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Abstract—A novel framework to context modeling based on the probability of co-occurrence of objects and scenes is proposed. The

modeling is quite simple, and builds upon the availability of robust appearance classifiers. Images are represented by their posterior

probabilities with respect to a set of contextual models, built upon the bag-of-features image representation, through two layers of

probabilistic modeling. The first layer represents the image in a semantic space, where each dimension encodes an appearance-based

posterior probability with respect to a concept. Due to the inherent ambiguity of classifying image patches, this representation suffers

from a certain amount of contextual noise. The second layer enables robust inference in the presence of this noise by modeling the

distribution of each concept in the semantic space. A thorough and systematic experimental evaluation of the proposed context

modeling is presented. It is shown that it captures the contextual “gist” of natural images. Scene classification experiments show that

contextual classifiers outperform their appearance-based counterparts, irrespective of the precise choice and accuracy of the latter.

The effectiveness of the proposed approach to context modeling is further demonstrated through a comparison to existing approaches

on scene classification and image retrieval, on benchmark data sets. In all cases, the proposed approach achieves superior results.

Index Terms—Computer vision, scene classification, context, image retrieval, topic models.
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1 INTRODUCTION

VISUAL recognition is a fundamental problem in compu-
ter vision. It subsumes the problems of scene classifica-

tion [25], [26], [7], [37], [40], image annotation [9], [15], [24],
[13], [5], image retrieval [12], [46], [39], [54], object
recognition/localization [48], [44], [18], and object detection
[56], [43], [16]. While the last decade has produced
significant progress toward the solution of these problems,
the basic strategy has remained constant:

1. identify a number of visual classes of interest,
2. design a set of appearance features (or some other

visual representation, e.g., parts) that are discrimi-
nant for those classes,

3. postulate an architecture for their classification, and
4. rely on sophisticated statistical tools to learn optimal

classifiers from training data.

We refer to the resulting classifiers as “appearance-based.”

The main recent innovations produced better features, e.g.,

the ubiquitous SIFT descriptor [30], efficient classification

architectures, namely, the detector cascade of [56], methods

for fast object matching [30], sophisticated discriminant

classifiers, such as support vector machines (SVMs) with

various kernels tuned for vision [19], [10], [7], [61], [8], and

sophisticated statistical models [9], [26], [5], [48], [45],

among others.
When compared to biological recognition strategies,

strictly appearance-based methods have the limitation of

not exploiting contextual cues. Psychophysics studies have
shown that humans rarely guide recognition exclusively by
the appearance of the concepts to recognize. Most fre-
quently, appearance is complemented by the analysis of
contextual relationships with other visual concepts in the field
of view [4]. In general, the detection of a concept of interest
(e.g., buildings) is facilitated by the presence, in the scene,
of other concepts (e.g., street, city) which may not
themselves be of interest. Psychophysical studies have
shown that context can depend on multiple clues. For
example, object recognition is known to be affected by
properties such as support (objects do not float in the air),
interposition (objects occupy different volumes), probability
(objects appear in different scenes with different probabil-
ities), position (objects appear in typical locations), and size
(objects have typical relative sizes) [4].

In this work, we investigate an approach to context
modeling based on the probability of co-occurrence of
objects and scenes. This modeling is quite simple, and
builds upon the availability of robust appearance classifiers.
A vocabulary of visual concepts is defined, and statistical
models learned for all concepts, with existing appearance
modeling techniques [9], [25], [26]. These techniques are
typically based on the bag-of-features (BoF) representation,
where images are represented as collections of spatially
localized features. The outputs of the appearance classifiers
are then interpreted as the dimensions of a semantic space,
where each axis represents a visual concept [39], [57], [47],
[32]. This is illustrated in Fig. 1, where an image is
represented by the vector of its posterior probabilities under
each of the appearance models. This vector is denoted as a
semantic multinomial (SMN) distribution [39]. An example
SMN for a natural image is shown in Fig. 3 (bottom).

This semantic representation inherits many of the
benefits of bag-of-features. Most notably, it is strongly
invariant to scene configurations, an essential attribute for
robust scene classification and object recognition, and has
low complexity, a property that enables large training sets
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and good generalization. Its main advantage over bag-of-
features is a higher level of abstraction. While the appear-
ance features are edges, edge orientations, or frequency
bases, those of the semantic representation are concept
probabilities. We have previously shown that this can lead
to substantially better generalization by comparing the
performance of nearest neighbors classification with the
two representations, in an image retrieval context [39].
However, the semantic representation also has some
limitations that can be traced back to bag-of-features. Most
notable among these is a certain amount of contextual noise,
i.e., noise in the probabilities that compose the SMN. This is
usually not due to poor statistical estimation, but due to the
intrinsic ambiguity of the underlying bag-of-features repre-
sentation. Since appearance-based features have small
spatial support, it is frequently difficult to assign them to
a single visual concept. Hence, the SMN extracted from an
image usually assigns some probability to concepts un-
related to it (e.g., the concepts “bedroom” and “kitchen” for
the “street” image of Fig. 3).

While the SMN representation captures co-occurrences
of the semantic concepts present in an image, not all these
correspond to true contextual relationships. In fact, we
argue that many (e.g., “bedroom” and “kitchen” in Fig. 3)
are accidental, i.e., casual coincidences due to the ambiguity
of the underlying appearance representation (image patches
that could belong to either a bed or a kitchen counter).
Rather than attempting to eliminate contextual noise by
further processing of appearance features, we propose a
procedure for robust inference of contextual relationships in
the presence of accidental co-occurrences. The idea is to keep the
robustness of the appearance representation, but perform
the classification at a higher level of abstraction where
ambiguity can be more easily detected.

This is achieved by introducing a second level of
representation that operates in the space of semantic
features. The intuition is that, in this space, accidental co-
occurrences are events of much smaller probability than
true contextual co-occurrences: While “street” co-occurs
with “buildings” in most images, it accidentally co-occurs
with “bedroom” or “kitchen” in a much smaller set. True
contextual relationships can thus be found by identifying
peaks of probability in semantic space. Each visual concept
is modeled by the distribution of the posterior probabilities
extracted from all its training images. This distribution of
distributions is referred to as the contextual model for the

concept. For large enough and diverse enough training sets,
these models are dominated by the probabilities of true
contextual relationships. Minimum probability of error
(MPE) contextual classification can thus be implemented
by simple application of Bayes’ rule. This suggests
representing images as vectors of posterior probabilities
under the contextual concept models, which we denote by
contextual multinomials (CMN). These are shown to be much
less noisier than the SMNs learned at the appearance level.

An implementation of contextual modeling is proposed
where concepts are modeled as mixtures of Gaussian
distribution on appearance space and mixtures of Dirichlet
distributions on semantic space. It is shown that 1) the
contextual representation outperforms the appearance-
based representation, and 2) this holds irrespective of the
choice and accuracy of the underlying appearance models.
An extensive experimental evaluation involving the pro-
blems of scene classification and image retrieval shows that,
despite its simplicity, the proposed approach is superior to
various contextual modeling procedures in the literature.

The paper is organized as follows: Section 2 briefly
reviews the literature on context modeling. Our previous
work on appearance classification and the design of
semantic spaces is reviewed on Section 3. Section 4 then
discusses the limitations of appearance classifiers and
introduces contextual models. Some practical issues in the
design of the latter are discussed in Section 5. Section 6
relates the architecture now proposed to the literature on
topic models. An extensive experimental evaluation of
contextual modeling is then presented in Sections 7, 8, and
9. Finally, Section 10 presents some conclusions. A pre-
liminary version of this work appeared in [41].

2 CONTEXT MODELING

Recent efforts toward context-based recognition can be
broadly grouped in two classes. The first, an object-centric
approach, consists of methods that model contextual relation-
ships between subimage entities, such as objects. Examples
range from simply accounting for the co-occurrence of
different objects in a scene [38], [17], to explicit learning of
the spatial relationships between objects [18], [60], or an object
and its neighboring image regions [20]. Methods in the
second class adopt a scene-centric representation, whereby
context models are learned from entire images, generating a
holistic description of the scene or its “gist” [34], [57], [26],
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Fig. 1. Image representation in semantic space S, with a semantic multinomial distribution. The SMN is a vector of posterior concept probabilities
which encodes the co-occurrence of various concepts in the image, based on visual appearance.



[35], [25]. Various recent works have shown that semantic
descriptions of natural images can be obtained with these
representations, without explicit image segmentation [34].
This is consistent with evidence from the psychology [33] and
cognitive neuroscience [1] literatures.

The scene-centric representation has itself been explored
in two ways. One approach is to equate context to a vector
of statistics of low-level visual measurements taken over the
entire image. For example, Oliva and Torralba [34] model
scenes according to the differential regularities of their
second order statistics. A second approach is to rely on the
bag-of-features representation. Here, low-level features are
computed locally and aggregated across the image to form a
holistic context model [57], [26], [42]. Although these
methods usually ignore spatial information, some exten-
sions have been proposed to weakly encode the latter.
These consist of dividing the image into a coarse grid of
spatial regions and modeling context within each [34], [25].

The proposed context modeling combines aspects of both
the object-centric and scene-centric strategies. Like the
object-centric methods, we exploit relationships between
co-occurring semantic concepts in natural scenes to derive
contextual information. This is, however, accomplished
without demarcating individual concepts or regions in the
image. Instead, all conceptual relations are learned through
global scene representations. Moreover, these relationships
are learned in a purely data-driven fashion, i.e., no external
guidance about the statistics of high-level contextual
relationships is required, and the representation consists
of full probability distributions, not just statistics. The
proposed representation can be thought of as modeling the
“gist” of the scene by the co-occurrences of semantic visual
concepts that it contains.

The representation closest to that now proposed is
probably the family of latent topic models, recently popular
in vision [26], [37], [7]. These models were originally
proposed in the text literature to address the ambiguity of
bag-of-words. It was realized that word histograms cannot
account for polysemy (the same word may represent
different meanings) and synonymy (different words may
represent same meaning) [6], [21]. This led to the introduc-
tion of intermediate latent representations, commonly
known as “themes” or “topics.” Borrowing from the text
literature, several authors applied the idea of latent spaces
to visual recognition [5], [2], [45], [48], [26], [37], [7]. The
rationale is that images which share frequently co-occurring
features have a similar representation in the latent space.
Although successful for text, the benefits of topic discovery
have not been conclusively established for visual recogni-
tion. In fact, a drop in classification performance is often
experienced when unsupervised latent representations are
introduced [28], [37], [25]. This issue is discussed in detail in
Section 6, where we argue that unsupervised topic dis-
covery is not a good idea for recognition. We show that the
architecture now proposed can be interpreted as a modified
topic model, where the topics are prespecified and learned
in a weakly supervised manner. This is shown to increase
the recognition performance.

The use of appearance-based classifier outputs as feature
vectors has also been proposed in [40], [58], [51]. In these

works a classifier is first learned for a given keyword
vocabulary—[58], [51] learn discriminative classifiers from
flickr/bing images, [40] learns a generative model using
a labeled image set—and the outputs of these classifiers are
then used as feature vectors for a second layer of
classification. In these works, classifier outputs are simply
used as an alternative low-dimensional image representa-
tion, without any analysis of their ability to model context.
We discuss the limitations of using appearance models for
context modeling and introduce “contextual models” that
address these limitations. We also present extensive
experimental evidence supporting the benefits of these
higher level models, and show that they achieve higher
classification accuracies on benchmark data sets.

3 APPEARANCE-BASED MODELS AND SEMANTIC

MULTINOMIALS

We start by briefly reviewing appearance-based modeling
and the design of semantic spaces.

3.1 Notations

Images are observations from a random variable X, defined
on some feature space X of visual measurements. For
example, X could be the space of discrete cosine transform
(DCT) or SIFT descriptors. Each image is represented as a
bag of N feature vectors I ¼ fx1; . . . ;xNg, xi 2 X , assumed to
be sampled independently. A collection of images is called
an “image data set,” D ¼ fI1; . . . ; IDg.

Each image is labeled with a label vector cd according to
a vocabulary of semantic concepts L ¼ fw1; . . . ; wLg, mak-
ing D ¼ fðI1; c1Þ; . . . ; ðID; cDÞg. Note that cd is a binary
L-dimensional vector such that cd;i ¼ 1 if the dth image was
annotated with the ith keyword in L. The data set is said to
be weakly labeled if absence of a keyword from caption cd
does not necessarily mean that the associated concept is not
present in Id. For example, an image containing “sky” may
not be explicitly labeled with that keyword. This is usually
the case in practical scenarios since each image is likely to
be annotated with a small caption that only identifies the
semantics deemed as most relevant to the labeler. In fact, for
certain recognition tasks such as scene classification or
image retrieval, an image is usually annotated with just one
concept. We assume weak labeling throughout this work.

3.2 Appearance-Based Classification

Visual concepts are drawn from a random variable W ,
which takes values in f1; . . . ; Lg. Each concept w induces a
probability density on X , which is approximated by a
model PXjW ðxjwÞ. This is denoted as the appearance model
for concept w, and describes how observations are drawn
from this concept, in the low-level visual feature space X .
PXjW ðxjwÞ is learned from the set Dw of all training images
whose caption includes the wth label.

Many appearance recognition systems have been pro-
posed in the literature, using different appearance models.
A simple generative model for appearance is shown in
Fig. 2. A concept w is first sampled, and N feature vectors
are then generated from the class-conditional distribution
PXjW ðxjwÞ. This model performs well in weakly supervised
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concept detection problems [9]. Given an unseen image I ,
MPE detection is achieved with the Bayes decision rule

PW jXðijIÞ ¼
PXjW ðIjiÞPW ðiÞ

PXðIÞ
ð1Þ

¼
QN

n¼1 PXjW ðxnjiÞPW ðiÞQN
n¼1 PXðxnÞ

; ð2Þ

where PW jXðijIÞ is the probability of presence of the
ith concept in the image, given the observed set of feature
vectors I . We assume a uniform prior concept distribution
PW ðwÞ, although any other suitable prior could be used.
This leads to

PW jXðijIÞ /
QN

n¼1 PXjW ðxnjiÞQN
n¼1 PXðxnÞ

: ð3Þ

To model the appearance distribution, we rely on
Gaussian mixture models (GMM). These are popular
models for the distribution of visual features [9], [20], [49],
[5] and have the form

PXjW ðxjw; �wÞ ¼
X

k

�wk Gðx; �wk ;�w
k Þ; ð4Þ

where �w ¼ f�wk ; �wk ;�w
k g, �wk is a probability mass function

such that
P

k �
w
k ¼ 1, and Gðx; �;�Þ a Gaussian density of

mean � and covariance �. The parameters �w are learned
with a hierarchical estimation procedure first proposed in [55]
for image indexing (see [9], [55] for details).

3.3 Designing a Semantic Space

While the Bayes decision rule for concept detection only
requires the largest posterior concept probability for a given
image, the vector of posterior probabilities ���� ¼ ð�1; . . . ; �LÞT ,
where �w ¼ PW jXðwjIÞ provides a rich description of the
image semantics. We refer to this vector as a semantic
multinomial distribution, which lies on a probability simplex
S, referred to as the semantic space [39]. As shown in Fig. 1,
this alternative image representation establishes a mapping
from images in X to SMNs ���� in S. This can be seen as an
abstract projection of the image onto a space where each
concept probability �w, w ¼ 1; . . . ; L is a feature. Unlike X ,
these features have explicit semantics. Thus, while inheriting
many of the benefits of bag-of-features such as invariance to
scene configuration and low complexity, the semantic
representation has the advantage of a higher level of
abstraction. While appearance features are edges, edge
orientations, or frequency bases, those of the semantic
representation are concept probabilities. This representation
has been shown successful for image retrieval, where images

are matched using a nearest neighbor operation on the
semantic space [39], [47], [32]. Nevertheless, it is not free of
limitations.

3.4 Limitations of Semantic Representations

One major source of difficulties is that semantic models
built upon the bag-of-features representation of appearance
inherit the ambiguities of the latter. There are two main
types of ambiguity. The first is that contextually unrelated
concepts (for example, smoke and clouds) can have similar
appearance representation under bag-of-features. The sec-
ond is that the resulting semantic descriptors can account
for contextual frequencies of co-occurrence, but not true
contextual dependencies. These two problems are illu-
strated in Fig. 3. First, image patches frequently have
ambiguous interpretation. When considered in isolation,
they can be compatible with many concepts. For example, it
is unclear that even a human could confidently assign the
patches shown on the right of Fig. 3 to the “street” concept
with which the image is labeled. Second, appearance-based
models lack information about the interdependence of the
semantics of the patches which compose the images in a
class. For example, the fact that, as shown on the left,
images of street scenes typically contain patches of street,
car wheels, and building texture.

We refer to these two observations as co-occurrences. In
the first case, a patch can accidentally co-occur with
multiple concepts (the equivalent of polysemy in text
analysis). In the second, patches from multiple concepts
typically co-occur in scenes of a given class (the equivalent
to synonymy for text). While only the co-occurrences of the
second type are indicative of true contextual relationships,
SMNs learned from appearance models capture both types
of co-occurrences. This is again illustrated by the example of
Fig. 3. On one hand, the displayed SMN reflects the
ambiguity that sometimes exists between patches of “street
scenes” and “bedrooms,” “kitchens,” or “living rooms.”
These are all man-made structures which, for example,
contain elongated edges dues to buildings, beds, furniture,
etc. Note that all classes that typically do not have such
structures (e.g., natural scenes such as “mountain,” “forest,”
“coast,” or “open country”) receive close to zero probability.
On the other, the SMN reflects the likely co-occurrence, in
“street scenes,” of patches of “inside city,” “street,”
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Fig. 2. The generative model underlying image formation at the visual
level. w represents a sample from a vocabulary of semantic concepts,
and an image I is composed of N patches, xn, sampled independently
from PXjW ðxjwÞ. Note that, throughout this work, we adopt the standard
plate notation of Blei et al. [6] to represent graphical models.

Fig. 3. An image from the “street” class of the N15 data set (see Section
7.1) along with its SMN. Also highlighted are the two notions of co-
occurrence. Ambiguity co-occurrences on the right: Image patches
compatible with multiple unrelated classes. Contextual co-occurrences
on the left: Patches of multiple other classes related to “street.”



“buildings,” and “highway.” In summary, while SMN

probabilities can be interpreted as semantic features, which

account for co-occurrences due to both ambiguity and

context, they are not purely contextual features.

4 SEMANTICS-BASED MODELS AND CONTEXT

MULTINOMIALS

One possibility to deal with the ambiguity of the semantic

representation is to explicitly model contextual dependen-

cies. This can be done by introducing constraints on the

appearance representation by modeling constellations of

parts [16], [14] or object relationships [50], [18]. However,

the introduction of such constraints increases complexity

and reduces the invariance of the representation, sacrificing

generalization. A more robust alternative is to keep bag-of-

features, but represent images at a higher level of abstraction

where ambiguity can be more easily detected. This is the

strategy pursued in this work, where we exploit the fact

that the two types of SMN co-occurrences have different

stability to extract more reliable contextual features.

4.1 From Semantics to Context

The basic idea is that, while images from the same concept

are expected to exhibit similar contextual co-occurrences,

this is not likely for ambiguity co-occurrences. Although the

“street scene” of Fig. 3 contains some patches that could also

be attributed to the “bedroom” concept, it is unlikely that

this will hold for most images of street scenes. By definition,

ambiguity co-occurrences are accidental; otherwise they

would reflect common semantics of the two concepts and

would be contextual co-occurrences. Thus, while impossible

to detect from a single image, stable contextual co-

occurrences should be detectable by joint inspection of all

SMNs derived from the images of a concept.
This is accomplished by extending concept modeling by

one further layer of semantic representation. As illustrated

in Fig. 4, each concept w is modeled by the probability

distribution of the SMNs derived from all training images in

its training set, Dw. We refer to this SMN distribution as the

contextual model for w. If Dw is large and diverse, this model

is dominated by the stable properties of the features drawn

from concept w. In this case, the features are SMNs and

their stable properties are the true contextual relationships

of w. Hence, concept models assign high probability to

regions of the semantic space occupied by contextual co-

occurrences, and small probability to those of ambiguity

co-occurrences.

For example, since streets typically co-occur with

buildings, the contextual model for “street” assigns high

probability to SMNs that include both concepts. On the

other hand, because “street” only co-occurs accidentally

with “bedroom,” SMNs including this concept receive low

probability. Hence, representing images by their posterior

distribution under contextual models emphasizes contex-

tual co-occurrences while suppressing accidental coinci-

dences due to ambiguity. As a parallel to the nomenclature

of the previous section, we refer to the posterior probabil-

ities at this higher level of abstraction as contextual features,

the probability vector associated with each image as a

contextual multinomial distribution, and the space of such

vectors as the contextual space.

4.2 Contextual Concept Models

Contextual concept models are learned in the semantic space S.
Under the most general formulation, concepts are drawn
from a random variable Y defined on the index set y 2
f1; . . . ; Kg of a concept vocabulary K. In this work, we
assume that this vocabulary is the concept vocabulary L
used in visual space X , i.e., K ¼ L. Note that this
assumption implies that if L is composed of scenes (objects);
then the contextual models account for relationships
between scenes (objects). A trivial extension would be to
make concepts on semantic space S different from those on
visual space X , promoting a concept hierarchy. For
example, Y could be defined on the vocabulary of scenes,
K ¼ {“desert,” “beach,” “forest”} and W on objects, L ¼
{“sand,” “water,” “sky,” “trees”}. In this way, scenes in K
would be naturally composed of objects in L, enabling the
contextual models to account for relationships between
scenes and objects. This would, however, require training
images (weakly) labeled with respect to both L and K. We
do not pursue such hierarchical concept taxonomies in what
follows.

Since S is itself a probability simplex, one natural model
for a concept y in S is the mixture of Dirichlet distributions

P�jY ð����jy; �yÞ ¼
X

k

�ykDirð����;����ykÞ: ð5Þ

This model has parameters �y ¼ f�yk; ����
y
kg, where �k is a

probability mass function (
P

k �
y
k ¼ 1). Dirð����;����Þ a Dirichlet

distribution of parameter ���� ¼ f�1; . . . ; �Lg

Dirð����;����Þ ¼ �ð
PL

i¼1 �iÞQL
i¼1 �ð�iÞ

YL

i¼1

ð�iÞ�i�1; ð6Þ

and �ð:Þ the Gamma function. As illustrated in Fig. 4, the
parameters �y are learned from the SMNs ���� of all images in
Dy, i.e., the images annotated with the yth concept in L.
Learning is implemented by maximum likelihood estima-
tion, using the generalized expectation-maximization
(GEM) algorithm discussed in Appendix I, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2011.175.

Fig. 5 shows an example of a 3-component Dirichlet
mixture learned for the semantic concept “street,” on a
three-concept semantic space. This model is estimated from
100 images (shown as data points on the figure). Note that,
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Fig. 4. Learning the contextual model for the “street” concept, (5), on
semantic space S, from the set of all training images annotated with
“street.”



although some of the image SMNs exhibit ambiguity co-

occurrences with the “forest” concept, the Dirichlet mixture

is strongly dominated by the true contextual co-occurrences

between the concepts “street” and “store.” This is an

illustration of the ability of the model to lock onto the true

contextual relationships.

4.3 Contextual Space

The contextual models P�jY ð����jyÞ play, in semantic space S,

a similar role to that of the appearance models PXjW ðxjwÞ in

visual space X . It follows that MPE concept detection, on a

test image I of SMN ���� ¼ f�1; . . . ; �Lg, can be implemented

with a Bayes decision rule based on the posterior concept

probabilities:

PY j�ðyj����Þ ¼
P�jY ð����jyÞPY ðyÞ

P�ð����Þ
: ð7Þ

This is the semantic space equivalent of (2) and, once again,

we assume a uniform concept prior PY ðyÞ.
As in Section 3.3, it is also possible to design a new

semantic space, by retaining all posterior contextual concept

probabilities �y ¼ PY j�ðyj����Þ. We denote the vector ���� ¼
ð�1; . . . ; �LÞT as the contextual multinomial distribution of

image I . As illustrated in Fig. 6, CMN vectors lie on a new

probability simplex C, here referred to as the contextual

space. In this way, the contextual representation establishes

a mapping from images in X to CMNs ���� in C. In Section 7,

we show that CMNs are much more reliable contextual

descriptors than SMNs.

5 LEARNING CONTEXTUAL MODELS

For now, we discuss a number of issues in the implementa-

tion of the architecture introduced above.

5.1 Computing the Semantic Multinomials

It should be noted that this architecture is generic, in the
sense that any appearance recognition system that produces
a vector of posterior probabilities ���� can be used to learn the
proposed contextual models. In fact, these probabilities can
even be produced by systems that do not model appearance
explicitly, e.g., discriminant classifiers. This is achieved by
converting classifier scores to a posterior probability
distribution, using probability calibration techniques. For
example, the distance from the decision hyperplane learned
by an SVM can be converted to a posterior probability using
a sigmoidal transform [36]. In practice, however, care must
be taken to guarantee that the appearance classifiers are not
too strong. If they make very hard decisions, e.g., assign
images to a single class, little is left for the context models to
work with. In this case, contextual processing fails to add
any improvement to the appearance classification. This is a
manifestation of the data processing theorem [31] which
advises to postpone hard decisions until the very last stages
of processing.

In the implementation above, it is natural to use the
posterior probabilities of (3) as the SMN of image I .
However, N tends to be large, and there is usually very
strong evidence in favor of one concept, not always that of
greatest perceptual significance. For example, if the image
has a large region of “sky,” the existence of many sky
patches makes the posterior probability of the “sky”
concept close to one. This is illustrated in Fig. 7 (top-right),
where the SMN assigns all probability to a single concept.
Table 1 shows that this happens frequently: The average
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Fig. 5. Three-component Dirichlet mixture learned for the concept
“street.” Also shown, as “*”, are the SMNs associated with each image.
The Dirichlet mixture assigns high probability to the concepts “street”
and “store.”

Fig. 6. The Contextual multinomial of an image as the vector of co-occurrence probabilities of contextually related concepts.

Fig. 7. SMN for the image shown on the top left computed using (top-
right) (3), (bottom-left) (10), and (bottom-right) (12).



entropy of the SMNs computed on the N15 Data set (to be
introduced later) is very close to 0. Note that this is the
property that enables the learning of the appearance-based
models from the weakly supervised data sets: When all
images containing “sky” are grouped, the overall feature
distribution is very close to that of the “sky” concept,
despite the fact that the training set contains all sorts of
spurious image patches from other concepts. This is an
example of the multiple instance learning paradigm [53],
where an image consisting of some patches from the
concept being modeled and some spurious patches from
other concepts serves as the positive bag. Although this
dominance of the strongest concept is critical for learning,
the data processing theorem advises against it during
inference. Or, in other words, while multiple instance
learning is required, multiple instance inference is undesir-
able. In particular, modeling images as bags-of-features
from a single concept, as in Fig. 2, does not lend to contextual
inference.

One alternative is to perform inference with the much
looser model of Fig. 8a, where a concept is sampled per
appearance feature vector, rather than per image. Note that,
because labeling information is not available per vector, the
models PXjW ðxjwÞ are still learned as before. The only
difference is the inference procedure. In this case, SMNs are
available per image patch denoted as patch-SMN,
����n ¼ PW jXðwnjxnÞ, n 2 f1; . . . ; Ng. Determining an SMN,
denoted the Image-SMN, for the entire image requires
computing a representative for this set of patch-SMNs.
One possibility is the multinomial of minimum average
Kullback-Leibler divergence with all patch-SMNs:

����� ¼ arg min
����

1

N

XN

n¼1

KLð����k����nÞ s:t
XL

i¼1

�i ¼ 1: ð8Þ

As shown in Appendix II, available in the online supple-
mental material, this is the representative

��i ¼
exp 1

N

P
n log�niP

i exp 1
N

P
n log�ni

; ð9Þ

which reduces to

��i ¼
exp 1

n

P
n logPXjW ðxnjiÞ

� �
P

j exp 1
n

P
n logPXjW ðxnjjÞ

� � ð10Þ

for a uniform prior. This is in contrast to the posterior
estimate of (3). Note that while (3) computes a product of
likelihoods, (10) computes their geometric mean.

A second possibility is to adopt the generative model of
Fig. 8b. This explicitly accounts for the contextual variable �,
from which a single SMN is drawn per image. A concept is
then drawn per image patch. In this case, the Image-SMN is

����� ¼ arg max
����

P�jXð����jIÞ: ð11Þ

However, this optimization is intractable, and only approx-
imate inference is possible. A number of approximations
can be used, including Laplace or variational approxima-
tions, sampling, etc. In Appendix III, available in the online
supplemental material, we show that, for a variational
approximation

��i ¼
�i � 1P
j �j � L

; ð12Þ

where �i is computed with the following iteration:

��i ¼
X

n

	ni þ �i; ð13Þ

	�ni / PXjW ðxnjwn ¼ iÞe
 ð�iÞ� ð

P
j
�jÞ: ð14Þ

Here, �i is the parameter of the prior P�ð�Þ which, for
compatibility with the assumption of uniform class priors,
we set to 1,  ð�Þ the Digamma function, and �i; 	ni the
parameters of the variational distributions. Fig. 7 shows that
the SMNs obtained with (10) and (12) are rich in contextual
information. Table 1 shows that the two models lead to
approximately the same average SMN entropy on N15,
which is much higher than that of (3).

5.2 Data Augmentation

When, as above, an SMN is computed per image, the
number of training images upper bounds the cardinality of
the training set for contextual models. Since there is usually
a limited number of labeled images per concept, this can
lead to overfitting. For example, the 100 images available
per concept on N15 are sufficient to learn appearance
models (each image contains thousands of patches), but 100
SMNs do not suffice to learn Dirichlet mixtures in a 15-
dimensional space. One possibility is to use the patch-
SMNs, ����ðnÞ, which are abundant. These, however, tend to be
too noisy due to the ambiguities discussed above. To
overcome this problem we resort to a middle ground
between patch-SMNs and image-SMNs: Multiple SMNs are
estimated per image from random patch subsets. More
precisely, a set of patches is first selected, randomly, from
the image. An SMN is then estimated from this set, as
would be done if the image consisted of these patches alone.
The process is repeated with different patch subsets,
generating a number of SMNs per image. By controlling
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TABLE 1
SMN Entropy

Fig. 8. Alternative generative models for image formation at the
appearance level. (a) A concept is sampled per appearance feature
vector rather than per image, from PXjW ðxjwÞ. (b) Explicit modeling of
the contextual variable � from which a single SMN is drawn per image.
(c) Graphical model of LDA with an additional class variable [26].



the number of random sets, it is possible to control the
cardinality of the training set for each contextual model.
The use of random patch subsets simultaneously alleviates
the problems of data scarcity (many subsets can be drawn
per image) and estimation noise (each SMN pools informa-
tion from multiple patches). Moreover, similarly to the
learning of appearance models, learning contextual models
with data augmentation also relies on the multiple instance
learning paradigm where each image, being a collection of
SMNs, serves as the positive bag, with some SMNs
depicting true contextual co-occurrences and some others
ambiguity co-occurrences. In Section 8.1, we show that this
data augmentation strategy leads to significant improve-
ments in classification accuracy.

6 CONNECTIONS TO TOPIC MODELS

The architecture proposed above has several properties in
common with the family of topic models, [6], [21].

6.1 Topic Models

Like the representation now proposed, topic models have
two layers. Appearance features are used to compute topic
probabilities (that correspond to the proposed SMNs),
which are hierarchically propagated to a more abstract
layer that computes class probabilities (correspondent to the
proposed CMNs). While details vary, the models are
usually variations of latent Dirichlet allocation (LDA) [6]
or probabilistic latent semantic analysis (pLSA) [21]. The
authors of [5] and [2] present an extension of LDA for image
annotation. Two other variations are proposed in [26] for
natural scene classification. LDA was also used in [45] for
the discovery of object categories. The application of pLSA
to scene classification was studied in [37], [7].

6.2 The Importance of Supervision

While the fundamental ideas of the following discussion
apply to all topic models, we concentrate on LDA, which is
the closest to the proposed architecture. In fact, the
graphical model of Fig. 8b is that of LDA. Fig. 8c presents
the complete version of this model, including the concept
variable Y at the semantic level. This is one of the models
proposed in [26]. Given the equivalence of the graphical
models, it is worth discussing in detail the differences
between the two approaches. The fundamental difference is
the level of abstraction of the intermediate stage of the
representation (topics versus SMNs). While topics are
learned in an unsupervised manner, SMN features have
explicit semantics.

Recall the semantic gap between appearance features and
visual classes. While text features (words) are intrinsically
semantic, this is not the case for vision, where localized
appearance features (e.g., edge segments) have no semantic
interpretation. This is illustrated in Fig. 9, where we present
four groups of text (words) and appearance (edge seg-
ments) features with identical distributions. Because the word
features are semantic, it is very difficult to construct a group
(sentence) with the same words that is semantically far from
the others. This is absolutely not the case for vision, where
equivalence of feature distributions places almost no
constraint on the group semantics. As the figure shows,

the exact same segments can very easily be used to

construct groups that depict completely unrelated concepts.

The fact that equivalence of feature distributions does not

translate into semantic equivalence is denoted a semantic gap.
While the semantic gap is small for text (semantic

features), it is large for images. Thus, the success of a

representation for text classification is an unreliable pre-

dictor of its success for image classification. In particular,

the observation that unsupervised topic discovery produces

semantic topics for text [6], [21] is very weak evidence that it

will be successful for visual recognition. In fact, Fig. 9 shows

that it cannot. In the absence of explicit supervision for topic

semantics, it is impossible to learn that the four edge

groupings of Fig. 9 (right) belong to different topics. On the

contrary, the four groups form a perfect appearance cluster,

since their segment histograms are identical. Unfortunately,

due to the semantic gap, this cluster has no well-defined

semantics as a whole. Hence, unsupervised topic learning

has no ability to bridge the semantic gap between local

appearance and visual classes. This is unlike the proposed

architecture, where SMN features are learned with explicit

supervision, and it does make sense to talk about a semantic

space.
It should be emphasized that in this toy example,

although explicit topic supervision results in four classes

of identical distribution (a highly suboptimal clustering

under any unsupervised learning criteria), it produces the

semantically correct statistical description of the data under

the chosen image representation. Note that, under this

model, all images of Fig. 9 (right) have an equal chance of

being assigned to any of the classes. This is a classifier of

higher probability of error than that learned without

supervision. In fact, it is the weakest possible classifier.

On the other hand, unsupervised topic modeling produces

a much stronger classifier: all images assigned to one class

with high probability, other classes mostly noise. In

summary, the supervised model reflects both the true

semantics of the data and the ambiguity of the image

representation. It attempts to perform the right classification

but can only do so with high uncertainty. The unsupervised

model invents an alternative classification problem which

has nothing to do with the image semantics but can be

solved very accurately. In addition to producing a

semantically useless image description, it is also confident

on its accuracy.
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Fig. 9. (left) Four groups of words with equal word histograms. (right)
Four groups of edge segments with the equal edge segment histograms.
Note that each group can be derived from the others by a displacement
of words or edge segments. (This figure is best viewed in color.)



7 EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to
evaluate performance of the proposed contextual modeling.

7.1 Data Sets

To test the proposed contextual modeling framework, we
adopt data sets previously used in the scene classification
and image retrieval literatures.

7.1.1 Scene Classification

Scene classification results are presented for two publicly
available data sets.

Natural scene categories (N15, N13, N8) consists of
15 categories (N15) of natural scenes, first proposed in [25].
This data set was constructed using the 13 scene categories
(N13) initially used by Li and Perona [26] and Bosch et al. [7].
The 13 scene categories themselves contain eight categories
(N8) originally used in [34], [37], [7]. This data set allows
direct comparison with published results on scene classifica-
tion. Each category contains 200 to 400 images, of average
size 270� 250 pixels. One hundred images per scene are
used to learn the model, the remainder being used as test set.
All experiments are repeated six times, with random train/
test splits.

Corel image collection (C50, C43) consists of images
from 50 Corel Stock Photo CDs, where each CD contains 100
images of a common scene. Each image in this data set is
also labeled with 1-5 semantic concepts. This annotated set
is commonly used for the evaluation of image annotation
systems [13], [15], [24]. We construct two different data sets
from this collection. The first, referred to as C50, contains
50 scene classes, each corresponding to one CD in the
collection. For each CD, 90 images are used to learn class
models and the remainder for testing. It has been argued
that CD labels lead to an easy classification problem [59] as
there is high variability between images from different CDs
and high similarity among those from the same CD. To
address these concerns, we construct another data set from
this collection (C43) that uses a set of manual annotations
(disjoint from the CD labels) as ground truth. Forty-three
semantic concepts are chosen from the set of annotations of
[13] (those with a minimum of 100 annotated images) and
100 images are randomly selected per concept. Since an
image can be labeled with more than one concept, this
results in a total of 3,102 images. Of these, 2,766 are
randomly selected to create a train set with approximately
90 images per label, and the remainder are used for testing.
A correct classification is declared whenever the top
predicted label matches any of the ground truth labels.
All images were normalized to size 181� 117 or 117� 181
and converted from RGB to the YBR color space.

7.1.2 Image Retrieval

To evaluate retrieval performance, we use two data sets
proposed in [39].

Corel image collection (C15) consists of 1,500 images
from another 15 Corel Stock Photo CDs, divided into a
retrieval set of 1,200 images and a query set of 300 images.
CD themes are used as the ground truth image concepts,
creating a 15-dimensional semantic space.

Flickr images (F18) consists of 1,800 images from
www.flickr.com. These images are shot by flickr users,
and hence differ from the Corel Stock Photos, which have
been shot professionally. A set of 1,440 images serves as the
retrieval data set, and the remaining 360 as the query set.
Image annotations are those used in [39]. The semantic
space is 18-dimensional.

Note that, for all data sets except C43, each image is
explicitly annotated with just one concept, even though it
may depict multiple. Thus, the co-occurrence information
learned from these data sets is purely data driven. In C43,
although multiple annotations are available per image, their
co-occurrences are not explicitly used to learn context. In
summary, no high level co-occurrence information is used
to train the contextual models.

7.2 Appearance Features

Two feature transforms are used for appearance repre-
sentation.

7.2.1 Scale Invariant Feature Transform

SIFT descriptors are computed at a set of feature points
selected 1) by interest point detection (SIFT-INTR), or 2) on
a dense regular grid (SIFT-GRID). Interest points are
computed with three saliency measures—Harris-Laplace,
Laplace-of-Gaussian, and Difference-of-Gaussian—and
merged. These measures also provide scale information,
which is used in the computation of SIFT descriptors. For a
dense grid, feature points are sampled every 8 pixels. SIFT
descriptors1 are then computed over a 16� 16 neighbor-
hood around each feature point. The two strategies yield
about 1,000 samples per image.

7.2.2 Discrete Cosine Transform

DCT features are computed on a dense regular grid, with a
step of 8 pixels. 8� 8 image patches are extracted around
each grid point, and 8� 8 DCT coefficients computed per
patch and color channel. For monochrome images this
results in a feature space of 64 dimensions. For color images
the space is 192-dimensional. In this case, appearance
distributions are learned in the 129-dimensional subspace
composed of the first 43 DCT coefficients from each
channel. For data sets exclusively comprised of color
images, only the DCT features are used.

8 RESULTS

A number of classification experiments were performed
(N15 data set) to evaluate the impact of the various
parameters of the proposed contextual representation on
recognition performance.

8.1 Designing the Semantic Space

In Section 5, we discussed three strategies to compute
Image-SMNs. Table 2 reports their classification accuracy,
for both appearance and contextual modeling with SIFT-
GRID. Contextual models learned from SMNs computed
with (3) fail to improve upon the (already high performing)

910 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 5, MAY 2012

1. Computed with the implementation of LEAR, http://lear.inrialpes.fr/
people/dorko/downloads.html.



appearance classifiers. This is not totally surprising since
these SMNs lack co-occurrence information (see discussion
of Fig. 7). In comparison, SMNs computed with (10) or (12)
are rich in such information, enabling contextual models to
outperform their appearance counterparts.

Note that, although the LDA-like inference algorithm of
(12) yields significantly lower classification performance at
the appearance level than that of (10), both strategies attain
a classification accuracy of �73:3% at the contextual level.
Note also that, despite much weaker performance at
appearance-level than (3), (12) performs substantially better
at the contextual level. Together, these results suggest that
the recognition performance at the appearance level is not
necessarily a good predictor of performance at the con-
textual level. In particular, the relative performances of the
three inference procedures advise against inference proce-
dures that make hard decisions at the lower levels of
recognition.

To increase the cardinality of the training sets used for
contextual modeling, 800 random sets of 30 patches are
sampled per image, yielding 800 patch-SMNs per image.
Image-SMNs are then computed from these, with (10) or

(12). Table 2 reports the benefits of this data augmentation,
showing that performance improves in both cases. For (10),
classification accuracy improves from 73.33 to 77.20 percent,
for (12) from 73.43 to 75.14 percent. Since (12) involves an
iterative procedure, which is more expensive than the
closed form of (10), and has weaker performance, we use
(10) in the remaining experiments.

8.2 Number of Mixture Components

Fig. 10a presents the classification performance as a
function of the number of contextual mixture components,
for SIFT-GRID, SIFT-INTR, and DCT features. In all cases, a
single Dirichlet distribution is insufficient to model the
semantic co-occurrences of N15. As the number of mixture
components increases from one to eight, performance rises
substantially for SIFT (e.g., from 72.58 to 76.13 percent for
SIFT-GRID), and dramatically (from 55.93 to 70.48 percent)
for the DCT. Above eight components, the gain is moderate
in all cases, with a maximum accuracy of 77.20 percent for
SIFT-GRID and 73.05 percent for the DCT. Fig. 11 shows the
cluster centers learned with a four-component Dirichlet
mixture using DCT features, for the “street” and “forest”
classes. These cluster centers can be interpreted as the
SMNs of the dominant co-occurrence patters learned for
these classes. Two interesting observations can be made.
First, the class mixtures indeed account for different co-
occurrence patterns: In both cases the four cluster centers
are quite distinct. Second, not all cluster centers assign high
probability to the feature vector which is the namesake of
the class. In the “street” example, although one of the
centers assigns high probability to the “street” concept, the
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TABLE 2
Impact of Inference Model on Classification Accuracy

Fig. 10. (a) Classification accuracy as a function of the number of mixture components of the contextual class distributions for both DCT and SIFT.
(b) Dependence of appearance and contextual classification on the accuracy of the appearance modeling for SIFT-GRID features, (c) for DCT
features. The performance of contextual classification remains fairly stable across the range of appearance models.

Fig. 11. Four cluster centers for the class “street” (left) and “forest” (right). Note that each class comprises different co-occurrence patterns.



remaining ones assign higher probability to alternative
concepts, e.g., “tall building,” “inside city,” “highway,” etc.,
than to “street” itself.

8.3 Choice of Appearance Features

Table 3 compares the classification performance of the
three appearance representations. In all cases, the con-
textual models yield improved performance, with a gain
of 7.7, 5.9, and over 54 percent for SIFT-GRID, SIFT-INTR,
and DCT, respectively. Note that the contextual models
achieve high performance (over 72 percent) for all
appearance features. More interestingly, this performance
is almost unaffected by that of the underlying appearance
classification in the sense that very large variations in
the latter lead to relatively small differences in the former.

This hypothesis was studied in greater detail by
measuring how contextual-level performance depends on
the “quality” of the appearance classification. The number
of Gaussian components in the appearance models was the
parameter adopted to control this “quality.” Figs. 10b and
10c show that decreasing this parameter leads to a
substantial degradation of appearance-level recognition for
both SIFT and DCT. Nevertheless, the performance of the
contextual classifiers built with these appearance classifiers
does not change substantially. On the contrary, the contextual
classifiers assure a classification gain that compensates for the
losses in appearance classification. For SIFT-GRID, this gain
ranges from about 20 percent at 64 Gaussian mixture
components to about 8 percent at 512. For the DCT,
corresponding gains are of 65 and 54 percent, respectively.
In result, while the appearance classifier experiences a drop
of 17 percent (21 percent) for DCT (SIFT-GRID) as the

number of components is reduced from 512 to 64, the
performance of contextual classification drops by only a
small margin of 2 percent (5 percent).

Overall, the performance of the contextual classifier is
not even strongly affected by the feature transformation
adopted. While, at the appearance level, the performance of
the DCT is not comparable to that of SIFT, the choice of
transform is much less critical when contextual modeling is
included: The two transforms lead to similar performance at
the contextual level. This suggests that 1) any reasonable
architecture could, in principle, be adopted for appearance
classification, and 2) there is no need for extensive
optimization at this level. This is an interesting conclusion,
given that accurate appearance classification has been a
central theme in the recognition literature over the last
decades.

8.4 Some Examples

The ability of contextual modeling to compensate for
classification noise at the appearance level can be observed
by simple inspection of the posterior distributions at the
two levels. Fig. 12 shows two images from the “street” class
of N15, and an image each from the “Ireland” and “Mayan
ruins” CD of the Corel Collection. The SMN and CMN
vectors computed from each image are shown in the second
and third column, respectively. Two observations can be
made. First, as discussed in Section 3.4, the SMN vectors can
include substantial contextual noise, reflecting both types of
concept co-occurrences. For example, patches from the first
image (“street” class) have high probability under concepts
such as “bedroom,” “livingroom,” “kitchen,” “inside city,”
“tall building.” Some of these co-occurrences (“bedroom,”
“livingroom,” “kitchen”) are due to patch ambiguities.
Others (“inside city,” “tall building”) are consistent with
the fact that the concepts are contextually dependent. The
SMN representation has no power to disambiguate between
the two types of co-occurrences. This is more pronounced
for larger semantic spaces: The SMNs of Corel images
(43 dimensional space) exhibit much denser co-occurrence
patterns than those of N15.

Second, CMNs are remarkably noise free for all semantic
spaces considered. They capture the “gist” of the underlying
scenes, assigning high probability only to truly contextual
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TABLE 3
Impact of Appearance Space on Classification Accuracy

Fig. 12. (left) Two images from the “street” class of N15 and (right) an image each from the “Ireland” and “Mayan ruins” CD of the Corel collection.
Also shown with the images are the SMN and CMN vectors (middle and right column, respectively). Notice that the CMN vectors are noise free and
capture the “gist” of the image.



concepts. This increased robustness follows from the fact
that contextual models learn the statistical structure of the
contextual co-occurrences that characterize all SMNs asso-
ciated with each class. This makes class models at contextual
level mitigate ambiguity co-occurrences, which tend to be
spurious, while accentuating true contextual co-occur-
rences, which are stable. Consider, for example, the top
image in the fourth column. Its SMN is a frequently
occurring training example for contextual models of
“street,” “house,” “people” (this is true even though the
image has low probability of “street” and “house” under
appearance modeling), etc. On the other hand, it is an
unlikely training pattern for contextual models of “bear”
and “hills,” which only accidentally co-occur with “street”
or “house.” Hence, this SMN has large posterior probability
under contextual models for “house” and “street,” but not
for “bear” or “hills.”

8.5 Complexity

In this section, we report approximate running times for

training and testing, under both the appearance and

contextual class models. All experiments are conducted on

an 2x Intel Xeon E5504 Quad-core 2.00 GHz processor, with

average image size of 270� 250 pixels. Learning of

appearance models requires computing SIFT/DCT features,

which takes about 800/20 ms per image, respectively. Given

these features, 512 component Gaussian mixture models are

learned from 100 training images in about 3 minutes per

class, using the hierarchical approach of [55]. For testing,

computing the likelihood of a given image requires about

50 ms per class. These likelihoods serve as features for the

contextual models. A 42-component Dirichlet mixture

model, learned from 100 training images, with 800 SMNs

per image, requires about 2 minutes to learn. During

testing, it takes about 30 ms to compute the likelihood of an

image under each contextual class model.

9 COMPARISON WITH PREVIOUS WORK

In this section, we compare the proposed contextual
recognition with existing solutions to scene classification
and image retrieval.

9.1 Scene Classification

Given the posterior probabilities of (7), MPE scene
classification can be implemented by application of Bayes
rule. This consists of assigning image I , of SMN �, to the
scene class y of largest posterior PY j�ðyj�Þ. Table 4
compares the resulting classification accuracies for N15,
N13, and N8, with those of many methods in the literature.
A number of observations can be made from the table.
First, contextual modeling achieves the best results on all
three data sets. Its performance is quite superior to that of
topic discovery models (LDA [26], pLSA [7], [37]), of which
only [7] is remotely competitive. Even so, the classification
rates of the latter (72.7 percent on N15, 74.7 percent on
N13, and 82.5 percent on N8) are well below those of the
former (77.2, 80.86, and 85.6 percent). Somewhat closer to
this (74.8 percent on N15, 74.7 percent on N13) is the
performance of SVMs with the bag-of-words representation

(BoW).2 Note, however, that these require much higher

dimensional spaces, e.g., a 400 visual-word vocabulary [25],

and storage of a number of support vectors that grows with

the number of classes and training examples. Contextual

modeling has lower dimensionality, lower complexity, and

achieves a higher classification accuracy.3 Also reported is

a baseline with discriminative learning [40] where an SVM

classifier is applied to the vector of outputs of the

appearance classifiers. Again, the proposed context models

achieve superior classification performance on all data sets.
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2. This representation is obtained by vector quantizing the space of
descriptors and representing an image with a visual word histogram.

3. We note that better results have been reported for an extension of the
BoW representation that includes a weak encoding of spatial information
[25], [62]. These results are the current state of the art for N15: 81.4 percent
[25] using an SVM classifier on an 8,400-dimensional space, 85.2 percent [62]
using a nearest neighbor classifier on an 8,192-dimensional space. Note that
the performance of these approaches without the additional spatial
encoding is 74.8 and 75.8 percent, respectively, which is well below the
77.2 percent achieved by the proposed contextual models. Although
contextual classification could also be augmented with weak encoding of
spatial information—one possibility is to learn contextual class models for
different image subregions and model the overall contextual class model as
a mixture of these subregion models—it remains to be determined if the
gains would be as large as for the BoW representation. We leave this as a
topic for future work.

TABLE 4
Classification Results on Natural Scene Categories



Within the area of context modeling, e.g., comparing to
the methods of Oliva and Torralba [34] and Lim et al. [27],
the proposed approach is again more effective. For the N8
(N13, N15) data set, the authors of [34], [22], [25] report a
classification accuracy of 83.7 percent (55, 45.3 percent4),
respectively, using the “gist” features of [34]. The corre-
sponding figures for the proposed contextual models are
85.6 percent (80.86, 77.2 percent).

Finally, Table 5 presents classification results for the C50
and C43 data sets. Contextual modeling again improves on
the classification accuracy achievable with appearance
classifiers. For C50 the absolute gain is 4.2 percent, for
C43 3 percent. When compared to the top performing
published methods on the natural scene data set [25], [7] the
proposed contextual modeling again achieves significantly
higher accuracy. On C50, its accuracy is 57.8 percent, while
Lazebnik et al. [25] and Bosch et al. [7] achieve classification
rates of 48.4 and 40.2 percent, respectively. On C43, the
corresponding numbers are 42.9, 36.3, and 33.0 percent.
Overall, it can be concluded that the proposed contextual
modeling consistently outperforms existing context-based
scene classification methods in the literature.

9.2 Image Retrieval Performance

Finally, the benefits of holistic context modeling were
evaluated on the task of content-based image retrieval,
using the well-known query-by-example paradigm. This is
a nearest neighbor classifier, where a vector of global image
features extracted from a query image is used to retrieve the
images of closest feature vector in an image database. In
previous work [39], we have shown that state-of-the-art
results for this type of operation are obtained by using
appearance-level posterior distributions (SMNs) as feature
vectors. In this work, we compare results of using the
distributions obtained at the contextual (CMN) and
appearance (SMN) levels. The similarity between the
distributions of the query and database images is measured
with the Kullback-Leibler divergence [39].

Fig. 13a, presents precision-recall (PR) curves on C15 and
F18. Also shown are the performance of the image matching
system of [54], which is based on the MPE retrieval
principle now used but does not rely on semantic modeling,

and chance-level retrieval. Note how the precision of
contextual modeling is significantly superior to those of
the other methods at all levels of recall. For example, on
C15, the mean-average precision (area under PR curve) of
CMN (0.73) is 32 percent higher than that of SMN (0.55).
The respective figures for F18 are 0.54 and 0.39, a gain of
over 38 percent. Overall, the PR curves of CMN are
remarkably flat, attaining high precision at high levels of
recall. This is unlike any other retrieval method that we are
aware of. It indicates very good generalization: While most
retrieval approaches (even image matching) can usually
find a few images in the class of the query, it is much more
difficult to generalize to images in the class that are not
visually similar to the query.

Fig. 13b illustrates the improved generalization of
contextual modeling. It presents retrieval results for the
three systems (top three rows of every query show the top
retrieved images using visual matching, SMN, and CMN,
respectively). The first column shows the queries, while the
remaining columns show the top five retrieved images.
Note how visual matching has no ability to bridge the
semantic gap, simply matching semantically unrelated
images of similar color and texture. This is unlike the
semantic representations (SMN and CMN), which are much
more effective at bridging the gap, leading to a much
smaller number of semantically irrelevant matches. In
particular, the ability of the CMN-based system to retrieve
images in the query’s class is quite impressive, given the
high variability of visual appearance.

10 CONCLUSION

In this work, we have proposed an approach to context
modeling based on the probability of co-occurrence of
objects and scenes. The proposed modeling is quite simple,
and builds upon the availability of robust appearance
classifiers. Images are represented by their posterior
probabilities with respect to a set of contextual models,
built upon the bag-of-features image representation through
two layers of probabilistic modeling. The first layer
represents the image in a semantic space, where each
dimension encodes an appearance-based posterior prob-
ability with respect to a visual concept. This representation
has a higher level of abstraction than bag-of-features but
suffers from a certain amount of contextual noise due to the
inherent ambiguity of classifying image patches. The second
layer enables robust inference in the presence of this noise,
by modeling the distribution of each concept in the semantic
space. The image is then represented by its posterior
probabilities with respect to these distributions. This was
shown to produce posterior distributions that emphasize
concept co-occurrences due to true contextual relationships
and inhibit accidental co-occurrences due to ambiguity.

The overall representation is similar to a topic model, but
where topics are learned in a supervised manner. Super-
vised learning is a necessary condition for overcoming the
semantic gap between the low-level patch representation
and the higher level contextual relationships. While multi-
ple instance learning is required to cope with the
uncertainty of the appearance representation, multiple
instance inference was shown ineffective. The best results
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4. Using a 16-dimensional “gist”-like feature instead of the commonly
used 512 dimensions.

TABLE 5
Classification Results on Corel Collection



are obtained with weaker, patch-based, inference that leads
to an appearance representation of higher entropy. This
prevents a greedy commitment to premature image ex-
planations that, while consistent with appearance statistics,
do not take context into account. The latter goal is better
served by inference procedures that assign nonzero prob-
ability to multiple plausible classes, at the appearance level.
Interestingly, we found a weak correlation between the
quality of the appearance classification and the correspond-
ing quality at the contextual level. In fact, some variations of
the representation with weak appearance-level performance
were top performers at the contextual level. It appears that,
while supervision is critical to bridging the semantic gap
during learning, soft appearance-level decisions are more
effective during inference. This is an interesting finding,
given the emphasis on highly accurate appearance classi-
fication in the literature.

The contextual representation was shown to outperform
the appearance representation in the tasks of scene
classification and image retrieval. In both cases, it was also
shown that, despite its simplicity, the proposed contextual
models are superior to various previous proposals in the
literature. The gains with respect to appearance modeling
were shown to hold irrespective of the choice and accuracy
of the underlying appearance models.
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[27] J. Lim, P. Arbeláez, C. Gu, and J. Malik, “Context by Region
Ancestry,” Proc. IEEE Int’l Conf. Computer Vision, 2010.

[28] J. Liu and M. Shah, “Scene Modeling Using Co-clustering,” Proc.
IEEE Int’l Conf. Computer Vision, 2007.

[29] J. Liu, Y. Yang, and M. Shah, “Learning Semantic Visual
Vocabularies Using Diffusion Distance,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition. 2009.

[30] D. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” Int’l J. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[31] D. MacKay, Information Theory, Inference, and Learning Algorithms.
Cambridge Univ. Press, 2003.
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