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Abstract—A spatiotemporal saliency algorithm based on a center-surround

framework is proposed. The algorithm is inspired by biological mechanisms of

motion-based perceptual grouping and extends a discriminant formulation of

center-surround saliency previously proposed for static imagery. Under this

formulation, the saliency of a location is equated to the power of a predefined set

of features to discriminate between the visual stimuli in a center and a surround

window, centered at that location. The features are spatiotemporal video patches

and are modeled as dynamic textures, to achieve a principled joint

characterization of the spatial and temporal components of saliency. The

combination of discriminant center-surround saliency with the modeling power of

dynamic textures yields a robust, versatile, and fully unsupervised spatiotemporal

saliency algorithm, applicable to scenes with highly dynamic backgrounds and

moving cameras. The related problem of background subtraction is treated as the

complement of saliency detection, by classifying nonsalient (with respect to

appearance and motion dynamics) points in the visual field as background. The

algorithm is tested for background subtraction on challenging sequences, and

shown to substantially outperform various state-of-the-art techniques.

Quantitatively, its average error rate is almost half that of the closest competitor.

Index Terms—Spatiotemporal saliency, background subtraction, dynamic

backgrounds, motion saliency, dynamic texture, discriminant center-surround

architecture, video modeling.
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1 INTRODUCTION

NATURAL scenes are usually composed of several dynamic entities.
Foreground objects often move amid complicated backgrounds
that are themselves moving, e.g., swaying trees or other objects
such as a crowd, a flock of birds, moving water, waves, snow, rain,
and smoke-filled environments. Even for static scenes, egomotion
of the imaging sensor can cause a highly variable background. In
the most extreme situations, egomotion and scene motion can
combine to produce very complex background motion patterns.
We refer to scenes with any of these types of variability as dynamic
scenes. Since such scenes are plentiful in the natural world,
successful discrimination between the background motions they
induce and moving foreground objects, i.e., identifying regions
that are spatiotemporally salient, is a strong survival advantage. Not
surprisingly, biological visual systems have evolved to be
extremely efficient in this task [3].

In computer vision, spatiotemporal saliency and the related
task of background subtraction are commonly used as a
preprocessing step for object and event detection [10], activity
and gesture recognition [29], tracking [30], surveillance [12], and
video retrieval [27]. Nevertheless, there has been little progress
toward methods robust enough to handle the complexities of most
dynamic scenes. Shortcomings of even the most advanced
techniques include the requirements of

1. static cameras [12], [21], [25];
2. explicit [14], or approximate [23], compensation of camera

motion;

3. foreground objects that move in a consistent direction (an
assumption that we denote as temporal coherence) [6], [16],
[28] or have faster variations in appearance than the
background [24]; or

4. explicit background models.

These requirements are frequently unrealistic and particularly
questionable when there is egomotion, e.g., a camera that tracks a
moving object in a manner such that the latter has very small
optical flow, or the background is dynamic. In addition, back-
ground learning requires a training set of “background-only”
images [21], [25], [32] or batch processing (e.g., median filtering
[10]) of a large number of video frames, which must be repeated
for each scene and is difficult for dynamic scenes (where the
background changes continuously).

We address these limitations through a novel spatiotemporal
saliency paradigm, inspired by biological vision, where back-
ground subtraction is inherent to the deployment of visual
attention. In particular, background subtraction is equated to the
detection of salient motion, for which we propose a solution based
on the discriminant center-surround saliency hypothesis [13]. Under
this hypothesis, saliency is the result of optimal discrimination
between center and surround stimuli at each location of the visual
field. A set of visual features is collected from center and surround
windows and the locations where the discrimination between the
features of the two types can be performed with the smallest
expected probability of error are declared as most salient. Back-
ground subtraction then reduces to ignoring the locations declared
as nonsalient.

The center-surround formulation has various advantages over
the traditional background subtraction procedures. First, there is no
need to train or maintain models of the background. In fact, the
proposed algorithm is completely unsupervised and does not
require initialization with “background-only” frames. On the
contrary, it is a bottom-up approach that can be equally applied to
known and unknown scenes. Second, while a dynamic background
is rarely homogeneous (e.g., different trees have different motion),
spatial homogeneity usually holds locally. Hence, center-surround
processing can be performed with much simpler probabilistic
models (e.g., unimodal distributions versus mixtures) than those
required to model the whole background. This simplifies parameter
estimation. Third, since discriminant saliency only depends on the
relative disparity between center and surround activity, it is invariant
to camera motion. Finally, discriminant saliency is applicable to
various problems, by simple modification of the features and
probabilistic models used for center-surround discrimination. We
adopt dynamic texture models, due to their versatility in modeling
complex moving patterns and ability to replicate natural scene
dynamics [11], [31]. This enables the proposed algorithm to account
for joint saliency in motion and appearance, and makes it robust
enough to handle complex dynamic backgrounds. Experimental
results on a diverse collection of sequences show that the proposed
algorithm substantially outperforms the current state of the art in
background subtraction.

2 BIOLOGICAL MOTIVATION

There is plentiful evidence that, in biological vision, bottom-up
saliency is achieved through “center-surround” mechanisms tuned
to detect stimuli that are distinct from stimuli in their surroundings
[15], [19]. Extensive psychophysics experiments have shown that
these mechanisms can be driven by a variety of features, including
intensity, color, orientation, or motion, and local feature contrast
plays a predominant role in the perception of saliency [22]. Fig. 1
shows some displays used in classical experiments designed to
determine the role of feature contrast on judgments of motion
saliency [22]. In one experiment, subjects were shown a display of
moving dots such as that depicted in Fig. 1a (the videos are
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available in [2]). While all dots (whose motion is indicated in the
figure by arrows) were subject to motion different from that of
their immediate neighbors, three (referred to as the targets, and
indicated by circles in the figure) had substantially larger motion
contrast than the others. The targets could be in different
configurations, two of which are shown in the figure: 1) “similar”
(Fig. 1a), where all three targets moved in the same direction and
2) “dissimilar” (Fig. 1b), where one target moved in a direction
different than that of the other two. In all cases, subjects reported
the percept of pop-out of a “moving triangle,” with similar
detection rates. While motion pop-out was already well estab-
lished, these experiments showed that both motion saliency and
the perceptual organization of the points into a triangle do not
depend on absolute quantities, such as the direction of motion of the
targets, how coherent their motion is, or the type of background
motion. Instead, the coherent perception of the targets as a triangle,
even when the vertex motions are incoherent and the background
motion cannot be easily explained by a physical geometric
transformation, suggests that both motion saliency and perceptual
organization are driven by measurements of local motion contrast.
Neurophysiological experiments on primates have also shown that
neurons in the middle temporal visual area (MT) compute local
motion contrast with center-surround mechanisms. It has, in fact,
been hypothesized that such neurons underlie the perception of
motion pop-out and figure-ground segmentation [4]. On the other
hand, this evidence suggests that spatiotemporal saliency or
background subtraction techniques which 1) rely on grouping of
features by motion similarity to identify foreground objects or
2) require compensation of camera motion, will have difficulties to
match the performance of biological systems.

From a computer vision point of view too, rooting saliency on
measurements of local contrast appears to be a good idea. Note
that, if motion contrast is defined as dissimilarity of optical flow,
the saliency judgments are robust to egomotion. Furthermore, there
is no need for a “global background model” or any type of training.
Instead, saliency can be computed efficiently using purely local
computations, and it immediately adapts to previously unseen
environments. We will see in what follows that these properties
still hold for dynamic scenes, under a more general definition of
motion contrast.

3 DISCRIMINANT CENTER-SURROUND

SPATIOTEMPORAL SALIENCY

The biological evidence of the previous section suggests the
implementation of spatiotemporal saliency through local measure-
ments of motion contrast. In this section, we propose an
implementation based on the principle of discriminant saliency

[13], with models of spatiotemoporal stimulus statistics that are
suitable for dynamic scenes.

3.1 Mathematical Formulation

Discriminant saliency is defined with respect to two classes of
stimuli: a class of stimuli of interest and a background or null
hypothesis, consisting of stimuli that are not salient. The locations
of the visual field that can be classified, with lowest expected
probability of error, as containing stimuli of interest are denoted as
salient. This is accomplished by setting up a binary classification
problem between the stimuli of interest and the null hypothesis.
The saliency of each location in the visual field is then equated to
the discriminant power of the visual features extracted from that
location in differentiating the two classes.

Formally, let V be a d-dimensional array representing the visual
stimuli indexed by location vector l 2 L � IRd and consider the
responses of a predefined set of features YY (e.g., raw pixel values,
Gabor or Fourier features), computed from V at all locations l 2 L.
A classification problem opposing two classes, of class label
CðlÞ 2 f0; 1g, is posed at location l. Two windows are defined: a
neighborhood W1

l of l, which is denoted as center, and a
surrounding annular window W0

l , which is denoted as the
surround. The union of the two windows is denoted as the total
window Wl ¼ W0

l [W1
l . Let yðjÞ be the vector of feature responses

at location j. Features in the center fyðjÞjj 2 W1
l g are drawn from

the class of interest (or alternate hypothesis) CðlÞ ¼ 1, with
probability density pYY jCðlÞðyj1Þ. Features in the surround fyðjÞjj 2
W0

l g are drawn from the null hypothesis CðlÞ ¼ 0, with probability
density pYY jCðlÞðyj0Þ. The saliency of location l, SðlÞ, is quantified by
the mutual information between features YY and class label C,

SðlÞ ¼ IlðYY ;CÞ ¼
X1

c¼0

Z
Y
pYY ;CðlÞðy; cÞ log

pYY ;CðlÞðy; cÞ
pYY ðyÞpCðlÞðcÞ

dy; ð1Þ

where y 2 Y, the space of feature responses.
This is an approximation to the expected probability of success

of center-surround classification (more precisely, one minus the
Bayes error rate) [26]. A large SðlÞ implies that center and surround
have large disparity of feature responses, i.e., large local feature
contrast, and can thus be discriminated with low probability of
error. Conversely, locations where the classification has the
smallest expected probability of error occur at maxima of SðlÞ.
The function SðlÞ; l 2 L is referred to as the saliency map of the
stimuli V and can also be written as

SðlÞ ¼
X1

c¼0

pCðlÞðcÞKL pYY jCðlÞðy j cÞ pYY ðyÞk
� �

; ð2Þ

where KL ðpkqÞ ¼
R
X pXXðxÞ log pXXðxÞ

qXXðxÞ dx is the Kullback-Leibler
(KL) divergence between the probability distributions pXXðxÞ
and qXXðxÞ [20].

3.2 Modeling Spatiotemporal Stimulus Statistics

Under this formulation, spatiotemporal saliency for highly
dynamic scenes only requires the use, in (2), of probability models
pYY jCðlÞðyjcÞ that account for the variability of such scenes. We adopt
the dynamic texture (DT) model of [11], due to its ability to account
for this variability, while jointly modeling the spatiotemporal
characteristics of the visual stimulus. A dynamic texture is an
autoregressive model that represents the appearance of the
stimulus yt 2 IRm (the pixels of the two-dimensional visual
stimulus are represented as a column vector of length m), observed
at time t, as a linear function of a hidden state process xt 2 IRn

(n� m) subject to Gaussian observation noise. The state and
appearance processes form a linear dynamical system (LDS)

xt ¼ Axt�1 þ vt;

yt ¼ Cxt þwt;
ð3Þ
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Fig. 1. Saliency perception due to local contrast [22]. Each panel shows a quiver
plot of the stimuli (dots, whose direction of motion is indicated by arrows of length
proportional to the speed of that motion). In (a), three targets which move in the
same direction, among a field of distractors, are perceived as vertices of a moving
triangle. This percept holds even if, as in (b), the direction of motion of one target is
reversed. Video sequences of the two stimuli are available in [2].
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where A 2 IRn�n is the state transition matrix, C 2 IRm�n the

observation matrix, and vt �iid Nð0;QÞ and wt �iid Nð0;RÞ are
Gaussian state and observation noise processes, respectively.

The initial state is assumed to be distributed as x1 � Nð��1;S1Þ,
and the model is parameterized by � ¼ ðA;C;Q;R; ��1;S1Þ.

3.3 Probability Distributions

Since the states of a DT form a Markov process with Gaussian
conditional probability for xt given xt�1 (for any t), and Gaussian

initial conditions, the joint distribution of the state sequence,
xð�Þ ¼ ½xT1 � � �xT� �

T , is also Gaussian [8]

pXXðxð�ÞÞ � N ð��ð�Þ;�ð�ÞÞ; ð4Þ

with parameters defined by the recursions

��ðtÞ ¼ ��ðt� 1Þ
��t

� �
; �ðtÞ ¼ �ðt� 1Þ �T ðtÞ

�ðtÞ St

� �
; ð5Þ

where �ðtÞ is the cross-covariance between the state at time t and

the sequence of past states, and

��t ¼ A��t�1; St ¼ ASt�1A
T þQ; ð6Þ

�ðtÞ ¼ A�ðt� 1Þ ASt�1½ �; ð7Þ

for t 2 ½2; � �, with ��ð1Þ ¼ ��1, �ð1Þ ¼ S1, and �ð2Þ ¼ AS1.
Similarly, the sequence of observations yð�Þ ¼ ½yT1 � � � yT� �

T has

joint distribution

pYY ðyð�ÞÞ � N ð��ð�Þ;��ð�ÞÞ; ð8Þ

with parameters defined by the recursions,

��ðtÞ ¼
��ðt� 1Þ

C��t

� �
; �ðtÞ ¼ �ðt� 1Þ �T ðtÞCT

C��ðtÞ CStC
T þR

" #
; ð9Þ

��ðtÞ ¼ ½A��ðt� 1Þ ASt�1C
T �; ð10Þ

for t 2 ½2; � �, where C��ðtÞ is the cross-covariance between the

observation at t and the past observation sequence. The initial
conditions are ��ð1Þ ¼ C��1, �ð1Þ ¼ CS1C

T þR, and ��ð2Þ ¼ AS1C
T .

Using the parameter estimates obtained from a collection of
spatiotemporal patches extracted from the center and surround

windows with the method of [11] in (4) and (8) produces the
probability distributions required by (2).

3.4 KL Divergence between DTs

To evaluate the KL divergences of (2), let

pYY jCðlÞðyð�ÞjcÞ � N ð��cð�Þ;��cð�ÞÞ, c 2 f0; 1g be the class-conditional

distributions of a sequence of � frames under two DTs
parameterized by �cðlÞ, c 2 f0; 1g, respectively, and pYY ðyð�ÞÞ �
N ð��ð�Þ;��ð�ÞÞ the marginal distribution parameterized by �ðlÞ.
Since all distributions are Gaussian, the KL divergence has closed-

form [9]

KL ðpYY jCðlÞðyð�ÞjcÞ pYY ðyð�ÞÞk Þ

¼ 1

2

�
log

�ð�Þj j
�cð�Þj j þ trð�ð�Þ�1�cð�ÞÞ

þ ��cð�Þ � ��ð�Þk k2
�ð�Þ�m�

�
;

ð11Þ

where m is the number of pixels in each frame, kzkA ¼ zTA�1z

the Mahalanobis norm of z with respect to covariance A, and
jAj the determinant of A. Direct evaluation of (11) is intractable

since the matrices �ð�Þ;�cð�Þ have size m� �m� . It is, however,
possible to rewrite all terms in a recursive form that only

depends on n� � n� matrices (recall that n is the dimension of

the state space and n� m). The recursions are derived in full

generality in [7]. Here, we only summarize the recursion

associated with the case where the image noise is independently

distributed, i.e., where the covariances R; Rc of wt in (3) are

diagonal, i.e., R ¼ �2I, Rc ¼ �2
cI.

From the recursive definitions of ��ð�Þ, ��ð�Þ, �ð�Þ, and �ð�Þ in

(9) and (5), it follows that the Mahalanobis term of (11) can be

written as

k��cð�Þ � ��ð�Þk
2
��ð�Þ ¼ k��cð� � 1Þ � ��ð� � 1Þk2

��ð��1Þ þ kzcð�Þk
2
�̂�; ð12Þ

where the update term is

zcð�Þk k2
�̂¼

1

�2
zcð�Þk k2� 1

�4
zTc ð�ÞC���1ð�ÞCTzcð�Þ;

and

zcð�Þ ¼
1

�2
C�ð�Þ I� 1

�2
����ð� � 1Þ

� �
��cð� � 1Þ � ��c;� þ ��� ; ð13Þ

��cð�Þ ¼
��cð� � 1Þ

CTCc��c;� � ���

� �
; ��cð1Þ ¼ CTCc��c;1 � ��1; ð14Þ

��ð�Þ ¼ S� �
1

�2
�ð�Þ I� 1

�2
��ð� � 1Þ

� �
�T ð�Þ

� ��1

þ 1

�2
I; ð15Þ

����ð�Þ ¼ H�1ð�Þ H�1ð�ÞGT ð�Þ
Gð�ÞH�1ð�Þ ����ð� � 1Þ þGð�ÞH�1ð�ÞGT ð�Þ

� �
; ð16Þ

Gð�Þ ¼ � H�1ð� � 1Þ��
Gð� � 1ÞH�1ð� � 1Þ��

� �
; ð17Þ

with

�� ¼ �Q�1A; � ¼ S�1
1 þATQ�1A;

Hð�Þ ¼ �þ 1

�2
I� ��TH�1ð� � 1Þ��;

and initial conditions

Gð2Þ ¼ �����ð1Þ��;Hð2Þ ¼ �þ 1

�2
I� ��T����ð1Þ��; and

����ð1Þ ¼ S�1
1 þ

1

�2
I

� ��1

:

This computation requires the inverse of

��ð�Þ; S� �
1

�2
��ð�Þ I� 1

�2
����ð� � 1Þ

� �
�T ð�Þ

� �
;

Hð�Þ, and ½S�1
1 þ 1

�2 I�, which are all matrices of size n� n.
The trace term has recursion,

tr ��1ð�Þ�cð�Þ
� 	

¼ !cð�Þ � tr½����ð�Þ�cð�Þ�;

with

!cð�Þ ¼
1

�2
tr½Sc;� � þm

�2
c

�2
� �

2
c

�4
tr½H�1ð�Þ�

� �2
c

�4
tr½H�1ð�ÞGT ð�ÞGð�Þ� þ !cð� � 1Þ;

ð18Þ

�cð�Þ ¼
�cð� � 1Þ 		Tc ð�ÞTT

c

Tc		cð�Þ 1
�4 TcSc;�T

T
c

� �
; ð19Þ
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		cð�Þ ¼
1

�4

�
Ac		cð� � 1Þ AcSc;��1T

T
c

	
; ð20Þ

where Tc ¼ CTCc, and the initial conditions are !cð1Þ ¼ 1
�2 tr½Sc;1� þ

m
�2
c

�2 � �2
c

�4 tr½��ð1Þ�, �cð1Þ ¼ 1
�4 TcSc;1T

T
c , and 		cð2Þ ¼ 1

�4 AcSc;1T
T
c .

Finally, the determinant of �ð�Þ is given by

log �ð�Þj j ¼ log �ð� � 1Þj j þ
Xn
k¼1

log

ðkÞ

�2
þ 1

� �
þm log �2; ð21Þ

where 
ðkÞ is the kth eigenvalue of

S� �
1

�2
�ð�Þ I� 1

�2
��ð� � 1Þ

� �
�T ð�Þ

� �
;

an n� n matrix. The determinant of �cð�Þ is computed in a

similar manner.

3.5 Background Subtraction

Background pixels are identified by computing the saliency SðlÞ of

each location l. Center and surround windows are defined at l, and

a collection of spatiotemporal patches extracted from each window.

Prior probabilities for both classes are assumed equal, and DT

parameters are learned from center, surround, and total windows,

to obtain the densities pYY jCðlÞðyð�Þj1Þ, pYY jCðlÞðyð�Þj0Þ, and pYY ðyð�ÞÞ,
respectively. SðlÞ is finally computed with (2), using the recursions

of (12)-(21). The procedure is summarized by Algorithm 1, and

illustrated in Fig. 2. All locations with saliency below a threshold

are assigned to the background.

Algorithm 1. Computing Discriminant Center Surround Motion

Saliency

1. Input: Given video V indexed by location vector l 2 L � IR3,

state-space dimension n, center window size nc, patch size np,

temporal window � .

2: for l 2 L do

3: Identify center window W1
l of size nc � nc � � and

surround window W0
l of size 6nc � 6nc � � around l.

4: Use all overlapping patches of size np � np � � in W1
l , W0

l ,

and W1
l [W0

l , to learn the dynamic texture parameters of

the center �1ðlÞ, surround �0ðlÞ, and total �ðlÞ
distributions, using the method of [11].

5: Compute the mutual information, SðlÞ, between

class-conditional and total densities (2), using the recursive

implementation of (11) given by (12)-(21).

6: end for

7: Output: Saliency map for SðlÞ; l 2 L

4 EXPERIMENTAL EVALUATION

To evaluate background subtraction performance, Algorithm 1

was tested on video sequences collected from standard test sets

(e.g., [5]) and the Web. Some of these sequences are representative

of the classic application scenarios for background subtraction,

e.g., a static camera that monitors a distant pedestrian walkway or

a crowded highway. Others involve highly dynamic backgrounds

(consisting of water, smoke, fire, or even a flock of birds),

significant camera motion, or both. Representative frames from

some of the sequences in the latter class are shown in Fig. 3. All

sequences are available in [2].

4.1 Comparison to Previous Methods

To compare the performance of the proposed algorithm (denoted

in short as DiscSal) with existing methods, we selected four

representatives of the current state of the art in background

subtraction—the modified Gaussian mixture model (GMM) of [1],

[32], the nonparametric kernel density estimator (KDE) of [12],

the linear dynamical model of Monnet et al. [21], and the

“surprise” model proposed by Itti and Baldi [17], [18]. The

original implementation of Monnet et al. [21] is not publicly

available, and the algorithm requires explicit training with

background frames. Since training data were not available for

the sequences considered, we implemented an adaptive version,

where the autoregressive model parameters were estimated from

the 20 frames preceding the location under consideration. The

higher adaptiveness of this version allows for a fairer comparison

to saliency-based background subtraction.
The sequences were converted to grayscale, and saliency

computed at all pixel locations. At each location, the center

window occupied 16� 16 pixels and spanned 11 frames—5 past,

current, and 5 future (nc ¼ 16, � ¼ 11). A causal version of

Algorithm 1 (denoted DiscSal-Causal) was also implemented by

considering only the current and 10 past frames. In all cases, the

surround window was set to six times the size of the center (i.e.,

96� 96� 11). DTs with a 10-dimensional state space, patch

dimension np ¼ 8, and temporal dimension � ¼ 11, were learned

using overlapping 8� 8� 11 patches from the center and surround

windows. Saliency maps obtained with DiscSal, Surprise, KDE,

Monnet, and GMM are shown in Fig. 3 (since the results for

DiscSal and the causal version, DiscSal-Causal, were very similar,

we omit the latter). Videos of the maps obtained for all sequences

are available in [2]. The proposed algorithm clearly has the best

performance, detecting the foreground motion and ignoring the

complex moving background almost entirely. For all other

methods, foreground detection is very noisy, and does not adapt

well to the fast background dynamics. As a result, the saliency

maps contain substantial energy in background regions, some-

times missing the foreground objects completely.
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Fig. 2. Illustration of the center and surround windows used to compute the saliency of location l. Conditional distributions are learned from the center and surround

window, while the marginal distribution is learned from the total window. The saliency SðlÞ is computed with (2).
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4.2 Quantitative Analysis

To enable a quantitative analysis, 50-100 frames of each sequence
were manually annotated with foreground object segmentation
ground truth (a segmentation mask), as perceived by a human
observer. All saliency maps were then thresholded at a large
number of values, and the false alarm (�) and detection rate (�)
computed for each threshold. The resulting receiver operating
characteristic (ROC) curves were then summarized by the equal
error rate (EER), i.e., the error at which false alarm equals miss rate
(� ¼ 1� �).

We started by investigating the sensitivity of discriminant
saliency to its two free parameters, the size nc of the center window
and the number of frames � in the temporal window. In the first
case, we used a sequence (“birds”) whose foreground objects have
average size among the sequences considered, set � ¼ 11, and

measured the EER as a function of nc. In the second, we used a

sequence (“boat”) with a fast moving foreground object, set

nc ¼ 16, and measured EER as a function of � . The EER curves

are presented in Fig. 4, showing that the error rate remains

approximately constant over a substantial range of spatiotemporal

window sizes. This implies that, while performance improvements

would be possible by searching for the spatiotemporal window

size that maximizes saliency for each sequence, the additional

complexity of this search is usually not warranted. In all

subsequent experiments, we have used nc ¼ 16 and � ¼ 11.
Table 1 shows the EERs of the various methods (DiscSal,

DiscSal-Causal, Surprise, KDE, Monnet, and GMM, referred to in
the table as DS, DS(C), Su, KDE, Mo, and GMM, respectively) on
all sequences, as well as the average over the sequence set. The
proposed method outperformed all others, achieving an average
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Fig. 3. Saliency maps for three dynamic scenes. For each method, we display a measure of the confidence of each image location being a foreground pixel. In the

terminology of the respective publications: DiscSal—discriminant saliency, KDE and GMM—1-probability of background, Monnet—Mahalanobis outlier measure, and

Surprise—combined surprise measure.

Fig. 4. Sensitivity of discriminant saliency to (a) the spatial scale parameter nc on “birds” and (b) the temporal scale parameter � on “boat.”
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EER of 7.6 percent (DiscSal) versus 16 percent for the closest
competitor (the method of Monnet et al. [21]). Analyzing the
sequences individually, the proposed algorithm exhibits substan-
tial robustness, performing well in the presence of camera motion,
variable foreground object scales, and low imaging quality (e.g.,
scenes with falling snow, fog, and rain). The greatest difficulties
occur in scenes, such as “hockey” and “jump,” where the
foreground objects cover a substantial portion of the image area.
In these cases, center surround processing is difficult, due to
relative absence of background information. Nevertheless, perfor-
mance is still superior to those of all previously available methods.

It is also interesting to compare the performance of the different
algorithms in light of their saliency representation. There are at
least two significant differences between the previous methods and
that now proposed. First, the GMM, KDE, and “surprise” models
lack a sophisticated unified representation for the spatial and
temporal components of saliency. For complex dynamic scenes,
where local variation in the background (either spatially or
temporally) is significant, this leads to many false positives. The
dynamic texture representation is a significant asset in this respect.
Second, both the Monnet et al. and GMM/KDE approaches rely
uniquely on models of the background, treating foreground objects
as outliers. For highly dynamic scenes, it is difficult to account for
the large variability of background pixels with a single model. The
discriminant nature of the proposed saliency framework is a
significant asset in this respect. Overall, both the discriminant
formulation and the unified spatiotemporal representation seem to
be necessary for good performance. This can be seen from the
relative error rates of the various techniques, as shown in Table 1.
The algorithm now proposed (DS) exhibits both properties and
performs best. Methods that exhibit only one property (“surprise”
discriminates between prior and posterior distributions, and
Monnet relies on a spatiotemporal representation similar to that
of DS) achieve the next best levels of performance. Finally, methods
that lack the two properties (GMM and KDE) perform poorly.

5 CONCLUSION

In this work, we proposed an algorithm for spatiotemporal
saliency based on a center-surround framework. The new
algorithm is inspired by biological vision, namely the psycho-
physics of motion-based perceptual grouping, and extends a
discriminant formulation of center-surround saliency previously
proposed for static imagery [13]. This extension is based on the
representation of video with dynamic texture models, and is
applicable to dynamic scenes. The algorithm combines spatial and
temporal components of saliency in a principled manner, and is

completely unsupervised. The combination of the discriminant
center-surround saliency framework with the modeling power of
dynamic textures leads to a robust and versatile procedure for
background subtraction, which is successful even for scenes with
highly dynamic backgrounds and a moving camera.

The main shortcoming of the current implementation of the

proposed algorithm is its computational performance. The proces-
sing of each video frame (of size 240� 320 pixels) currently requires

approximately 37 seconds, for a MATLAB implementation on a PC
with 3 GHz CPU and 2 GB RAM. Although we have not so far

devoted any attention to computational optimization, we do not
expect the algorithm to be deployable in real time without further

investigation. We intend to address this issue in future work.
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