (33)
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where we have used, in (30),

Â X̂1:τ−1 X̂ T
1:τ−1 ÂT =

(

X̂2:τ X̂
†
1:τ−1

)

X̂1:τ−1 X̂ T
1:τ−1 ÂT

= X̂2:τ X̂ T
1:τ−1 ÂT ,

and we define the statistic ϕ̂ = Ỹ2:τ Ỹ T
2:τ . The mean and vari-

ance of the initial state are computed via

µ̂ = x̂1 = ĈT ỹ1 = ĈT ξ̂ , (34)

Ŝ =
(

x̂1 − µ̂
)

(x̂1 − µ̂)T = ĈT ỹ1 ỹT
1 Ĉ − µ̂µ̂T (35)

=
(

ĈT η̂Ĉ
)

− µ̂µ̂T , (36)

where we define η̂ = ỹ1 ỹT
1 and ξ̂ = ỹ1. Finally, the observa-

tion noise is estimated from the reconstruction error Ỹ1:τ −
Ĉ X̂1:τ ,

R̂ = 1

τ

(

Ỹ1:τ − Ĉ X̂1:τ
) (

Ỹ1:τ − Ĉ X̂1:τ
)T

(37)

= 1

τ

(

Ỹ1:τ − ĈĈT Ỹ1:τ
) (

Ỹ1:τ − ĈĈT Ỹ1:τ
)T

(38)

= 1

τ

(

I − ĈĈT
)

Ỹ1:τ Ỹ T
1:τ

(

I − ĈĈT
)

(39)

=
(

I − ĈĈT
)


̂
(

I − ĈĈT
)

. (40)

In summary, the parameters of the dynamic texture can be

computed as follows. The sufficient statistics are defined as:


̂ = Ỹ1:τ Ỹ T
1:τ , ϕ̂ = Ỹ2:τ Ỹ T

2:τ , φ̂ = Ỹ1:τ−1Ỹ T
1:τ−1,

ψ̂ = Ỹ2:τ Ỹ T
1:τ−1, η̂ = ỹ1 ỹT

1 , ξ̂ = ỹ1.
(41)

These statistics can also be computed recursively, where at

each time-step, we have the update equations:


̂(τ+1) = 
̂(τ ) + ỹτ+1 ỹT
τ+1

ϕ̂(τ+1) = 
̂(τ+1) − η̂

φ̂(τ+1) = 
̂(τ )

�̂(τ+1) = �̂(τ ) + ỹτ+1 ỹT
τ ,

(42)

where η̂ is defined in (41), and 
̂(0) = �̂(0) = 0. The PCA

basis Ĉ is then computed via PCA on 
̂, and the remaining

parameters estimated as:

Â =
(

ĈT ψ̂Ĉ
) (

ĈT φ̂Ĉ
)−1

, µ̂ = ĈT ξ̂ ,

Q̂ = 1

τ − 1

(

ĈT ϕ̂Ĉ − ÂĈT ψ̂T Ĉ
)

, Ŝ = ĈT η̂Ĉ − µ̂µ̂T ,

R̂ =
(

I − ĈĈT
)


̂
(

I − ĈĈT
)

, (43)

where ξ̂ is as defined in (41). Note that the online estimates

obtained with these recursive sufficient statistics are identi-

cal to the solution produced by the least-squares algorithm

of Sect. 4.1.

Rewriting the least-squares solution in terms of sufficient

statistics also exposes an interesting connection between the

algorithm of [3] and the EM algorithm for dynamic textures

[23,24]. In particular, the estimates of (43) utilize matrices of

the form ĈT φĈ , which is equivalent to the projection of the

image statistic φ into the state-space of the LDS. These pro-

jections can be viewed as approximations to the conditional

expectations computed in the E-step of the EM algorithm:

ĈT φ̂Ĉ ≈
τ

∑

t=2

E

(

xt−1xT
t−1|y

)

,

ĈT ϕ̂Ĉ ≈
τ

∑

t=2

E

(

xt x
T
t |y

)

, (44)

ĈT ψ̂Ĉ ≈
τ

∑

t=2

E

(

xt x
T
t−1|y

)

.

Under this interpretation, the estimates Â, Q̂, Ŝ, and µ̂ in

(43) are equivalent to those in the M-step of the EM algo-

rithm. Hence, the least-squares solution of [3] can be viewed

as a single iteration of the EM algorithm, where Ĉ is approx-

imated as the PCA basis of the observations, and the E-step

is approximated by projecting the image statistics into the

state-space. In practice, the least-squares estimate serves as

a good initialization for the EM algorithm, which typically

converges after a few iterations.

At each time step, updating the sufficient statistics and the

PCA basis has complexity O(m2). Assuming n ≪ m, esti-

mating the DT parameters from the sufficient statistics has

complexity O(nm2). Hence, the complexity of one iteration

of the online update is O(nm2) for a single frame. When the

sufficient statistics are updated with T frames in each step,

the complexity is O((T + n)m2).

Finally, the proposed procedure can also be used to esti-

mate the parameters of a dynamic texture from multiple video

samples. In particular, given a set of N mean-subtracted

videos
{

Ỹ
(1)
1:τ , . . . , Ỹ

(N )
1:τ

}

, the sufficient statistics are com-

puted by averaging over all samples, e.g.


̂ = 1

N

N
∑

i=1

Ỹ
(i)
1:τ

(

Ỹ
(i)
1:τ

)T

(45)

and similarly for the other statistics. The parameters are then

estimated with (43).

5 The generalized Stauffer–Grimson algorithm

for dynamic textures

In this section, we introduce an adaptive background model

based on the mixture of dynamic textures [11]. This model

is used to extend the background subtraction algorithm of

[2] to dynamic scenes. An overview of the proposed algo-

rithm is shown in Fig. 2. Each video location is represented

by a spatiotemporal neighborhood, centered at that location
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Fig. 2 Overview of generalized Stauffer–Grimson background model-

ing for dynamic textures. A video location is represented by a neighbor-

ing spatiotemporal volume Y1:τ . The location is marked as background

if the log-likelihood of Y1:τ under the active background component is

above a threshold. Next, the mixture component with the largest log-

likelihood of generating Y1:τ is updated, if the log-likelihood is above

threshold. Otherwise, a new component is learned, replacing the com-

ponent of lowest prior probability

(in this work we use a 7 × 7 × 5 volume). The background

scene is modeled as a mixture of K dynamic textures, from

which spatiotemporal volumes are drawn. The j th dynamic

texture is denoted (both its parameters and image statistics)

by � j , and a prior weight ω j , s.t.
∑K

j=1 ω j = 1, is associated

with each dynamic texture.

Given a spatiotemporal observation Y1:τ ∈ R
m×τ

(m =
49 and τ = 5 in all experiments reported), the location is

marked as background if the log-likelihood of the observation

under an “active” background component is above a thresh-

old. The background model is then updated, using an online

approximation to EM. As in SG, this consists of updating the

mixture component with the largest log-likelihood of gen-

erating the observation Y1:τ , if the log-likelihood is above

a second threshold. If not, a new dynamic texture compo-

nent learned from Y1:τ replaces the mixture component with

lowest prior weight. In the remainder of the section, we dis-

cuss the two major components of the algorithm, background

detection and online model updates.

5.1 Background detection

The determination of whether a location belongs to the back-

ground requires the assignment of mixture components to

background and foreground. We have already seen that the

procedure proposed by SG [2] accomplishes this by

heuristically ranking the mixture components. Support for

multiple background components is crucial for SG because

background colors can switch quickly (e.g. a flashing light).

Under the dynamic texture mixture model, rapid changes in

color and texture are modeled by the dynamic texture compo-

nents themselves. It follows that multiple active background

components are not necessary, and we simply select the com-

ponent of largest prior

i = argmax
j

w j (46)

as the “active” background component. A video location is

marked as belonging to the background if the log-likelihood

of the corresponding spatiotemporal volume Y1:τ under this

mixture component is greater than a threshold T ,

log p(Y1:τ |�i ) ≥ T . (47)

Note that the log-likelihood can be rewritten in “innovation”

form

log p(Y1:τ ;�i ) = log p(y1;�i ) +
τ

∑

t=2

log p(yt |Y1:t−1;�i ),

which can be efficiently computed with recourse to the

Kalman filter [11,23].

5.2 On-line updating of the background model

The background mixture model is learned with an online

K-means algorithm. During training, an initial dynamic tex-

ture �1 is learned with the procedure of Sect. 4.2, and mixture

weights are set to ω = [1, 0, . . . , 0]. Given a new spatiotem-

poral observation Y1:τ , the mixture parameters are updated

as follows. First, the mixture component with the largest log-

likelihood of having generated the observation

k = argmax
j

log p(Y1:τ ;� j ) (48)

is selected. If this log-likelihood is above the threshold T

log p(Y1:τ ;�k) ≥ T, (49)

the sufficient statistics of the kth component are combined

with the sufficient statistics {
′, φ′, ϕ′, ψ ′, η′, ξ ′} derived

from Y1:τ , in a manner similar to (4),


 ← (1 − α)
 + α
′, η ← (1 − α)η + αη′,

φ ← (1 − α)φ + αφ′, ξ ← (1 − α)ξ + αξ ′,
(50)

ψ ← (1 − α)ψ + αψ ′, ȳ ← (1 − α)ȳ + α ȳ′,

ϕ ← (1 − α)ϕ + αϕ′.
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As before, α is a learning rate which weighs the contribution

of the new observation. Finally, the parameters of the mixture

component are re-estimated with (43), and prior weights are

adjusted according to

w j ← (1 − β)w j + βI( j = k), ∀ j, (51)

(and normalized to sum to one). It can be shown that the

successive application of the online estimation algorithm is

equivalent to batch least-squares estimation with exponen-

tially decaying weights on the observations. This allows the

dynamic texture to adapt to slow background changes (e.g.

lighting and shadows).

If (49) does not hold, the component with smallest prior

(i = argmin j w j ) is replaced by a new dynamic texture

learned from Y1:τ . A regularization term σ I is added to the

sufficient statistics {
,φ, ϕ, η}, to guarantee a large initial

variance (in Q̂, Ŝ, and R̂). As the component is updated with

more observations, the influence of this regularization term

vanishes. Finally, prior weights are adjusted according to:

ω j ← (1 − β)ω jI( j 
= i) + βI( j = i), ∀ j (52)

and normalized to sum to one. The learning rate β adjusts

the speed at which prior weights change, controlling how

quickly a mixture component can become the “active” back-

ground component. The online background update algorithm

is summarized in Algorithm 1.

For a single DT component, the complexity of comput-

ing the log-likelihood p(Y1:τ ;� j ) with the Kalman filter is

O(τ (n3 +nm)). If the DT component is unchanged, then the

Kalman filter can be cached and the subsequent complexity is

O(τnm). Re-estimating the parameters of a DT component

with new video Y1:τ has complexity O((τ +n)m2), as shown

in Sect. 4.2. Hence, the complexity of the background model

is dominated by the update step of a single DT component.

When the dimension of the spatiotemporal volume, or

the number of dynamic texture components, is large it may

be impractical to compute and store the required sufficient

Algorithm 1 Online updating of the background model

1: Input: Spatiotemporal observation Y1:τ , dynamic texture compo-

nents {� j }K
j=1, prior weights ω, learning rates α and β, threshold T .

2: Find closest component: k = argmax j log p(Y1:τ ; � j )

3: if log p(Y1:τ ; �k) ≥ T then

4: {Update component k}

5: Update the sufficient statistics of �k with Y1:τ using (50).

6: Estimate the dynamic texture parameters �k with (43).

7: Adjust priors (51) and normalize.

8: else

9: {Create new component}

10: Find smallest prior: k = argmin j ω j

11: Compute new sufficient statistics �k from Y1:τ .

12: Estimate the parameters �k with (43).

13: Adjust priors (52) and normalize.

14: end if

Fig. 3 ROC curves for foreground detection on Bottle video

statistics. In this case, the latter can be approximated by

using a common PCA basis defined by 
̂ (see Appendix

for details), which is updated with an incremental PCA algo-

rithm. One disadvantage of approximating the covariance 


by its principal components is that some important directions

of variation may not be captured (especially if the number

of principal components is small). For example, a new PCA

basis might not have strong enough support from a single

video sample, but this support may increase considerably

when aggregating over several iterations of the algorithm. In

this case, the approximate algorithm will fail to include the

new PCA basis, whereas the exact online algorithm will not.

6 Experiments

In this section, we present experiments on background sub-

traction using the adaptive background model based on

dynamic textures. We present both quantitative and qual-

itative results for three aquatic video sequences, compar-

ing results with other state-of-the-art models. A qualitative

evaluation is also presented for several other challenging

sequences.

6.1 Videos with water backgrounds

The first set of experiments is based on three videos of objects

moving in water. Bottle, from [9], displays a bottle floating

in water (see Fig. 4). The waves in the water move rapidly,

pushing the bottle up the image. The sequence has dimen-

sions 160 × 120, and the first 174 frames were used to train

the background model, with the remaining 105 frames (which

contain the actual bottle) being used for testing.

Boats1 and Boats2, depict boats moving in a harbor (see

Figs. 6, 7). The boats create a turbulent wake that dramatically
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Fig. 4 Foreground detection results on Bottle sequence at 80% TPR

changes the motion and appearance of the water. The

sequences also contains a large perspective effect, which

makes the water motion in the foreground significantly dif-

ferent from that in the background. The strong motion par-

allax of this scene makes these sequences very challenging

for background subtraction. They have dimensions 180 ×
120 × 300. A separate sequence of 200 frames, containing

just the baseline water motion, was used to train the back-

ground models.

6.2 Experimental setup

Several background models, based on dynamic textures, were

compared. The first represents each spatiotemporal volume

as a simple non-adaptive dynamic texture, and is denoted by

DT. The second and third models use the adaptive dynamic

texture mixture with K = 1 and K = 3, and are denoted by

DTM1 and DTM3, respectively. These models are updated

with Algorithm 1 (when K = 1 no new components are

added in the update phase). Finally, the last two models are

based on the adaptive dynamic texture mixture (with K = 1

and K = 3) using approximate sufficient statistics (with

q = n), and are denoted by DTM1x and DTM3x. In all

cases, a spatiotemporal cube size of 7 × 7 × 5 was adopted,

and the state-space dimension of the dynamic textures was

n = 10. The covariance matrix R was also assumed diago-

nal. For the adaptive dynamic texture mixture, the learning

rate parameters were set to α = 0.16 and β = 0.08. Finally,

when adding a new mixture component, the covariance reg-

ularization parameter was σ = 10.

We compared performance against several state-of-the-

art background models. The first is the GMM of [2] with

α = 0.01. Specifically, we used the extension of [25], that

automatically selects the number of mixture components, and

is available from [26]. We have also implemented the mod-

els from [10] (7 × 7 patches and n = 10) and [9] (n = 10).

Finally, performance was compared against a simple back-

ground model, which represents 7 × 7 patches with n = 10

PCA components, and marks a patch as foreground if its

reconstruction error is above a threshold.

All background models were evaluated by comparing fore-

ground detections to ground-truth masks for foreground

objects. Several examples of ground-truth are shown in

Figs. 4, 6, and 7. The foreground is displayed as white and

the background as black. The gray region is the boundary

between object and background. Due to the length of the

sequences, and the fact that pixels along the object bound-

ary contain a mixture of foreground and background, it is

both difficult and tedious to obtain pixel-accurate ground-

truth masks. The gray boundary regions are ignored in the

evaluation of foreground detection. Each background model

was run for a large range of thresholds, and the true posi-

tive rate (TPR) and false positive rate (FPR), with respect to

the ground-truth, were computed for each. The overall per-

formance was measured by the area under the ROC curve

(AUC). Videos of the results are available from [27].

6.3 Results on Bottle

We start by presenting results on Bottle. Since the water

motion does not change significantly (i.e. its statistics are

stationary), we only tested the non-adaptive dynamic texture

(DT). The ROC curves of the different background models

are shown in Fig. 3, and the area under the ROC (AUC) is

listed in Table 1. We also report the false positive rate (FPR)

at a true positive rate (TPR) of 0.80. The DT model performs

significantly better than the GMM, with an AUC of 0.9985

for the former and 0.9229 for the latter. At 80% TPR, DT has

a false-positive rate of 0.21%, while that of GMM is 2.36%.

Note that although the DT model is non-adaptive, it mod-

els the background motion accurately. On the other hand,

despite its adaptive nature, GMM cannot cope with the sto-

chasticity of the water motion. The PCA model also performs
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Fig. 5 ROC curves for foreground detection on (a) Boats1, and (b) Boats2

well, with an AUC of 0.9861, but is slightly inferior to DT.

This suggests that modeling the water texture is sufficient

for accurate performance, but the ability to further capture

the texture dynamics gives the DT an additional performance

boost.

Figure 4 shows the detected foreground regions at 80%

TPR, for all background models. Note that the pixel-based

methods (GMM and [9]) mark most of the reflection and

shadow of the bottle as foreground, whereas the patch-based

methods (DT, PCA, and [10]) classify it as background.

Again, this illustrates the importance of modeling both tex-

ture and dynamics.

6.4 Results on Boats1 and Boats2

The ROC curves for Boats1 and Boats2 are shown in Fig. 5a

and b, and the results summarized in Table 1. We start by not-

ing that the adaptive dynamic texture mixture with K = 3

(DTM3) outperforms all other methods at almost all levels of

TPR. For example on Boats1 at 90% TPR, DTM3 has an FPR

of 0.61%, whereas DTM1, DT and GMM have FPRs of 1.2,

1.4 and 10.3%, respectively. On Boats2 at 55% TPR, DTM3

has an FPR of 0.88%, while DTM1, DT and GMM have FPRs

of 3.18, 7.11 and 2.61%, respectively. This performance dif-

ference is illustrated in Figs. 6 and 7, which show the detected

foregrounds. As the boat traverses the scene, DTM3 models

its wake with a new mixture component, quickly including

it into the background. The adaptive model with a single

dynamic texture (DTM1) takes much longer to adapt to the

wake, because it contains a single mode.

While the methods that fully exploit the probabilistic rep-

resentation of the dynamic texture tend to do well on these

sequences, the remaining methods perform fairly poorly.

GMM is able to adapt to the wake of the boat, but the overall

foreground detection is very noisy, due to the constant wave

motion. The method of [10] fails to detect the wake as part

of the background, and has trouble with the stochastic nature

of the shimmering waves at the bottom of the video frame.

On Boats1, the simple PCA model outperforms GMM, [9],

and [10]. Finally, the ROC plots comparing DTM with the

approximate DTM are shown in Fig. 8. The performance of

DTM using the approximate sufficient statistics is similar to

that of the standard DTM, albeit with a drop in performance

on the difficult scene of Boats2. On this scene, the AUC drops

from 0.9266 to 0.8955, suggesting that there is some loss in

representative power when this approximation is used.

6.5 Results on other video sequences

In addition to the above quantitative evaluation, we present

qualitative results on five additional challenging sequences.

The first is “zod2” from the PETS2005 coastal surveillance

data set [28], and is displayed in Fig. 9. It was captured with a

thermal camera, and contains a small rubber Zodiac boat, at a

variety of scales, traveling in the ocean. The boat starts close

to the camera, and travels directly away from it. In the dis-

tance, it turns towards the right and travels across the scene.

At this point the boat is very small relative to its initial size

(only occupies a few pixels). The boat wake is clearly visible

when the boat is close but not visible when it is far away.

Foreground detection with the adaptive dynamic texture

mixture (DTM3) is shown in Fig. 9 (center). DTM3 marks

the boat region as foreground, while ignoring the wake. The

boat is also consistently marked as foreground, even when it

is small relative to waves in other parts of the scene. This is in

contrast to the GMM, which produces a significant amount

of false detections. In particular, when the boat is small, the

detected foreground region is very similar in shape and size
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Fig. 6 Foreground detection

results on Boats1 at 90%

true-positive rate

to the false detections (e.g. see the last three rows of Fig. 9).

These types of errors make subsequent operations, such as

object tracking, very difficult. On the other hand, DTM3 per-

forms well regardless of the boat scale, maintaining a very

low FPR throughout the sequence.

The second sequence is the beach scene from [10], and

appears in Fig. 10. The scene consists of two people walking

on a beach, with part of the background composed of crashing

waves. The waves have variable shape and intensity, making

the background difficult to model. The foreground detections

by DTM3 and GMM are shown in Fig. 10. Again, DTM3 is

able to adapt to the wave motion, while detecting the fore-

ground objects. On the other hand, the crashing waves cause

false alarms by the GMM.

The final three videos illustrate the performance of the

adaptive mixture on scenes containing dynamic backgrounds

other than water. Figure 11 shows a sequence of a heli-

copter traveling in dense smoke, along with the detected

foreground using the simple dynamic texture (DT). The heli-

copter is marked as foreground by the model, while the smoke

is marked as background. The next sequence, displayed in

Fig. 12, contains several people skiing down a mountain.

The background includes falling snow flakes, and the scene

is subject to an increasing amount of translation due to a

camera pan. Figure 12 also shows the foreground detections

by DTM3 and GMM. DTM3 successfully marks the skiers

as foreground, but exhibits some errors when there is a sig-

nificant amount of panning (e.g. the last two frames). On the

other hand, the foreground detected by GMM contains a sig-

nificant amount of noise, due to both the falling snow and the

camera pan, and fails to find the skiers when they are small

(e.g. in the first two frames).

The final sequence, shown in Fig. 13, shows a biker jump-

ing in front of an explosion. In this scene the background

is difficult to model because it changes significantly in a

short period of time. Foreground detections by DTM3 are

shown in Fig. 13 (middle), illustrating the ability of the model

to quickly adapt to an unseen background motion. The first

frame shows the background before the explosion occurs. In

the next frame, the beginning of the explosion is detected

as foreground, because it is an unseen motion process. As

the explosion propagates outward (third and fourth frames),

the areas within the explosion are marked as background,

because the model adapts to the new motion. Meanwhile, the

biker is still marked as foreground. Finally, after sufficient

exposure (the fifth and sixth frames), the explosion no longer
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Fig. 7 Foreground detection

results on Boats2 at 55%

true-positive rate

Table 1 Quantitative results on three water scenes for different background models

Dataset GMM PCA [10] [9] DT DTM1 DTM3 DTM1x DTM3x

Bottle AUC 0.9229 0.9861 0.9912 0.9354 0.9985 – – – –

Bottle FPR (TPR = 0.80) 0.0236 0.0041 0.0098 0.0226 0.0021 – – – –

Boats1 AUC 0.9516 0.9698 0.9061 0.9493 0.9884 0.9886 0.9910 0.9881 0.9902

Boats1 FPR (TPR = 0.90) 0.1030 0.0865 0.1762 0.1067 0.0140 0.0120 0.0061 0.0154 0.0061

Boats2 AUC 0.8952 0.8136 0.7073 0.7966 0.8685 0.8916 0.9266 0.8954 0.8955

Boats2 FPR (TPR = 0.55) 0.0261 0.1527 0.3105 0.1495 0.0711 0.0318 0.0088 0.0304 0.0097

Bold values indicate the best performance on each video

registers as foreground, leaving only the biker in this cate-

gory. Under the GMM model (Fig. 13 bottom), the detected

foreground again contains significant noise, indicating that

the stochastic nature of the explosion is poorly modeled by

the GMM pixel process.

7 Conclusions

In this work, we have introduced a generalization of the

Stauffer–Grimson background subtraction algorithm. While

the original algorithm restricts the background model to a

Gaussian mixture, which is only suitable for static scenes,

the generalization supports models with arbitrary component

densities. The only restriction is that these densities can be

summarized by sufficient statistics. We have applied the gen-

eralized SG model to the case where the component densities

are dynamic textures, producing an adaptive background sub-

traction algorithm based on the mixture of dynamic textures,

which is suitable for dynamic scenes. The new background

subtraction algorithm includes a new online algorithm for

dynamic texture parameter estimation using sufficient statis-
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(a) (b)

Fig. 8 ROC curves for foreground detection with DTM and approximate DTM on (a) Boats1 and (b) Boats2

Fig. 9 Foreground detection

results on “zod2” from the

PETS2005 coastal surveillance

dataset [28]

Fig. 10 Foreground detection

results on the beach scene from

[10]

Fig. 11 Foreground detection

results on Chopper video
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Fig. 12 Foreground detection

results on Skiing video

Fig. 13 Foreground detection

results on CycleFire video

tics, which is equivalent to the least-squares algorithm of [3].

This algorithm can be used in any application of dynamic

textures that requires online video processing, not just back-

ground subtraction. The performance of the new background

subtraction algorithm was evaluated through extensive exper-

iments, involving scenes with dynamic backgrounds. Sub-

stantial quantitative improvements over the state-of-the-art

were demonstrated on aquatic scenes, where background

dynamics are particularly challenging. For example, the pro-

posed algorithm was shown to quickly incorporate boat

wakes into the background, a task that proved too difficult

for other state-of-the-art procedures. The efficacy of the pro-

posed algorithm was also (qualitatively) demonstrated on

other classes of dynamic backgrounds, including smoke,

snow-fall, and fire. Finally, we note that the new background

subtraction algorithm achieved high detection and low false-

positive rates regardless of object scale, suggesting that it may

be suitable for surveillance on dynamic scenes (e.g. harbors).
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Appendix: Online estimation with approximate

sufficient statistics

In this appendix, we derive the online estimation algorithm

for dynamic textures (Sects. 4.2 and 5.2) using approximate

sufficient statistics. If the dimension of the video is large,

then computing and storing the sufficient statistics may be

impractical. In this case, the statistics can be approximated

with the top q principal components of the image covariance


, i.e.


 ≈ D
q DT , φ ≈ Dφq DT , η ≈ Dηq DT ,
(53)

ψ ≈ Dψq DT , ϕ ≈ Dϕq DT , ξ ≈ Dξq ,

where D ∈ R
m×q

is the matrix containing the q top PCA

basis vectors of 
. The approximate sufficient statistics,

which are the projections of the sufficient statistics into the

PCA basis of D, are: 
q ∈ R
q×q

which is diagonal, {
q , φq ,

ηq , ψq , ϕq} ∈ R
q×q

, and ξq ∈ R
q
. The online estimation

algorithm proceeds in three phases: (1) update the PCA basis

D, (2) update the approximate statistics, and (3) re-estimate

the parameters of the dynamic texture. We will denote the

previous PCA basis as Dold, the current approximate statis-

tics {
q , φq , ηq , ψq , ϕq , ξq}, and the new observation Y1:τ .
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In the first phase of the approximate algorithm, the PCA

basis Dold must be updated with the new data Y1:τ . An

incremental PCA procedure is adopted, similar to [19].

Substituting the approximate image covariance into the

update equation (50) yields:


 ≈ (1 − α)Dold
q DT
old + α

(

1

τ
Ỹ1:τ Ỹ T

1:τ

)

= Z Z T (54)

where

Z =
[√

(1 − α)Dold(
q)
1
2 ,

√

α
τ

Ỹ1:τ
]

. (55)

Hence, the new PCA basis D can be computed from the SVD

of Z = U SV T ,

D = [u1, . . . , uq ], (56)


q = diag
([

s2
1 , s2

2 , . . . , s2
q

])

, (57)

where ui are the columns of U corresponding to the q largest

singular values {s1, . . . , sq}.
The second phase of the algorithm updates the approxi-

mate sufficient statistics with the statistics of the new video.

Define the projection of the video Ỹ1:τ onto the basis of D

as:

V̂1:τ = [v̂1 · · · v̂τ ] = DT Ỹ1:τ . (58)

Pre-multiplying (53) by DT and post-multiplying by D, the

estimates of the approximate statistics
{

φ̂′
q , ϕ̂′

q , ψ̂ ′
q , η̂′

q , ξ̂ ′
q

}

of the new video Y1:τ are:

φ̂′
q = DT φ̂D = DT Ỹ1:τ−1Ỹ T

1:τ−1 D = V̂1:τ−1V̂ T
1:τ−1,

ϕ̂′
q = DT ϕ̂D = DT Ỹ2:τ Ỹ T

2:τ D = V̂2:τ V̂ T
2:τ ,

ψ̂ ′
q = DT ψ̂ D = DT Ỹ2:τ Ỹ T

1:τ−1 D = V̂2:τ V̂ T
1:τ−1, (59)

η̂′
q = DT η̂D = DT ỹ1 ỹT

1 D = v̂1v̂
T
1 ,

ξ̂ ′
q = DT ξ̂ = DT ỹ1 = v̂1.

The online update equations for the sufficient statistics (50)

have the form:

φ ← (1 − α)φ + αφ′. (60)

Substituting the approximate statistics into (60), we have:

Dφ̂q DT ← (1 − α)Doldφ̂q DT
old + αDφ̂′

q DT , (61)

φ̂q ← (1 − α)
(

DT Dold

)

φ̂q

(

DT
old D

)

+ αφ̂′
q . (62)

Defining F = DT Dold, which transforms the approximate

statistics from the old PCA basis into the new basis, the

approximate statistics are updated according to:

φ̂q ← (1−α)F φ̂q FT +αφ̂′
q , η̂q ←(1−α)F η̂q FT +αη̂′

q ,

ϕ̂q ← (1 − α)F ϕ̂q FT + αϕ̂′
q , ξ̂q ← (1 − α)F ξ̂q + αξ̂ ′,

ψ̂q ← (1 − α)Fψ̂q FT + αψ̂ ′
q , ȳ ← (1 − α)ȳ + α ȳ′.

(63)

In the final phase, the dynamic texture parameters are esti-

mated from the approximate sufficient statistics. From (20),

the estimate of the observation matrix is:

Ĉ = PCA
(


̂, n
)

= PCA
(

D
̂q DT , n
)

= D J, (64)

where J = Iq,n is the q×n identity matrix, which effectively

selects the first n columns of D. Next, substituting with (53),

we have:

ĈT φ̂Ĉ ≈ ĈT
(

Dφ̂q DT
)

Ĉ = J T φ̂q J,

ĈT ϕ̂Ĉ ≈ ĈT
(

Dϕ̂q DT
)

Ĉ = J T ϕ̂q J,

ĈT ψ̂Ĉ ≈ ĈT
(

Dψ̂q DT
)

Ĉ = J T ψ̂q J, (65)

ĈT η̂Ĉ ≈ ĈT
(

Dη̂q DT
)

Ĉ = J T η̂q J,

ĈT ξ̂ ≈ ĈT (Dξ̂q) = J T ξ̂q ,

where J T φ J selects the top-left n×n sub-matrix of φ. Hence

substituting (65) into (43), the approximate parameter esti-

mates are:

Â ≈
(

J T ψ̂q J
) (

J T φ̂q J
)−1

, µ̂ ≈ J T ξ̂q ,

Q̂ ≈ 1

τ − 1

(

J T ϕ̂q J − Â J T ψ̂T
q J

)

, Ŝ ≈
(

J T η̂q J
)

−µ̂µ̂T .

(66)

Finally, the covariance of the observation noise in (43) can

be written as:

R̂ =
(

I − ĈĈT
)


̂
(

I − ĈĈT
)

≈
(

I − ĈĈT
)

Z Z T
(

I − ĈĈT
)

. (67)

Assuming that q ≪ m, the complexity of online estimation

using the approximate statistics is dominated by the calcula-

tion of the PCA basis (i.e. taking the SVD of Z ), which has

complexity O(m(q + τ)2). Note that using the approximate

statistics reduces the complexity to be linear in m, rather than

quadratic in m for the full statistics.

References

1. Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for

object detection. IEEE Trans. PAMI 27(11), 1778–1792 (2005)

2. Stauffer, C., Grimson, W.: Adaptive background mixture models

for real-time tracking. In: CVPR, pp. 246–52 (1999)

3. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures.

Int. J. Comp. Vis. 51(2), 91–109 (2003)

4. Saisan, P., Doretto, G., Wu, Y., Soatto, S.: Dynamic texture recog-

nition. In: IEEE Conference Computer Vision and Pattern Recog-

nition, vol. 2, pp. 58–63 (2001)

5. Chan, A.B., Vasconcelos, N.: Probabilistic kernels for the classi-

fication of auto-regressive visual processes. In: IEEE Conference

Computer Vision and Pattern Recognition, vol. 1, pp. 846–851

(2005)

123



A. B. Chan et al.

6. Doretto, G., Cremers, D., Favaro, P., Soatto, S.: Dynamic texture

segmentation. In: IEEE International Conference Computer Vision,

vol. 2, pp. 1236–1242 (2003)

7. Chan, A.B., Vasconcelos, N.: Mixtures of dynamic textures. In:

IEEE International Conference Computer Vision, vol. 1, pp. 641–

647 (2005)

8. Fitzgibbon, A.W.: Stochastic rigidity: image registration for

nowhere-static scenes. In: IEEE International Conference Com-

puter Vision, vol. 1, pp. 662–670 (2001)

9. Zhong, J., Sclaroff, S.: Segmenting foreground objects from a

dynamic textured background via a robust Kalman filter. In: ICCV

(2003)

10. Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background

modeling and subtraction of dynamic scenes. In: CVPR (2003)

11. Chan, A.B., Vasconcelos, N.: Modeling, clustering, and segment-

ing video with mixtures of dynamic textures. IEEE Trans. Pattern

Anal. Mach. Intell. 30(5), 909–926 (2008)

12. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estima-

tion Theory. Prentice-Hall, Englewood Cliffs (1993)

13. Heikkila, M., Pietikainen, M.: A texture-based method for mod-

eling the background and detecting moving objects. IEEE Trans.

PAMI 28(4), 657–662 (2006)

14. Mittal, A., Paragios, N.: Motion-based background subtraction

using adaptive kernel density estimation. In: CVPR (2004)

15. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for

background subtraction. In: ECCV, pp. 751–57 (2000)

16. Latecki, L.J., Miezianko, R., Pokrajac, D.: Motion detection based

on local variation of spatiotemporal texture. In: CVPR Workshops

(2004)

17. Kahl, F., Hartley, R., Hilsenstein, V.: Novelty detection in image

sequences with dynamic backgrounds. In: ECCV Workshop on

Statistical Methods in Video Processing (2004)

18. Oliver, N.M., Rosario, B., Pentland, A.P.: Bayesian computer

vision system for modeling human interactions. IEEE Trans.

PAMI 22(8), 831–843 (2000)

19. Li, Y.: On incremental and robust subspace learning. Pattern

Recogn. 37(7), 1509–1519 (2004)

20. Dalley, G., Migdal, J., Grimson, W.: Background subtraction for

temporally irregular dynamic textures. In: Workshop on Applica-

tions of Computer Vision, Jan (2008)

21. Wixson, L.: Detecting salient motion by accumulating direc-

tionally-consistent flow. IEEE Trans. Pattern Anal. Mach. Intell.

22(8), 774–780 (2000)

22. Tian, Y.-L., Hampapur, A.: Robust salient motion detec-

tion with complex background for real-time video surveil-

lance. In: IEEE Workshop on Motion and Video Computing

(WACV/MOTION’05), vol. 2, pp. 30–35 (2005)

23. Shumway, R.H., Stoffer, D.S.: An approach to time series smooth-

ing and forecasting using the EM algorithm. J. Time Series Anal.

3(4), 253–264 (1982)

24. Ghahramani, Z., Hinton, G.: Parameter estimation for linear

dynamical systems. Department of Computer Science, University

of Toronto, Tech Report CRG-TR-96-2 (1996)

25. Zivkovic, Z.: Improved adaptive Gaussian mixture model for back-

ground subtraction. In: ICVR (2004)

26. Zivkovic, Z.: [Online]. Available: http://staff.science.uva.nl/

~zivkovic/DOWNLOAD.html (2004)

27. Chan, A.B.: Generalized Stauffer–Grimson background subtrac-

tion for dynamic scenes [Online]. Available: http://www.svcl.ucsd.

edu/projects/dytexbkgnd (2008)

28. Boult, T.: Coastal surveillance datasets. Vision and Security Lab,

U. Colorado at Colorado Springs [Online]. Available: http://www.

vast.uccs.edu/~tboult/PETS2005 (2005)

123

http://staff.science.uva.nl/~zivkovic/DOWNLOAD.html
http://staff.science.uva.nl/~zivkovic/DOWNLOAD.html
http://www.svcl.ucsd.edu/projects/dytexbkgnd
http://www.svcl.ucsd.edu/projects/dytexbkgnd
http://www.vast.uccs.edu/~tboult/PETS2005
http://www.vast.uccs.edu/~tboult/PETS2005

	Generalized Stauffer--Grimson background subtraction  for dynamic scenes
	Abstract
	1 Introduction
	2 Previous work
	3 Adaptive background modeling with online mixtures
	3.1 Probabilistic model
	3.2 Online parameter estimation
	3.3 Background detection
	3.4 Extending Stauffer--Grimson to other distributions

	4 Sufficient statistics for estimation of dynamic texture parameters
	4.1 Dynamic textures
	4.2 Estimation from sufficient statistics

	5 The generalized Stauffer--Grimson algorithm for dynamic textures
	5.1 Background detection
	5.2 On-line updating of the background model

	6 Experiments
	6.1 Videos with water backgrounds
	6.2 Experimental setup
	6.3 Results on Bottle
	6.4 Results on Boats1 and Boats2
	6.5 Results on other video sequences

	7 Conclusions
	Acknowledgments
	Appendix: Online estimation with approximate  sufficient statistics
	References


