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Abstract—An approach to the problem of estimating the size of
inhomogeneous crowds, composed of pedestrians that travelin
different directions, without using explicit object segmentation
or tracking is proposed. Instead, the crowd is segmented into
components of homogeneous motion, using the mixture of dy-
namic textures motion model. A set of holistic low-level features is
extracted from each segmented region, and a function that maps
features into estimates of the number of people per segment
is learned with Bayesian regression. Two Bayesian regression
models are examined. The first is a combination of Gaussian
process regression (GPR) with a compound kernel, which ac-
counts for both the global and local trends of the count mapping,
but is limited by the real-valued outputs that do not match the
discrete counts. We address this limitation with a second model,
which is based on a Bayesian treatment of Poisson regression
that introduces a prior distribution on the linear weights of the
model. Since exact inference is analytically intractable,a closed-
form approximation is derived that is computationally efficient
and kernelizable, enabling the representation of non-linear func-
tions. An approximate marginal likelihood is also derived for
kernel hyperparameter learning. The two regression-basedcrowd
counting methods are evaluated on a large pedestrian dataset,
containing very distinct camera views, pedestrian traffic,and
outliers, such as bikes or skateboarders. Experimental results
show that regression-based counts are accurate, regardless of the
crowd size, outperforming the count estimates produced by state-
of-the-art pedestrian detectors. Results on two hours of video
demonstrate the efficiency and robustness of regression-based
crowd size estimation over long periods of time.

Index Terms—surveillance, crowd analysis, Bayesian regres-
sion, Gaussian processes, Poisson regression

I. I NTRODUCTION

There is currently a great interest in vision technology for
monitoring all types of environments. This could have many
goals, e.g. security, resource management, urban planning, or
advertising. From a technological standpoint, computer vision
solutions typically focus on detecting, tracking, and analyzing
individuals (e.g. finding and tracking a person walking in
a parking lot, or identifying the interaction between two
people). While there has been some success with this type of
“individual-centric” surveillance, it is not scalable to scenes
with large crowds, where each person is depicted by a few
image pixels, people occlude each other in complex ways, and
the number of targets to track is overwhelming. Nonetheless,
there are many problems in monitoring that can be solved
without explicit tracking of individuals. These are problems
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where all the information required to perform the task can be
gathered by analyzing the environmentholistically or globally,
e.g. monitoring of traffic flows, detection of disturbances in
public spaces, detection of highway speeding, or estimation
of crowd sizes. By definition, these tasks are based on either
properties of 1) the crowd as a whole, or 2) an individual’s
deviation from the crowd. In both cases, to accomplish the
task it should suffice to build goodmodels for the patterns of
crowd behavior. Events could then be detected asvariations
in these patterns, and abnormal individual actions could be
detected asoutliers with respect to the crowd behavior.

An example surveillance task that can be solved by a
“crowd-centric” approach is that of pedestrian counting. Yet,
it is frequently addressed with “individual-centric” methods:
detect the people in the scene [1]–[6], track them over time
[3], [7]–[9], and count the number of tracks. The problem is
that, as the crowd becomes larger and denser, both individual
detection and tracking become close to impossible. In con-
trast, a “crowd-centric” approach analyzesglobal low-level
featuresextracted from crowd imagery to produce accurate
counts. While a number of “crowd-centric” counting methods
have been previously proposed [10]–[16], they have not fully
established the viability of this approach. This has a multitude
of reasons: from limited applications to indoor environments
with controlled lighting (e.g. subway platforms) [10]–[13],
[15]; to ignoring crowd dynamics (i.e. treating people moving
in different directions as the same) [10]–[14], [16]; to assump-
tions of homogeneous crowd density (i.e. spacing between
people) [15]; to measuring a surrogate of the crowd size
(e.g. crowd density or percent crowding) [10], [11], [15]; to
questionable scalability to scenes involving more than a few
people [16]; to limited experimental validation of the proposed
algorithms [10]–[12], [14], [15].

Unlike these proposals, we show that there is no need
for pedestrian detection, object tracking, or object-based im-
age primitives to accomplish the pedestrian counting goal,
even when the crowd issizable and inhomogeneous, e.g.
hassub-components with different dynamics,and appears in
unconstrained outdoor environments, such as that of Figure 1.
In fact, we argue that, when a “crowd-centric” approach is
considered, the problem actually appears to become simpler.
We simply segment the crowd into sub-parts of interest (e.g.
groups of people moving in different directions), extract aset
of holistic features from each segment, and estimate the crowd
size with a suitable regression function [17]. By bypassing
intermediate processing stages, such as people detection or
tracking, which are susceptible to occlusion problems, the
proposed approach produces robust and accurate crowd counts,
even when the crowd is large and dense.
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Fig. 1. Scene containing a sizable crowd with inhomogeneousdynamics,
due to pedestrian motion in different directions.

One important aspect of regression-based counting is the
choice of regression function used to map segment features
into crowd counts. One possibility is to rely on classical regres-
sion methods, such as linear, or piece-wise linear, regression
and least squares fits [18]. These methods are not very robust
to outliers and non-linearities, and are prone to overfitting
when the feature space is high-dimensional or there is little
training data. In these cases, better performance can usually
be obtained with more recent methods, such as Gaussian
process regression (GPR) [19]. GPR has several advantages,
including adaptation to non-linearities with kernel functions,
robust selection of kernel hyperparameters via maximization
of marginal likelihoods (namely type-II maximum likelihood),
and a Bayesian formalism for inference that enables better
generalization from small training sets. The main limitation
of GPR-based counting is, however, that it relies on acontin-
uous real-valuedfunction to map visual features intodiscrete
counts. This reduces the effectiveness of Bayesian inference.
For example, the predictive distribution does not assign zero
probability to non-integer, or even negative, counts. In result,
there is a need for sub-optimal post-processing operations,
such as quantization and truncation. Furthermore, continuous
crowd estimates increase the complexity of subsequent statisti-
cal inference, e.g. graphical models that identify dependencies
between counts measured at different nodes of a camera
network. Since this type of inference is much simpler for
discrete variables, the continuous representation that underlies
GPR adds undue complexity.

A standard method for learning mappings into the set of
non-negative integers is Poisson regression [20], which models
the output variable as a Poisson distribution with a log-arrival
rate that is a linear function of the input feature vector. To
obtain a Bayesian model, a popular extension of Poisson re-
gression is to adopt a hierarchical model, where the log-arrival
rate is modeled with a GP prior [21]–[23]. However, due to of
the lack of conjugacy between the Poisson and the GP, exact
inference is analytically intractable. Existing models [21]–
[23] rely on Markov-chain Monte Carlo (MCMC) methods,
which limits these hierarchical models to small datasets. In
this work, we take a different approach, and directly analyze
Poisson regression from a Bayesian perspective, by imposing
a Gaussian prior on the weights of the linear log-arrival rate
[24]. We denote this model asBayesian Poisson regression
(BPR). While exact inference is still intractable, it is shown
that effective closed-form approximations can be derived.This
leads to a regression algorithm that is much more efficient than
those previously available [21]–[23].

The contributions of this work are three-fold, spanning open
questions in computer vision and machine learning. First,
a “crowd-centric” methodology for estimating thesizes of
crowds moving in different directions, which does not depend
on object detection or feature tracking,is presented. Second, a
Bayesian regression procedure is derived for the estimation of
counts, which is a Bayesian extension of Poisson regression.
A closed-form approximation to the predictive distribution,
which can be kernelized to handle non-linearities, is derived,
together with an approximate procedure for optimizing the
hyperparameters of the kernel function, under the Type-II
maximum marginal likelihood criteria. It is also shown that
the proposed approximation to BPR is related to a GPR with
a specific noise term. Third, the proposed crowd counting
approach is validated on two large datasets of pedestrian
imagery, and its robustness demonstrated through results on
two hours of video. To our knowledge, this is the first pedes-
trian counting system that accounts for multiple pedestrian
flows, and successfully operates continuously in an outdoors,
unconstrained, environment for such periods of time.

The paper is organized as follows. Section II reviews related
work in crowd counting. GPR is discussed in Sections III, and
BPR is proposed in Section IV. Section V introduces a crowd
counting system based on motion segmentation and Bayesian
regression. Finally, experimental results on the application
of Bayesian regression to the crowd counting problem are
presented in Section VI.

II. RELATED WORK

Current solutions to crowd counting follow three paradigms:
1) pedestrian detection, 2) visual feature trajectory cluster-
ing, and 3) regression. Pedestrian detection algorithms can
be based on boosting appearance and motion features [1],
Bayesian model-based segmentation [2], [3], histogram-of-
gradients [25], or integrated top-down and bottom-up process-
ing [4]. Because they detect whole pedestrians, these methods
are not very effective in densely crowded scenes, involving
significant occlusion. This problem has been addressed to
some extent by the development of part-based detectors [5],
[6], [26], [27]. Detection results can be further improved
by tracking detections between multiple frames, e.g. via a
Bayesian approach [28] or boosting [29], or using stochastic
spatial models to simultaneously detect and count people as
foreground shapes [30].

The second paradigm consists of identifying and tracking vi-
sual features over time. Feature trajectories that exhibitcoher-
ent motion are clustered, and the number of clusters used as an
estimate of the number of moving subjects. Examples include
[7], which uses the KLT tracker and agglomerative clustering,
and [8], which relies on an unsupervised Bayesian approach.
Counting of feature trajectories has two disadvantages. First,
it requires sophisticated trajectory management (e.g. handling
broken feature tracks due to occlusions, or measuring similar-
ities between trajectories of different length) [31]. Second, in
crowded environments it is frequently the case that coherently
moving features do not belong to the same person. Hence,
equating the number of people to the number of trajectory
clusters can be quite error prone.
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Regression-based crowd counting was first applied to sub-
way platform monitoring. These methods typically work by:
1) subtracting the background; 2) measuring various features
of the foreground pixels, such as total area [10], [11], [13],
edge count [11]–[13], or texture [15]; and 3) estimating the
crowd density or crowd count with a regression function, e.g.
linear [10], [13], piece-wise linear [12], or neural networks
[11], [15]. In recent years, regression-based counting hasalso
been applied to outdoor scenes. [14] applies neural networks
to the histograms of foreground segment areas and edge
orientations. [16] estimates the number of people in each
foreground segment by matching its shape to a database con-
taining the silhouettes of possible people configurations,but is
only applicable when the number of people in each segment
is small (empirically, less than 6). [32] counts the number
of people crossing a line-of-interest using flow vectors and
dynamic mosaics. [33] proposes a supervised learning frame-
work, which estimates an image density whose integral over a
region-of-interest yields the count. The main contributions of
this work, with respect to previous approaches to regression-
based counting, are four-fold: 1) integration of regression and
robust motion segmentation, which enablescounts for crowds
moving in different directions(e.g., traveling into or out of a
building); 2) integration of suitable features and Bayesian non-
linear regression, which enables accurate counts in densely
crowded scenes; 3) introduction of a Bayesian model for
discrete regression, which is suitable for crowd counting;
4) demonstration that the proposed algorithms can robustly
operate on video of unconstrained, outdoor environments,
through validation on a large dataset with 2 hours of video.

Regarding Bayesian regression for discrete counts, [21]–
[23], [34] propose hierarchical Poisson models, where the
log-arrival rate is modeled with a GP prior. Inference is
approximated with MCMC, which has been noted to exhibit
slow mixing times and poor convergence properties [21].
Alternatively, [35] directly performs a Bayesian analysisof
standard Poisson regression by adding a Gaussian prior on
the linear weights, and proposes a Gaussian approximation
to the posterior weight distribution. In this paper, we extend
[35] in three ways: 1) we derive a Gaussian posterior that can
handle observations of zero count; 2) we derive a closed-form
predictive count distribution; 3) we kernelize the regression
function, thus modeling non-linear log-arrival rates. Ourfinal
contribution is a kernelized, closed-form, efficient approxi-
mation to Bayesian Poisson regression. Finally, a regression
task similar to counting isordinal regression, which learns
a mapping to an ordinal scale (ranking or ordered set), e.g.
letter grades. A Bayesian version of ordinal regression using
GP priors was proposed in [36]. However, ordinal regression
cannot elegantly be used for counting; the ordinal scale is fixed
upon training, and hence it cannot predict counts outside of
the training set.

With respect to our previous work, our initial solution to
crowd counting using GPR was presented in [17], and BPR
was proposed in [24]. The contributions of this paper, with
respect to our previous work, are four-fold: 1) we present the
complete derivation for BPR, which was shortened in [24];
2) we derive BPR so that it handles zero count observations;
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Fig. 2. Correspondence between crowd size and segment area:linear least-
squares regression, and a non-linear function learned withGaussian process
regression. Two standard deviations error bars for GPR are plotted (gray area).

3) we validate Bayesian regression-based counting on a larger
dataset and from two viewpoints ( [17], [24] only tested one
viewpoint); 4) we provide an in-depth comparison between
regression-based counting and counting with person detection.

III. G AUSSIAN PROCESS REGRESSION

Figure 1 shows examples of a crowded scene on a pedestrian
walkway. We assume that the camera is part of a permanent
surveillance installation, and hence, the viewpoint is fixed.
The goal of crowd counting is to estimate the number of
people moving in each direction. The basic idea is that,
given a segmentation into the two crowd sub-components,
certain low-level global featuresextracted from each crowd
segment are good predictors of the number of people in
that segment. Intuitively, assuming proper normalizationfor
the scene perspective, one such feature is the area of the
crowd segment (number of segment pixels). Figure 2 plots
the segment area versus the crowd size, along with the least
squares fit by a line. Note that, while there is a global linear
trend relating the two variables, the data has local deviations
from this linear trend, due to confounding factors such as
occlusion. This suggests that additional features are needed
to accurately model crowd counts, along with a regression
framework that can accommodate the local non-linearities.

One possibility to implement this regression is to rely on
Gaussian process regression (GPR) [19]. This is a Bayesian
approach to the prediction of a real-valued functionf(x) of a
feature vectorx ∈ R

d, from a training sample. Letφ(x) be a
high-dimensional feature transformation ofx, φ : R

d → R
D.

Consider the case wheref(x) is linear in the transformation
space, and the target county modeled as

f(x) = φ(x)Tw, y = f(x) + ǫ, (1)

where w ∈ R
D, and the observation noise is assumed

independent, identically distributed (i.i.d.), and Gaussian, ǫ ∼
N (0, σ2

n). The Bayesian formulation requires a prior distri-
bution on the weights, which is assumed Gaussian,w ∼
N (0,Σp), of covarianceΣp.

A. Bayesian prediction

Let X = [x1, · · ·xN ] be the matrix of observed feature
vectorsxi, andy = [y1 · · · yN ]T the vector of the corre-
sponding countsyi. The posterior distribution of the weights
w, given the observed data{X,y} is given by Bayes’ rule,
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p(w|X,y) = p(y|X,w)p(w)∫
p(y|X,w)p(w)dw

. Given a novel inputx∗, the
predictive distribution forf∗ = f(x∗) is the average, over all
possible model parameterizations [19],

p(f∗|x∗, X,y) =

∫

p(f∗|x∗,w)p(w|X,y)dw (2)

= N (f∗|µ∗, σ
2
∗), (3)

where the predictive mean and covariance are

µ∗ = kT
∗ (K + σ2

nI)
−1y, (4)

σ2
∗ = k(x∗,x∗)− kT

∗ (K + σ2
nI)

−1k∗. (5)

K is the kernel matrix with entriesKij = k(xi,xj), and
k∗ = [k(x∗,x1) · · · k(x∗,xN )]T . The kernel function is
k(x,x′) = φ(x)TΣpφ(x

′), and hence the predictive distri-
bution only depends on inner products between the inputsxi.

B. Compound kernel functions

The class of functions that can be approximated by GPR
depends on the covariance, or kernel function, employed.
For example, the linear kernelkl(x,x′) = θ21(x

Tx′ + 1)
leads to standard Bayesian linear regression, while a squared-

exponential (RBF) kernel,kr(x,x′) = θ21e
− 1

θ22
‖x−x

′‖2

, yields
Bayesian regression for locally smooth, infinitely differen-
tiable, functions. As shown in Figure 2, the segment area
exhibits a linear trend with the crowd size, with some local
non-linearities due to occlusions and segmentation errors. To
model the dominant linear trend, as well as these non-linear
effects, we can use a compound kernel with linear and RBF
components,

kLR(xi,xj) = θ1(x
T
i xj + 1) + θ22e

− 1

2θ2
3
‖xi−xj‖

2

. (6)

Figure 2 shows an example of a GPR function adapting to local
non-linearities using the linear-RBF compound kernel. The
inclusion of additional features (particularly texture features)
can make the dominant trend non-linear. In this case, a kernel
with two RBF components is more appropriate,

kRR(xi,xj) = θ21e
− 1

2θ2
2
‖xi−xj‖

2

+ θ23e
− 1

2θ2
4
‖xi−xj‖

2

. (7)

The first RBF has a larger scale parameterθ2 and models
the overall trend, while the second relies on a smaller scale
parameterθ4 to model local non-linearities.

The kernel hyperparametersθi can be estimated from a
training sample by Type-II maximum likelihood, which max-
imizes the marginal likelihood of the training data{X,y}

log p(y|X, θ) = log

∫

p(y|w, X, θ)p(w|θ)dw (8)

= − 1
2y

TK−1
y y − 1

2 log |Ky| −
N
2 log 2π, (9)

where Ky = K + σ2
nI, with respect to the parametersθ,

e.g. using standard gradient ascent methods. Details of this
optimization can be found in [19], Chapter 5.

IV. BAYESIAN POISSON REGRESSION

While GPR is a Bayesian framework for regression prob-
lems with real-valued output variables, it is not a natural
regression formulation when the outputs arenon-negative

integers, y ∈ Z+ = {0, 1, 2, · · · }, as is the case for counts. A
typical solution is to model the output variable as Poisson or
negative binomial (NB), with an arrival-rate parameter which
is a function of the input variables, resulting in the standard
Poissonregression ornegative binomialregression [20]. Al-
though both these methods model counts, they do not support
Bayesian inference, i.e. , do not consider the weight vector
β as a random variable. This limits their generalization from
small training samples and prevents a principled probabilistic
approach to learning hyperparameters in a kernel formulation.

In this section, we propose a Bayesian model for count
regression. We start from the standard Poisson regression
model, where the input isx ∈ R

d, and the output variable
y is Poisson distributed, with a log-arrival rate that is a linear
function in the transformation spaceφ(x) ∈ R

D, i.e.,

ν(x) = φ(x)T β, λ(x) = eν(x), y ∼ Poisson(λ(x)), (10)

whereν(x) is the log of the arrival rate,λ(x) the arrival rate
(or mean ofy), andβ ∈ R

D a weight vector. The likelihood
of y given an observationx is

p(y|x, β) = 1
y!e

−λ(x)λ(x)y .

We assume a Gaussian prior on the weight vector,β ∼
N (0,Σp). The posterior distribution ofβ, given a training
sample{X,y}, is given by Bayes’ rule

p(β|X,y) =
p(y|X, β)p(β)

∫

p(y|X, β)p(β)dβ
. (11)

Due to the lack of conjugacy between the Poisson likelihood
and the Gaussian prior, (11) does not have a closed-form
expression, and so an approximation is necessary.

A. Approximate posterior distribution

We first derive a closed-form approximation to the posterior
distribution in (11), which is based on the approximation of
[35]. Consider the data likelihood of a training set{X,y},

p(y|X, β) =
N
∏

i=1

1

yi!
eν(xi)yie−eν(xi) (12)

=
N
∏

i=1

[

eν(xi)(yi+c)e−eν(xi)

Γ(yi + c)

]

e−cν(xi)
Γ(yi + c)

yi!
, (13)

wherec ≥ 0 is a constant. The approximation is based on two
facts. First, the term in the square brackets is the likelihood of
the data under a log-gamma distribution of parameters(y +
c, 1), i.e., ν ∼ LogGamma(y + c, 1) where

p(ν|y + c, 1) = 1
Γ(y+c)e

ν(y+c)e−eν . (14)

A log-gamma random variableν is the log of a gamma random
variableλ, whereν = logλ. This implies thatλ is gamma
distributed with parameters(y + c, 1). Second, for a large
number of arrivalsk, the log-gamma is closely approximated
by a Gaussian [35], [37], [38],

LogGamma(k, θ) ≈ N (µ, σ2) (15)

where the parameters are related by

k = σ−2, θ = σ2eµ ⇐⇒ σ2 = k−1, µ = log(kθ). (16)
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Hence, (14) can be approximated as

p(ν|y + c, 1) ≈ N (ν| log(y + c), (y + c)−1). (17)

Figure 3 illustrates the accuracy of the approximation for
different values ofy+ c. Applying (17) to replace the bracket
term in (13), and definingΦ = [φ(x1) · · ·φ(xN )],

p(y|X, β) ≈
N
∏

i=1

[

N (ν(xi)| log(yi + c), (yi + c)−1)
]

· e−cν(xi) Γ(yi+c)
yi!

(18)

=
e
− 1

2‖Φ
T β−s‖2

Σy
−c1TΦT β

(2π)
N
2 |Σy|

1
2

N
∏

i=1

Γ(yi + c)

yi!
, (19)

whereΣy = diag([ 1
y1+c

· · · 1
yN+c

]), ands = log(y+ c) is the
element-wise logarithm ofy + c. Substituting into (11),

log p(β|X,y) ∝ log p(y|X, β) + log p(β) (20)

≈ − 1
2

∥

∥ΦTβ − s
∥

∥

2

Σy
− c1TΦTβ − 1

2 ‖β‖
2
Σp

,

where we have ignored terms independent ofβ. Expanding
the norm terms yields

log p(β|X,y) ∝ − 1
2 (β

TΦΣ−1
y ΦTβ − 2βTΦΣ−1

y s

+ sTΣ−1
y s)− c1TΦTβ − 1

2β
TΣ−1

p β
(21)

∝ − 1
2 [β

T (ΦΣ−1
y ΦT +Σ−1

p )β − 2βT (ΦΣ−1
y s− cΦ1)] (22)

∝ − 1
2

(

βT (ΦΣ−1
y ΦT +Σ−1

p )β − 2βTΦΣ−1
y t

)

, (23)

wheret = s − cΣy1 has elementsti = log(yi + c) − c
yi+c

.
Finally, by completing the square, the posterior distribution is
approximately Gaussian,

p(β|X,y) ≈ N (β|µ̂β , Σ̂β), (24)

with mean and variance

µ̂β = (ΦΣ−1
y ΦT +Σ−1

p )−1ΦΣ−1
y t, (25)

Σ̂β = (ΦΣ−1
y ΦT +Σ−1

p )−1. (26)

Note that settingc = 0 will yield the original posterior
approximation in [35]. The constantc acts as a parameter that
controls the smoothness of the approximation aroundy = 0,
avoiding the logarithm of, or division by, zero. In experiments,
we set this parameter toc = 1.

B. Bayesian prediction

Given a novel observationx∗, we start by considering the
predicted log-arrival rateν∗ = φ(x∗)

Tβ. It follows from (24)

that the posterior distribution ofν∗ is approximately Gaussian,

p(ν∗|x∗, X,y) ≈ N (ν∗|µ̂ν , σ̂
2
ν), (27)

with mean and variance

µ̂ν = φ(x∗)
T (ΦΣ−1

y ΦT +Σ−1
p )−1ΦΣ−1

y t, (28)

σ̂2
ν = φ(x∗)

T (ΦΣ−1
y ΦT +Σ−1

p )−1φ(x∗). (29)

Applying the matrix inversion lemma,̂σ2
ν can be rewritten in

terms of the kernel function,

σ̂2
ν = φ(x∗)

T (Σp − ΣpΦ(Φ
TΣpΦ+ Σy)

−1ΦTΣp)φ(x∗)

= k(x∗,x∗)− kT
∗ (K +Σy)

−1k∗, (30)

wherek(·, ·), K, andk∗ are defined as in Section III-A. Using
(41) from the Appendix, the posterior mean̂µν can also be
rewritten in terms of the kernel function,

µ̂ν = φ(x∗)
TΣpΦ(Φ

TΣpΦ+ Σy)
−1t (31)

= kT
∗ (K +Σy)

−1t. (32)

Since the posterior mean and variance ofν∗ depend only on
the inner product between the inputs, we can apply the “kernel
trick”, to obtain non-linear log-arrival rate functions.

The predictive distribution fory∗ is

p(y∗|x∗, X,y) =

∫

p(y∗|ν∗)p(ν∗|x∗, X,y)dν∗, (33)

wherep(y∗|eν∗) is a Poisson distribution of arrival rateλ∗ =
eν∗ . While this integral does not have analytic solution, a
closed-form approximation is possible. Sinceν∗ is approx-
imately Gaussian, it follows from (15)-(16) thatν∗ is well
approximated by a log-gamma distribution. Fromν∗ = logλ∗

it then follows thatλ∗ is approximately gamma distributed,

λ∗|x∗, X,y ∼ Gamma(σ̂−2
ν , σ̂2

νe
µ̂ν ).

Note that the expected timeλ∗ between arrivals of the Poisson
process is modeled as the time betweenσ̂−2

ν arrivals of a
Poisson process of ratêσ2

νe
µ̂ν . Hence,λ∗ ≈ eµ̂ν , which is

a sensible approximation. (33) can then be rewritten as

p(y∗|x∗, X,y) =

∫ ∞

0

p(y∗|λ∗)p(λ∗|x∗, X,y)dλ∗, (34)

wherep(y∗|λ∗) is a Poisson distribution andp(λ∗|x∗, X,y) a
gamma distribution. Since the latter is the conjugate priorfor
the former, the integral has an analytical solution, which is a
negative binomial

p(y∗|x∗, X,y) =
Γ(y∗+σ̂−2

ν )

Γ(y∗+1)Γ(σ̂−2
ν )

(p̂)σ̂
−2
ν (1 − p̂)y∗ , (35)

p̂ =
σ̂−2
ν

σ̂
−2
ν +exp(µ̂ν)

. (36)

In summary, the predictive distribution ofy∗ can be approxi-
mated by a negative binomial,

y∗|x∗, X,y ∼ NegBin(eµ̂ν , σ̂2
ν) (37)

of meaneµ̂ν and scalêσ2
ν , given by (28). The prediction vari-

ance isvar(y∗) = eµ̂ν (1 + σ̂2
νe

µ̂ν ), and grows proportionally
to the variance ofν∗. This is sensible, since uncertainty in
the prediction ofν∗ is expected to increase the uncertainty of
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Fig. 4. BPR with (a) linear and (c) RBF kernels. The mean parameter eµ̂ν and the mode are shown superimposed on the NB predictive distribution. The
corresponding log-arrival rate functions are shown in (b) and (d).

the count predictiony∗. In the ideal case of no uncertainty
(σ̂2

ν = 0), the NB reduces to a Poisson distribution with
both mean and variance ofeµ̂ν . Thus, a useful measure of
uncertainty for the predictiony∗ is the square-root of this
“extra” variance (i.e.,overdispersion), i.e. unc(y∗) = σ̂νe

µ̂ν .
Finally, the mode ofy∗ is adjusted downward depending on the
amount of overdispersion,mode(y) =

{

⌊(1−σ̂2
ν )e

µ̂ν ⌋, σ̂2
ν<1

0, σ̂2
ν≥1

,

where⌊·⌋ is the floor function.

C. Learning the kernel hyperparameters

The hyperparametersθ of the kernelk(x,x′) can be es-
timated by maximizing the marginal likelihoodp(y|X, θ).
Using the log-gamma approximation in (19),p(y|X, θ) is ap-
proximated in closed-form with (see Appendix for derivation)

log p(y|X, θ) ∝ − 1
2 log |K +Σy| −

1
2t

T (K +Σy)
−1t. (38)

Figure 4 presents two examples of BPR learning using the
linear and RBF kernels. The predictive distributions are plotted
in Figures 4 a) and 4 c), and the the corresponding log-arrival
rate functions are plotted in Figures 4 b) and 4 d). While the
linear kernel can only account for exponential trends in the
data, the RBF kernel can easily adapt to the local deviations
of the arrival rate.

D. Relationship with Gaussian process regression

The proposed approximate BPR is closely related to GPR.
The equations for̂µν and σ̂2

ν in (30, 32) are almost identical
to those of the GPR predictive distribution in (4, 5). There
are two main differences: 1) the noise termΣy of BPR in
(30) is dependent on the predictionsyi (this is a consequence
of assuming a Poisson noise model), whereas the GPR noise
term in (5) is i.i.d. (σ2

nI); 2) the predictive mean̂µν in
(32) is computed with the log-countst (assumingc = 0),
rather than the countsy of GPR (this is due to the fact that
BPR predicts log-arrival rates, while GPR predicts counts).
This suggests the following interpretation for the approximate
BPR. Given the observed data{X,y} and novel inputx∗,
approximate BPR models the predictive distribution of the
log-arrival rateν∗ as a GP with non-i.i.d. observation noise
of covarianceΣy. The posterior mean̂µν and variancêσ2

ν

of ν∗ then serve as parameters of the predictive distribution
of y∗, which is approximated by a negative binomial of
mean eµ̂ν and scale parameter̂σ2

ν . Note that the posterior
variance of ν∗ is the scale parameter of the NB. Hence,
increased uncertainty in the predictions ofν∗, by the GP,
translates into increased uncertainty in the prediction ofy∗.
The approximation to the BPR marginal likelihood in (38)

video 

motion segmentation 

feature extraction GP model count estimate 

Fig. 5. Crowd counting from low-level features. The scene issegmented
into crowds moving in different directions. Features are extracted from each
segment and normalized to account for perspective. The number of people in
each segment is estimated with Bayesian regression.

differs from that of the GPR in a similar manner, and hence
has a similar interpretation. In summary,the proposed closed-
form approximation to BPR is equivalent to GPR on the
log-arrival rate parameter of the Poisson distribution. This
GP includes a special noise term, which approximates the
uncertainty that arises from the Poisson noise model. Since
BPR can be implemented as GPR, the proposed closed-form
approximate posterior is more efficient than the Laplace or
EP approximations, which both use iterative optimization.
In addition, the approximate predictive distribution is also
calculated efficiently, since it avoids numerical integration.
Finally, standard Poisson regression belongs to the familyof
generalized linear models [39], a general regression framework
for linear covariate regression problems. Generalized kernel
machines, and the associated kernel Poisson regression, were
proposed in [40]. The proposed BPR is a Bayesian formulation
of kernel Poisson regression.

V. CROWD COUNTING USING LOW-LEVEL FEATURES AND

BAYESIAN REGRESSION

An outline of the proposed crowd counting system is shown
in Figure 5. Video is first segmented into crowd regions
moving in different directions. Features are then extracted
from each crowd segment, after application of a perspective
map that weighs pixels according to their approximate size in
the 3D world. Finally, the number of people per segment is
estimated from the feature vector, using the BPR module of
the previous section. The remainder of this section describes
each of these components.

A. Crowd segmentation

The first step of the system is to segment the scene into the
crowd sub-components of interest. The goal is to count people
moving in different directions or with different speeds. This
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Fig. 6. Perspective map: a) reference person at the front of walkway, and b) at the end; c) the perspective map, which scales pixels by their relative size in
the true 3d scene.

segmentation perimeter

internal edges internal texture

Fig. 7. Examples of the segment mask, segment perimeter, internal edges,
and internal texture for the image in Figure 1

is accomplished by first using amixture of dynamic textures
[41] to segment the crowd into sub-components of distinct
motion flow. The video is represented as collection of spatio-
temporal patches, which are modeled as independent samples
from a mixture of dynamic textures. The mixture model is
learned with the expectation-maximization (EM) algorithm, as
described in [41]. Video locations are then scanned sequen-
tially, a patch is extracted at each location, and assigned to
the mixture component of largest posterior probability. The
location is declared to belong to the segmentation region
associated with that component. For long sequences, where
characteristic motions are not expected to change significantly,
the computational cost of the segmentation can be reduced
by learning the mixture model from a subset of the video
(a representative clip). The remaining video can then be seg-
mented by simple computation of the posterior assignments.
Full implementation details are available in [41].

B. Perspective normalization

The extraction of features from crowd segments should take
into account the effects of perspective. Because objects closer
to the camera appear larger, any pixels associated with a close
foreground object account for a smaller portion of it than
those of an object farther away. This can be compensated
by normalizing for perspective during feature extraction (e.g.
when computing the segment area). In this work, each pixel is
weighted according to a perspective normalization map, based
on the expected depth of the object which generated the pixel.
Pixel weights encode the relative size of an object at different
depths, with larger weights given to far objects.

The perspective map is estimated by linearly interpolating
the size of a reference person (or object) between two extremes
of the scene. First, a rectangle is marked in the ground plane,
by specifying points{A,B,C,D}, as in Figure 6 a). It is
assumed that 1){A,B,C,D} form a rectangle in 3D, and
2) AB and CD are horizontal lines in the image plane. A

θ = 0◦ θ = 30◦ θ = 60◦ θ = 90◦ θ = 120◦ θ = 150◦

Fig. 8. Filters used to compute edge orientation.

reference person is then selected in the video, and the heights
h1 andh2 estimated as the center of the person moves over
AB andCD, as in Figures 6 a) and 6 b). In particular, the
pixels on the near and far sides of the rectangle are assigned
weights based on the area of the object at these extremes:
pixels onAB receive weight1, those onCD weight equal to
the area ratioh1w1

h2w2
, wherew1 is the length ofAB andw2 is

the length ofCD. The remaining pixel weights are obtained
by linearly interpolating the width of the rectangle, and the
height of the reference person, at each image coordinate, and
computing the area ratio. Figure 6 c) shows the resulting
perspective map for the scene of Figure 6 a). In this case,
objects in the foreground (AB) are approximately2.4 times
bigger than objects in the background (CD). In other words,
pixels onCD are weighted2.4 times as much as pixels on
AB. We note that many other methods could be used to
estimate the perspective map. For example, a combination of
a standard camera calibration technique and a virtual person
who is moved around in the scene [42], or even the inclusion
of the spatial weighting in the regression itself. We found this
simple interpolation procedure sufficient for our experiments.

C. Feature extraction

In principle, features such as segment area should vary lin-
early with the number of people in the scene [10], [13]. Figure
2 shows a plot of this feature versus the crowd size. While the
overall trend is indeed linear, local non-linearities arise from
a variety of factors, including occlusion, segmentation errors,
and pedestrian configuration (e.g. variable spacing of people
within a segment). To model these non-linearities, an addi-
tional 29 features, based on segment shape, edge information,
and texture, are extracted from the video. When computing
features based on area or size, each pixel is weighted by the
corresponding value in the perspective map. When the features
are based on edges (e.g. edge histogram), each edge pixel is
weighted by the square-root of the perspective map value.

1) Segment features:Features are extracted to capture
segment properties such as shape and size. Features are also
extracted from the segment perimeter, computed by morpho-
logical erosion with a disk of radius 1.

• Area – number of pixels in the segment.
• Perimeter– number of pixels on the segment perimeter.
• Perimeter edge orientation– a 6-bin histogram of the

orientation of the segment perimeter. The orientation of
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each edge pixel is estimated by the orientation of the filter
of maximum response within a set of17 × 17 oriented
Gaussian filters (see Figure 8 for examples).

• Perimeter-area ratio– ratio between the segment perime-
ter and area. This feature measures the complexity of the
segment shape: segments of high ratio contain irregular
perimeters, which may be indicative of the number of
people contained within.

• “Blob” count – number of connected components, with
more than 10 pixels, in the segment.

2) Internal edge features:The edges within a crowd seg-
ment are a strong clue about the number of people in it [13],
[14]. A Canny edge detector [43] is applied to the image, the
output is masked to form the internal edge image (see Figure
7), and a number of features are extracted.

• Edge length– number of edge pixels in the segment.
• Edge orientation– 6-bin histogram of edge orientations.
• Minkowski dimension- fractal dimension of the internal

edges, which estimates the degree of “space-filling” [44].
3) Texture features:Texture features, based on the gray-

level co-occurrence matrix (GLCM), were used in [15] to
classify image patches into 5 classes of crowddensity(very
low, low, moderate, high, and very high). In this work, we
adopt a similar set of measurements for estimating thenumber
of pedestrians in each segment. The image is first quantized
into 8 gray-levels, and masked by the segment. The joint
probability of neighboring pixel values,p(i, j|θ), is estimated
for four orientation,θ ∈ {0◦, 45◦, 90◦, 135◦}. A set of three
features is extracted for eachθ (12 total texture features).

• Homogeneity: texture smoothness,gθ =
∑

i,j
p(i,j|θ)
1+|i−j| .

• Energy: total sum-squared energy,eθ =
∑

i,j p(i, j|θ)
2.

• Entropy: randomness,hθ =
∑

i,j p(i, j|θ) log p(i, j|θ).
Finally, a feature vector is formed by concatenating the 30
features, into a vectorx ∈ R

30, which is used as the input for
the regression module of the previous section.

VI. EXPERIMENTAL EVALUATION

The proposed approach to crowd counting was tested on
two pedestrian databases.

A. Pedestrian databases
Two hours of video were collected from two viewpoints

overlooking a pedestrian walkway at UC San Diego, using
a stationary digital camcorder. The first viewpoint, shown in
Figure 9 (left), is an oblique view of a walkway, containing a
large number of people. The second, shown in Figure 9 (right),
is a side-view of a walkway, containing fewer people. We refer
to these two viewpoints as Peds1 and Peds2, respectively. The
original video was captured at 30 fps with a frame size of
740×480, and was later downsampled to238×158 and 10 fps.
The first 4000 frames (400 seconds) of each video sequence
were used for ground-truth annotation.

A region-of-interest (ROI) was selected on the main walk-
way (see Figure 9), and the traveling direction (motion class)
and visible center of each pedestrian1 were manually an-
notated, every five frames. Pedestrian locations in the re-
maining frames were estimated by linear interpolation. Note

1Bicyclists and skateboarders in Peds1 were treated as regular pedestrians.

Fig. 9. Ground-truth annotations. (left) Peds1 database: red and green tracks
indicate people moving away from, and towards the camera. (right) Peds2
database: red and green tracks indicate people walking right or left, while
cyan and yellow tracks indicate fast objects moving right orleft. The ROI
used in all experiments is highlighted and outlined in blue.

that the pedestrian locations are only used to test detection
performance of the pedestrian detectors in Section VI-E. For
regression-based counting, only the counts in each frame are
required for training. Peds1 was annotated with two motion
classes: “away” from or “towards” the camera. For Peds2,
the motion was split by direction and speed, resulting in
four motion classes: “right-slow”, “left-slow”, “right-fast”, and
“left-fast”. In addition, each dataset also has a “scene” motion
class, which is the total number of moving people in the
frame (i.e., the sum of the individual motion classes). Example
annotations are shown in Figure 9.

Each database was split into a training set, used to learn the
regression model, and a test set, used for validation. On Peds1,
the training set contains 1200 frames (frames 1401-2600), with
the remaining 2800 frames held out for testing. On Peds2, the
training set contains 1000 frames (frames 1501-2500) with
the remaining 3000 frames held out for testing. Note that
these splits test the ability of crowd-counting algorithmsto
extrapolatebeyond the training set. In contrast, spacing the
training set evenly throughout the dataset would only test the
ability to interpolatebetween the training data, which provides
little insight into generalization ability.

B. Experimental Setup
Since Peds1 contains 2 dominant crowd motions (“away”

and “towards”), a mixture of dynamic textures [41] with
K = 2 components was learned from7 × 7 × 20 spatio-
temporal patches, extracted from a short video clip. The model
was then used to segment the full video into 2 segments. The
segment for the overall “scene” motion class is obtained by
taking the union of the segments of the two motion classes.
Peds2 contains 4 dominant crowd motions (“right-slow”, “left-
slow”, “right-fast”, or “left-fast”), thus aK = 4 component
mixture was learned from13×13×10 patches (larger patches
are required since the people are larger in this video).

We treat each motion class (e.g., “away”) as a separate
regression problem. The 30 dimensional feature vector of
Section V-C, was computed from each crowd segment and
each video frame, and each feature was normalized to zero
mean and unit variance. The GPR and BPR functions were
then learned, using maximum marginal likelihood to obtain
the optimal kernel hyperparameters. We used the GPML
implementation [19] to find the maximum, which uses gradient
ascent. For BPR, we modify GPML to include the special BPR
noise term. GPR and BPR were learned with two kernels:
the linear kernel (denoted GPR-l and BPR-l) and the RBF-
RBF compound kernel (denoted GPR-rr and BPR-rr). For
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TABLE I
COMPARISON OF REGRESSION METHODS AND FEATURE SETS ONPEDS1.

MSE err
Feat. Method away towards scene total away towards scene total

Fall linear 3.335 2.868 3.751 9.953 1.451 1.324 1.513 4.288
Fall GPR-l 3.260 2.692 3.654 9.606 1.435 1.278 1.489 4.203
Fall GPR-rr 2.970 2.029 3.787 8.785 1.408 1.093 1.551 4.051
Fall Poisson 2.917 3.065 3.040 9.022 1.336 1.360 1.331 4.027
Fall BPR-l 2.936 2.120 2.910 7.966 1.336 1.160 1.308 3.804
Fall BPR-rr 2.441 1.996 2.975 7.412 1.210 1.124 1.320 3.654

Fse BPR-rr 2.751 3.019 6.702 8.867 1.307 1.378 1.365 4.050
Ft BPR-rr 23.300 12.142 60.178 95.619 3.478 2.846 5.824 12.149
Fe BPR-rr 3.460 4.071 3.406 10.938 1.478 1.590 1.431 4.499
Fs BPR-rr 3.396 2.895 4.734 11.025 1.384 1.347 1.761 4.491
Fa BPR-rr 3.923 3.224 6.117 13.264 1.461 1.470 1.951 4.883
[13] BPR-rr 3.264 3.105 3.640 10.010 1.416 1.418 1.478 4.312
[14] BPR-rr 3.118 2.808 3.661 9.587 1.385 1.339 1.500 4.224
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Fig. 10. Error rate for training sets of different sizes on Peds1, for the
“away” (left) and “scene” (right) classes. Similar plots were obtained for the
“towards” class and are omitted for brevity.

GPR-l and BPR-l, the initial hyperparameters were set to
θ = [1 · · · 1], while for GPR-rr and BPR-rr, the optimization
was performed over 5 trials with random initializations to
avoid bad local maxima. For completeness, standard linear
least-squares and Poisson regressions were also tested.

For GPR, counts were estimated by the mean prediction
value µ∗, rounded to the nearest non-negative integer. The
standard deviationσ∗ was used as uncertainty measure. For
BPR, counts were estimated by the mode of the predictive
distribution, andunc(y∗) was used as uncertainty measure.
The accuracy of the estimates was evaluated by the mean-
squared error,MSE = 1

M

∑M

i=1(ĉi − ci)
2, and absolute error,

err = 1
M

∑M
i=1 |ĉi − ci|, where ci and ĉi are the true and

estimated counts for framei, andM the number of test frames.
Experiments were conducted with different subsets of the 30
features: only the segment area (denoted asFa); segment-
based features (Fs); edge-based features (Fe); texture features
(Ft); segment and edge features (Fse). The full set of 30
features is denotedFall. The feature sets of [14] (segment size
histogram and edge orientation histogram) and [13] (segment
area and total edge length) were also tested.

C. Results on Peds1

Table I presents counting error rates for Peds1 for each
of the motion classes (“away”, “towards”, and “scene”). In
addition, we also report the total MSE and total absolute error
as an indicator of overall performance of each method. A
number of conclusions are possible. First, Bayesian regression
has better performance than the non-Bayesian approaches. For
example, BPR-l achieves an overall error rate of3.804, versus
4.027 for standard Poisson regression. The error is further
decreased to3.654 by adopting a compound kernel, BPR-rr.
Second, the comparison of the two Bayesian regression models

TABLE II
RESULTS ONPEDS1 USING 100 TRAINING IMAGES. STANDARD

DEVIATIONS ARE GIVEN IN PARENTHESIS.

MSE
Method away towards scene
linear 4.090 (0.609) 3.659 (0.500) 4.780 (0.818)
GPR-l 3.472 (0.288) 1.923 (0.128) 4.029 (0.298)
GPR-rr 3.118 (0.154) 2.272 (0.604) 4.465 (0.495)
Poisson 3.956 (0.598) 3.605 (0.395) 3.643 (0.370)
BPR-l 3.118 (0.094) 2.358 (0.093) 3.569 (0.141)
BPR-rr 2.924 (0.093) 2.320 (0.089) 3.537 (0.127)

TABLE III
COMPARISON OF REGRESSION APPROACHES ONPEDS1 USING DIFFERENT

SEGMENTATION METHODS ANDFall (“ SCENE” CLASS).

scene MSE scene err
Method DTM median GMM DTM median GMM
linear 3.751 4.009 5.563 1.513 1.551 1.898
GPR-l 3.654 3.934 5.623 1.489 1.540 1.900
GPR-rr 3.787 3.676 4.576 1.551 1.476 1.691
Poisson 3.040 3.585 4.178 1.331 1.449 1.585
BPR-l 2.910 3.453 3.597 1.308 1.428 1.445
BPR-rr 2.975 3.378 3.391 1.320 1.415 1.383

shows that BPR outperforms GPR. With linear kernels, BPR-
l outperforms GPR-l on all classes (total error3.804 versus
4.203). In the non-linear case, BPR-rr has significantly lower
error than GPR-rr on the “away” and “scene” classes (e.g.
1.210 versus1.408 on the “away” class), and comparable
performance (1.124 versus1.093) on the “towards” class. In
general, BPR has the largest gains in the sequences where
GPR has larger error. Third, the use of sophisticated regression
models does make a difference. The error rate of the best
method (BPR-rr,3.654) is 85% that of the worst method
(linear least squares,4.288).

Fourth, performance is also strongly affected by the features
used. This is particularly noticeable on the “away” class,
which has larger crowds. On this class, the error steadily
decreases as more features are included in the model. Using
just the area feature (Fa) yields a counting error of1.461.
When the segment features (Fs) are used, the error decreases
to 1.384, and adding the edge features (Fse) leads to a
further decrease to1.307. Finally, adding the texture features
(Fall), achieves the lowest error of1.210. This illustrates
the different components of information contributed by the
different feature subsets: the estimate produced from segment
features is robust but coarse, the refinement by edge and
texture features allows the modeling of various non-linearities.
Note also that isolated use of texture features results in very
poor performance (overall error of12.149). However, these
features provide important supplementary information when
used in conjunction with others, as inFall. Compared to [13],
[14], the full feature setFall performs better on all crowd
classes (total errors3.654 versus4.312 and4.224).

The effect of varying the training set size was also ex-
amined, by using subsets of the original training set. For a
given training set size, results were averaged over different
subsets of evenly-spaced frames. Figure 10 shows plots of
the MSE versus training set size. Table II summarizes the
results obtained with 100 training images. The experiment
was repeated for twelve different splits of the training and
test sets, with the mean and standard devitations reported.
Note how the Bayesian methods (BPR and GPR) have much
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Fig. 11. Crowd counting examples: The red and green segmentsare the “away” and “towards” components of the crowd. The estimated crowd count for
each segment is shown in the top-left, with the (uncertainty) and the [ground-truth]. The prediction for the “scene” class, which is count of the whole scene,
is shown in the top-right. The ROI is also highlighted.

better performance than linear or Poisson regression when the
training set is small. In practice, this means that Bayesian
crowd counting requires much fewer training examples, and a
reduced number of manually annotated images.

We observe that Poisson and BPR perform similarly on
the “scene” class for large training sizes. Combining the
two motion segments to form the “scene” segment removes
segmentation errors and small segments containing partially-
occluded people traveling against the main flow. Hence, the
features extracted from the “scene” segment have fewer out-
liers, resulting in a simpler regression problem. This justifies
the similar performance of Poisson and BPR. On the other
hand, Bayesian regression improves performance for the other
two motion classes, where segmentation errors or occlusion
effects originate a larger number of outlier features.
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Fig. 12. Crowd counting results on Peds1: a) “away”, b) “towards”,
and c) “scene” classes. Gray levels indicate probabilitiesof the predictive
distribution. The uncertainty is plotted in green, with theaxes on the right.

As an alternative to motion segmentation, two background
subtraction methods, a temporal median filter and an adaptive
GMM [45], were used to obtain the “scene” segment, which
was then used for count regression. The counting results
were improved by applying two post-processing steps to the
foreground segment: 1) a spatial median filter to remove
spurious noise; 2) morphological dilation (disk of radius 2)
to fill in holes and include pedestrian edges. The results

are summarized in Table III. Counting using DTM motion
segmentation outperforms both background subtraction meth-
ods (1.308 error versus1.415 and1.383). Because the DTM
segmentation is based on motion differences, rather than gray-
level differences, it tends to have fewer segmentation errors
(i.e., completely missing part of a person) when a person has
similar gray-level to the background.

Finally, Figure 12 displays the crowd count estimates ob-
tained with BPR-rr. These estimates track the ground-truth
well in most of the test set. Furthermore, the uncertainty
measure (shown in green) indicates when BPR has lower con-
fidence in the prediction. This is usually when the size of the
crowd increases. Figure 11 shows crowd estimates for several
test frames of Peds1. A video is also available from [46].
In summary, the count estimates produced by the proposed
algorithm are accurate for a wide range of crowd sizes. This
is due to both the inclusion of texture features, which are
informative for high density crowds, and the Bayesian non-
linear regression model, which is quite robust.

D. Crowd counting results on Peds2
The Peds2 dataset contains smaller crowds (at most 15

people). We found that the segment and edge features (Fse)
worked the best on this dataset. Table IV shows the error rates
for the five crowd segments, using the different regression
models. The best overall performance is achieved by GPR-
l, with a overall error of1.586. The exclusion of the texture
features and the smaller crowd originates a strong linear trend
in the data, which is better modeled with GPR-l than the
nonlinear GPR-rr. Both BPR-l and BPR-rr perform worse than
GPR-l overall (1.927 and1.776 versus1.586). This is due two
reasons. First, at lower counts, theFse features tend to grow
linearly with the count. This does not fit well the exponential
model that underlies BPR-l. Due to the non-linear kernel,
BPR-rr can adapt to this, but appears to suffer from some
overfitting. Second, the observation noise of BPR is inversely
proportional to the count. Hence, uncertainty is high for low
counts, limiting how well BPR can learn local variations in
the data. These problems are due to reduced accuracy of the
log-gamma approximation of (15) whenk is small. Finally, the
estimates obtained withFse are more accurate than those of
[13], [14] on all motion classes, and particularly more accurate
in the two fast classes. This indicates that the feature space
now proposed is richer and more informative.

Figure 14 shows the crowd count estimates (usingFse and
GPR-l) for the five motion classes over time, and Figure 13
presents the crowd estimates for several frames in the test
set. Video results are also available from [46]. The estimates
track the ground-truth well in most frames, for both the fast
and slow motion classes. One error occurs for the “right-fast”
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TABLE IV
COMPARISON OF REGRESSION METHODS AND FEATURE SETS ONPEDS2.

MSE err
Feat. Method right-slow left-slow right-fast left-fast scene total right-slow left-slow right-fast left-fast scene total

Fse GPR-l 0.686 0.476 0.009 0.004 0.990 2.165 0.485 0.417 0.009 0.004 0.671 1.586
Fse GPR-rr 0.877 0.508 0.024 0.009 1.142 2.560 0.576 0.442 0.024 0.009 0.740 1.790
Fse BPR-l 1.055 0.598 0.017 0.009 1.253 2.932 0.698 0.451 0.017 0.009 0.753 1.927
Fse BPR-rr 0.933 0.458 0.016 0.008 1.132 2.547 0.615 0.394 0.016 0.008 0.743 1.776
[13] GPR-l 0.736 0.614 0.017 0.032 1.144 2.543 0.528 0.510 0.017 0.018 0.729 1.802
[14] GPR-l 0.706 0.491 0.020 0.011 1.048 2.277 0.499 0.424 0.020 0.009 0.714 1.666

5   (±0.7) [6]
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Fig. 13. Counting on Peds2: The estimated counts for the the “right-slow” (red), “left-slow” (green), “right-fast” (blue), and “left-fast” (yellow) components
of the crowd are shown in the top-left, with the (uncertainty) and the [ground-truth]. The count for the “scene” class is in white text.

class, where one skateboarder is missed due to an error in the
segmentation, as displayed in the last image of Figure 13. In
summary, the results on Peds2, again, suggest the efficacy of
regression-based crowd counting from low-level features.
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Fig. 14. Crowd counting results on Peds2 for: (a) “right-slow”, (b) “left-
slow”, (c) “right-fast”, (d) “left-fast, (e) “scene”.

E. Comparison with pedestrian detection algorithms

In this section, we compare regression-based crowd count-
ing with counting using two state-of-the-art pedestrian de-
tectors. The first detects pedestrians with an SVM and the
histogram-of-gradients feature [25] (denoted “HOG”). The
second is based on a discriminatively-trained deformable parts

model [26] (denoted “DPM”). The detectors were provided
by the respective authors. They were both run on the full-
resolution video frames (740× 480), and a filter was applied
to remove detections that are outside the ROI, inconsistentwith
the perspective of the scene, or given low confidence. Non-
maximum suppression was also applied to remove multiple
detections of the same object.

We start by evaluating the performance of the two detectors.
Each ground-truth pedestrian was uniquely mapped to the
closest detection, and a true positive (TP) was recorded if the
ground-truth location was within the detection bounding box.
A false positive (FP) was recorded otherwise. Figure 15 plots
the ROC curves for HOG and DPM on Peds1 and Peds2.
These curves are obtained by varying the threshold of the
confidence filter. HOG outperforms DPM on both datasets,
with a smaller FP rate per image. However, neither algorithm
is able to achieve a very high TP rate (the maximum TP rate
is 74% on Peds1), due to the large number of occlusions in
these scenes.
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Fig. 15. ROC curves of the pedestrian detectors on Peds1 and Peds2.

TABLE V
COUNTING ACCURACY OFBAYESIAN REGRESSION(BPR, GPR)AND

PEDESTRIAN DETECTION(HOG, DPM).

Method MSE err bias var.

P
ed

s1

Fall BPR-rr 2.975 1.320 0.101 2.966
DPM [26] 24.721 4.012 1.621 22.100
HOG [25] 39.755 5.321 −5.315 11.510
DPM BPR-l 51.489 6.298 5.256 23.875
HOG BPR-l 33.222 4.893 3.498 20.995

P
ed

s2

Fse GPR-l 0.990 0.671 0.150 0.968
DPM [26] 4.645 1.565 −0.983 3.680
HOG [25] 10.834 2.607 −2.595 4.103
DPM GPR-l 4.312 1.507 −0.741 3.765
HOG GPR-l 4.455 1.563 −0.595 4.103
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Fig. 16. Crowd counts produced by the HOG [25] and DPM [26] detectors
on a) Peds1 and b) Peds2.
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Fig. 17. Error for different crowd sizes on (left) Peds1 and (right) Peds2.

Next, each detector was used to count the number of people
in each frame, regardless of direction of motion (corresponding
to the “scene” class). The confidence threshold was chosen to
minimize the counting error on the training set. In addition
to the count error and MSE, we also report the bias and
variance of the estimates,bias = 1

M

∑M
i=1(ci − ĉi) and

var = 1
M

∑M
i=1(ci − bias)2. The counting performance of

DPM and HOG is summarized in Table V, and the crowd
counts are displayed in Figure 16. For crowd counting, DPM
has a lower average error rate than HOG (e.g.,4.012 versus
5.321 on Peds1). This is an artifact of the high FP rate of DPM;
the false detections artificially boost the count even though the
algorithm has a lower TP rate. On the other hand, HOG always
underestimates the crowd count, as is evident from Figure 16
and the biases of−5.315 and −2.595. Both detectors per-
form significantly worse than regression-based crowd counting
(BPR or GPR). In particular, the average error of the former
is more than double that of the latter (e.g.4.012 for DPM
versus1.320 for BPR, on Peds1). Figure 17 shows the error
as a function of ground-truth crowd size. For the pedestrian
detectors, the error increases significantly with the crowdsize,
due to occlusions. On the other hand, the performance of
Bayesian regression remains relatively constant. These results
demonstrate that regression-based counting can perform well
above state-of-the-art pedestrian detectors, particularly when
the crowd is dense.

Finally, we applied Bayesian regression (BPR or GPR) on
the detector counts (HOG or DPM), in order to remove any
systematic bias in the count prediction. Using the trainingset,
a Bayesian regression function was learned to map the detector
count to the ground-truth count. The counting accuracy on the
test set was then computed using the regression function. The
(best) results are presented in the bottom-halves of Table V.
There is not a significant improvement compared to the raw

counts, suggesting that there is no systematic warping between
the detector counts and the actual counts.
F. Extended results on Peds1 and Peds2

The final experiment tested the robustness of regression-
based counting, on 2 hours of video from Peds1 and Peds2.
For both datasets, the top-performing model and feature set
(BPR-rr withFall for Peds1, and GPR-l withFse for Peds2)
were trained using 2000 frames of the annotated dataset (every
other frame). Counts were then estimated on the remaining 50
minutes of each video. Examples of the predictions on Peds1
are shown in Figure 18 (top), and full video results available
from [46]. Qualitatively, the counting algorithm tracks the
changes in pedestrian traffic fairly well. Most errors tend
to occur when there are very few people (less than two) in
the scene. These errors are reasonable, considering that there
are no training examples with such few people in Peds1.
This problem could be easily fixed by adding more training
examples. Note that BPR signals its lack of confidence in these
estimates, by assigning them large standard-deviations (e.g.
3rd and 4th images of Figure 18).

A more challenging set of errors occur when bicycles,
skateboarders, and golf carts travel quickly on the Peds1
walkway (e.g., 1st image of Figure 18). Again, these errors
are reasonable, since there are very few examples of fast
moving bicycles and no examples of carts in the training
set. These cases could be handled by either: 1) adding more
mixture components to the segmentation algorithm to label
fast moving objects as a different class; 2) detecting outlier
objects that have different appearance or motion from the
dominant crowd. In both cases, the segmentation task is not as
straightforward due to the scene perspective; people moving
in the foreground areas travel at the same speed as bikes
moving in the background areas. Future work will be directed
at developing segmentation algorithms to handle these cases.

Examples of prediction on Peds2 are also displayed in
Figure 18 (bottom). Similar to Peds1, the algorithm tracks the
changes in pedestrian traffic fairly well. Most errors tend to
occur on objects that are not seen in the database, for example,
three people pulling carts (7th image in Figure 18), or the
small truck (final image of Figure 18). Again, these errors are
reasonable, considering that these objects were not seen inthe
training set, and the problem could be fixed by simply adding
training examples of such cases, or detecting them as outliers.

VII. C ONCLUSIONS

In this work we have proposed the use of Bayesian regres-
sion to estimate the size of inhomogeneous crowds, composed
of pedestrians traveling in different directions, withoutusing
intermediate vision operations, such as object detection or
feature tracking. Two solutions were presented, based on
Gaussian process and Bayesian Poisson regression. The in-
tractability of the latter was addressed through the derivation
of closed-form approximations to the predictive distribution. It
was shown that the BPR model can be kernelized, to represent
non-linear log-arrival rates, and that the hyperparameters of the
kernel can be estimated by approximate maximum marginal
likelihood. Regression-based counting was validated on two
large datasets, and shown to provide robust count estimates
regardless of the crowd size.
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Fig. 18. Example counting results on the full videos: (top) Peds1, and (bottom) Peds2.

Comparing the two Bayesian regression methods, BPR
was found more accurate for denser crowds, while GPR
performed better when the crowd is less dense (in which
case the regression mapping is more linear). Both Bayesian
regression models were shown to generalize well from small
training sets, requiring significantly smaller amounts of hand-
annotated data than non-Bayesian crowd counting approaches.
The regression-based count estimates were also shown sub-
stantially more accurate than those produced by state-of-the-
art pedestrian detectors. Finally, regression-based counting was
successfully applied to two hours of video, suggesting that
systems based on the proposed approach could be used in
real-world environments for long periods of time.

One limitation, for crowd counting, of Bayesian regression
is that it requires training for each particular viewpoint.This is
an acceptable restriction for permanent surveillance systems.
However, the training requirement may hinder the ability to
quickly deploy a crowd counting system (e.g. during a parade).
The lack of viewpoint invariance likely stems from several
colluding factors: 1) changes in segment shape due to motion
and perspective; 2) changes in a person’s silhouette due to
viewing angle; 3) changes in the appearance of dense crowds.
Future work will be directed at improving training across
viewpoints, by developing perspective invariant features, trans-
ferring knowledge across viewpoints (using probabilisticpri-
ors), or accounting for perspective within the kernel function
itself. Further improvements to the performance of Bayesian
counting from sparse crowds should also be possible. On
BPR, a training example associated with a sparse crowd has
less weight (more uncertainty) than one associated with a
denser crowd. This derives from the Poisson noise model, and
diminishes the ability of BPR to model local variations of
sparse crowds (in the presence of count uncertainty, Bayesian
regression tends to smoothen the regression mapping). Future
work will study noise models without this restriction.

APPENDIX

1) Property 1: Consider the following

ΦΣ−1
y (ΦTΣpΦ+ Σy) = ΦΣ−1

y ΦTΣpΦ + Φ (39)

= (ΦΣ−1
y ΦT +Σ−1

p )ΣpΦ. (40)

Pre-multiplying by (ΦΣ−1
y ΦT + Σ−1

p )−1 and post-multiplying by
(ΦTΣpΦ+ Σy)

−1 yields

(ΦΣ−1
y ΦT + Σ−1

p )−1ΦΣ−1
y = ΣpΦ(Φ

TΣpΦ +Σy)
−1

. (41)

2) BPR Marginal Likelihood:We derive the BPR marginal
likelihood of Section IV-C. In all equations, we only write the terms
that depend on the kernel,{Φ,Σp, β}. Using (19), the joint log-
likelihood of {y, β} can be approximated as

log p(y, β|X, θ) = log p(y|X,β, θ) + log p(β|θ) (42)

≈ −N
2
log(2π)− 1

2
log |Σy | −

1
2
‖ΦT

β − s‖2Σy
− c1

TΦT
β

+
N
∑

i=1

log Γ(yi+c)
yi!

− d
2
log(2π)− 1

2
log |Σp| −

1
2
β
TΣ−1

p β
(43)

∝ − 1
2
(βT

Aβ − 2βTΦΣ−1
y s+ 2βTΦ1c)− 1

2
log |Σp| (44)

= − 1
2
(βT

Aβ − 2βTΦΣ−1
y t)− 1

2
log |Σp| , (45)

whereA = ΦΣ−1
y ΦT + Σ−1

p , andt ands are defined as in Section
IV-A. By completing the square,

log p(y|X,β, θ) + log p(β|θ) ≈ − 1
2
(
∥

∥β −A
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y t
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(46)
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2
log |Σp| ,

(48)

where in (48) we use the matrix inversion lemma. The marginal
likelihood can thus be approximated as,

p(y|X,β, θ) =

∫

p(y, β|X, θ)dβ (49)

≈ |Σp|
−

1
2 e

−
1
2
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T (Σy+ΦTΣpΦ)−1
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= (|Σp| |A|)−
1
2 e

−
1
2
t
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t
. (51)

Using the block determinant property,|A| can be rewritten as

|A| = |Σ−1
p + ΦΣ−1

y ΦT | = |Σ−1
p || −Σ−1

y || − Σy − ΦTΣpΦ|

= |Σ−1
p ||Σ−1

y ||Σy +K|. (52)

Substituting into the log of (51) yields

log p(y|X,β, θ) ≈ 1
2
log |Σy | −

1
2
log |ΦTΣpΦ + Σy |

− 1
2
t
T (ΦTΣpΦ+ Σy)

−1
t.

(53)

Finally, dropping the term that does not depend on the kernel
hyperparametersθ yields (38).
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