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~ Abstract—An approach to the problem of estimating the size of where all the information required to perform the task can be
inhomogeneous crowds, composed of pedestrians that travel  gathered by analyzing the environmémlistically or globally,
different directions, without using explicit object segmatation e.g. monitoring of traffic flows, detection of disturbances i

or tracking is proposed. Instead, the crowd is segmented it . . . . . .
components of homogeneous motion, using the mixture of dy- public spaces, detection of highway speeding, or estimatio

namic textures motion model. A set of holistic low-level femres is  Of crowd sizes. By definition, these tasks are based on either
extracted from each segmented region, and a function that mz  properties of 1) the crowd as a whole, or 2) an individual's
features into estimates of the number of people per segment deviation from the crowd. In both cases, to accomplish the
is leamed with Bayesian regression. Two Bayesian regressi 45\ it should suffice to build gooiodels for the patterns of

models are examined. The first is a combination of Gaussian d behavior E ¢ Id th be detected iati
process regression (GPR) with a compound kernel, which ac- crowd behavior Events cou en be delected\agiations

counts for both the global and local trends of the count mappig, N these patternsand abnormal individual actions could be
but is limited by the real-valued outputs that do not match the detected asutliers with respect to the crowd behavior.
discrete counts. We address this limitation with a second nutel, An example surveillance task that can be solved by a
which is based on a Bayesian treatment of Poisson regressionsqrqwd-centric” approach is that of pedestrian countingt,Y

that introduces a prior distribution on the linear weights of the . . L g - _
model. Since exact inference is analytically intractablea closed- it is frequently addressed with “individual-centric” mets:

form approximation is derived that is computationally efficient ~detect the people in the scene [1]-[6], track them over time
and kernelizable, enabling the representation of non-linar func-  [3], [7]-[9], and count the number of tracks. The problem is

tions. An approximate marginal likelihood is also derived br that, as the crowd becomes larger and denser, both individua
kernel hyperparameter learning. The two regression-basedrowd detection and tracking become close to impossible. In con-

counting methods are evaluated on a large pedestrian datase trast . d tric” h | obal | | |
containing very distinct camera views, pedestrian traffic,and rast, a “crowd-centric’ approach analyzgobal low-leve

outliers, such as bikes or skateboarders. Experimental rests featuresextracted from crowd imagery to produce accurate
show that regression-based counts are accurate, regardkesf the counts. While a number of “crowd-centric” counting methods

crowd size, outperforming the count estimates produced bytate- have been previously proposed [10]-[16], they have noy full

of-the-art pedestrian detectors. Results on two hours of Weo  egtapjished the viability of this approach. This has a rtudt

demonstrate the efficiency and robustness of regression-bed ) L L . .

crowd size estimation over long periods of time. of_ reasons: from_ Ilm_lted applications to indoor environitsen
with controlled lighting (e.g. subway platforms) [10]—[13

[15]; to ignoring crowd dynamics (i.e. treating people nmayi

in different directions as the same) [10]-[14], [16]; to@as®-

tions of homogeneous crowd density (i.e. spacing between

I. INTRODUCTION people) [15]; to measuring a surrogate of the crowd size

There is currently a great interest in vision technology fo(re'g' <_:rowd density or percent Croyvdmg) [10], [11], [15¢; t
o . . guestionable scalability to scenes involving more thanva fe
monitoring all types of environments. This could have man

goals, e.g. security, resource management, urban pIarming'XGOple [16]; to limited experimental validation of the posed

advertising. From a technological standpoint, computsiowi algorithms [10]-12], [14], [15]

. . ] : . Unlike these proposals, we show that there is no need
_solg'qons typically _foc_us on detectm_g, tracking, and W’?“g for pedestrian detection, object tracking, or object-daise-
|nd|V|dgaIs eg. f”?d'”g_ a_nd track!ng a person walking ”"]Jlge primitives to accomplish the pedestrian counting goal,
a parking lot, or identifying the interaction between twoev n when the crowd isizable and inhomogenequs.g
people). While there has been some success with this typ%o? e

“individual-centric” surveillance, it is not scalable t@enes assub-components with different dynamiesid appears in

. . . unconstrained outdoor environmenssich as that of Figure 1.
with large crowds, where each person is depicted by a f%v fact, we argue that, when a “crowd-centric” approach is

image pixels, people occlude each other in complex ways, aggnsidered the problem actually appears to become simpler
the number of targets to track is overwhelming. Nonethele ’ P Y app P

there are many problems in monitoring that can be solved: simply segment the crowgl Into sup-pa_rts of interest (e.g.
without explicit tracking of individuals. These are proinie groups of people moving in different directions), extracie

of holistic features from each segment, and estimate the crowd
Copyright (¢) 2010 IEEE. Personal use of this material ismjged. SIZ€ with a suitable regression function [17]. By bypassing
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The contributions of this work are three-fold, spanningrope
guestions in computer vision and machine learning. First,
a “crowd-centric” methodology for estimating th&zes of
crowds moving in different directions, which does not depen
on object detection or feature tracking,presented. Second, a
Bayesian regression procedure is derived for the estimatio
counts, which is a Bayesian extension of Poisson regression

I A closed-form approximation to the predictive distributjo

Fig. 1. Scene containing a sizable crowd with inhomogenetygmics, which can F’e kernelized .tO handle non'lmea”tlesj 'S. (.mhv
due to pedestrian motion in different directions. together with an approximate procedure for optimizing the
hyperparameters of the kernel function, under the Type-l

One important aspect of regression-based counting is #@ximum marginal likelihood criteria. It is also shown that
choice of regression function used to map segment featutes proposed approximation to BPR is related to a GPR with
into crowd counts. One possibility is to rely on classic@ires-  a specific noise term. Third, the proposed crowd counting
sion methods, such as linear, or piece-wise linear, regressapproach is validated on two large datasets of pedestrian
and least squares fits [18]. These methods are not very roliigigery, and its robustness demonstrated through results o
to outliers and non-linearities, and are prone to overfttintwo hours of video. To our knowledge, this is the first pedes-
when the feature space is high-dimensional or there i® litrian counting system that accounts for multiple pedestria
training data. In these cases, better performance canlysufibws, and successfully operates continuously in an ousjoor
be obtained with more recent methods, such as Gaussisitonstrained, environment for such periods of time.
process regression (GPR) [19]. GPR has several advantage¥he paper is organized as follows. Section Il reviews relate
including adaptation to non-linearities with kernel fuoess, work in crowd counting. GPR is discussed in Sections I, and
robust selection of kernel hyperparameters via maximopatiBPR is proposed in Section IV. Section V introduces a crowd
of marginal likelihoods (namely type-Il maximum likelihdp counting system based on motion segmentation and Bayesian
and a Bayesian formalism for inference that enables betregression. Finally, experimental results on the apptcat
generalization from small training sets. The main limidati of Bayesian regression to the crowd counting problem are
of GPR-based counting is, however, that it relies aroatin- presented in Section VI.
uous real-valuedunction to map visual features inttiscrete
counts This reduces the effectiveness of Bayesian inference. Il. RELATED WORK
For example, the predictive distribution does not assigi ze Current solutions to crowd counting follow three paradigms
probability to non-integer, or even negative, counts. lsule 1) pedestrian detection, 2) visual feature trajectory telds
there is a need for sub-optimal post-processing operatiofiy, and 3) regression. Pedestrian detection algorithnms ca
such as quantization and truncation. Furthermore, contisu be based on boosting appearance and motion features [1],
crowd estimates increase the complexity of subsequeidtstat Bayesian model-based segmentation [2], [3], histogram-of
cal inference, e.g. graphical models that identify depenids gradients [25], or integrated top-down and bottom-up psece
between counts measured at different nodes of a camgrg[4]. Because they detect whole pedestrians, these mgtho
network. Since this type of inference is much simpler fasre not very effective in densely crowded scenes, involving
discrete variables, the continuous representation thaenlies  significant occlusion. This problem has been addressed to
GPR adds undue complexity. some extent by the development of part-based detectors [5],

A standard method for learning mappings into the set @], [26], [27]. Detection results can be further improved
non-negative integers is Poisson regression [20], whictieiso by tracking detections between multiple frames, e.g. via a
the output variable as a Poisson distribution with a logvalr Bayesian approach [28] or boosting [29], or using stochasti
rate that is a linear function of the input feature vector. Tepatial models to simultaneously detect and count people as
obtain a Bayesian model, a popular extension of Poisson fereground shapes [30].
gression is to adopt a hierarchical model, where the logadrr  The second paradigm consists of identifying and tracking vi
rate is modeled with a GP prior [21]-[23]. However, due to cfual features over time. Feature trajectories that exbdsier-
the lack of conjugacy between the Poisson and the GP, exaot motion are clustered, and the number of clusters usel as a
inference is analytically intractable. Existing modelsl]2 estimate of the number of moving subjects. Examples include
[23] rely on Markov-chain Monte Carlo (MCMC) methods|[7], which uses the KLT tracker and agglomerative clustgrin
which limits these hierarchical models to small datasets. &nd [8], which relies on an unsupervised Bayesian approach.
this work, we take a different approach, and directly amalyZounting of feature trajectories has two disadvantagest,Fi
Poisson regression from a Bayesian perspective, by imgositrequires sophisticated trajectory management (e.gdlivan
a Gaussian prior on the weights of the linear log-arrivaé rabroken feature tracks due to occlusions, or measuring aimil
[24]. We denote this model aBayesian Poisson regressionities between trajectories of different length) [31]. Sedoin
(BPR). While exact inference is still intractable, it is slho crowded environments it is frequently the case that colilgren
that effective closed-form approximations can be deriidds moving features do not belong to the same person. Hence,
leads to a regression algorithm that is much more efficieart thequating the number of people to the number of trajectory
those previously available [21]-[23]. clusters can be quite error prone.




Regression-based crowd counting was first applied to sub-
way platform monitoring. These methods typically work by:
1) subtracting the background; 2) measuring various featur 30}
of the foreground pixels, such as total area [10], [11], [13]
edge count [11]-[13], or texture [15]; and 3) estimating the
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orientations. [16] estimates the number of people in eagfuares regression, and a non-linear function learned @éthssian process
foreground segment by matching its shape to a database dégression. Two standard deviations error bars for GPRlette@ (gray area).

taining the silhouettes of possible people configuratibosis  3) we validate Bayesian regression-based counting on arlarg
only applicable when the number of people in each segmepitaset and from two viewpoints ( [17], [24] only tested one
is small (empirically, less than 6). [32] counts the numbejiewpoint); 4) we provide an in-depth comparison between

of people crossing a line-of-interest using flow vectors angdgression-based counting and counting with person detect
dynamic mosaics. [33] proposes a supervised learning frame

work, which estimates an image density whose integral over a
region-of-interest yields the count. The main contribogi@f
this work, with respect to previous approaches to regrassio Figure 1 shows examples of a crowded scene on a pedestrian
based counting, are four-fold: 1) integration of regressiod Wwalkway. We assume that the camera is part of a permanent
robust motion segmentation, which enabtesints for crowds surveillance installation, and hence, the viewpoint is dixe
moving in different directionge.qg., traveling into or out of a The goal of crowd counting is to estimate the number of
building); 2) integration of suitable features and Bayesian- people moving in each direction. The basic idea is that,
linear regression, which enables accurate counts in densglven a segmentation into the two crowd sub-components,
crowded scenes; 3) introduction of a Bayesian model féertainlow-level global featuresxtracted from each crowd
discrete regression, which is suitable for crowd countingegment are good predictors of the number of people in
4) demonstration that the proposed algorithms can robustfiat segment. Intuitively, assuming proper normalization
operate on video of unconstrained, outdoor environment8e scene perspective, one such feature is the area of the
through validation on a large dataset with 2 hours of videocrowd segment (number of segment pixels). Figure 2 plots
Regarding Bayesian regression for discrete counts, [2]!]13 segment area versus the crowd size, along with the least
[23], [34] propose hierarchical Poisson models, where tigguares fit by a line. Note that, while there is a global linear
log-arrival rate is modeled with a GP prior. Inference i§end relating the two variables, the data has local denati
approximated with MCMC, which has been noted to exhibitom this linear trend, due to confounding factors such as
slow mixing times and poor convergence properties [21q_cclusion. This suggests that additional features are etked
Alternatively, [35] directly performs a Bayesian analysits 0 accurately model crowd counts, along with a regression
standard Poisson regression by adding a Gaussian priorftﬂ*meWOI’k that can accommodate the local non-linearities.
the linear weights, and proposes a Gaussian approximatioone possibility to implement this regression is to rely on
to the posterior weight distribution. In this paper, we exte Gaussian process regression (GPR) [19]. This is a Bayesian
[35] in three ways: 1) we derive a Gaussian posterior that capproach to the prediction of a real-valued functjix) of a
handle observations of zero count; 2) we derive a closent-fofeature vectox € R?, from a training sample. Let(x) be a
predictive count distribution; 3) we kernelize the regi@ss high-dimensional feature transformation:of ¢ : R? — R”,
function, thus modeling non-linear log-arrival rates. Ginal Consider the case whep&x) is linear in the transformation
contribution is a kernelized, closed-form, efficient apgro space, and the target countmodeled as
mation to Bayesian Poisson regression. Finally, a regrassi T
task similar to counting iordinal regression which learns F(x) = o(x)"w, y=rfx+e (1)
a mapping to an ordinal scale (ranking or ordered set), eyghere w < R”, and the observation noise is assumed
letter grades. A Bayesian version of ordinal regressiongisijndependent, identically distributed (i.i.d.), and Gaasse ~
GP priors was proposed in [36]. However, ordinal regressiof(o, 2). The Bayesian formulation requires a prior distri-

cannot elegantly be used for counting; the ordinal scaleés!fi hytion on the weights, which is assumed Gaussian,~
upon training, and hence it cannot predict counts outside gf(p, %.,), of covariance®, .

the training set.

With respect to our previous work, our initial solution to ) o
crowd counting using GPR was presented in [17], and BPR Bayesian prediction
was proposed in [24]. The contributions of this paper, with Let X = [x,---xy] be the matrix of observed feature
respect to our previous work, are four-fold: 1) we presest tlvectorsx;, andy = [y; --- yn]T the vector of the corre-
complete derivation for BPR, which was shortened in [24§ponding countg;. The posterior distribution of the weights
2) we derive BPR so that it handles zero count observations; given the observed datgX,y} is given by Bayes’ rule,

IIl. GAUSSIAN PROCESS REGRESSION



p(w|X,y) = m%. Given a novel inpuk,, the integersy € Z, ={0,1,2,---}, as is the case for counts. A
predictive distribution forf, = f(x.) is the average, over all typical solution is to model the output variable as Poisson o
possible model parameterizations [19], negative binomial (NB), with an arrival-rate parameter ethi
is a function of the input variables, resulting in the staadda
p(fulxs, X, y) = /p(f*|x*,w)p(W|X, y)dw (2) Poissonregression onegative binomiakegression [20]. Al-
though both these methods model counts, they do not support

= N(fulps, o), @) Bayesian inference, i.e. , do not consider the weight vector

where the predictive mean and covariance are (3 as a random variable. This limits their generalization from
small training samples and prevents a principled protx=ilmli
e =k (K +021)"y, (4)  approach to learning hyperparameters in a kernel fornmuati

02 = k(x., %) — kKL (K + 021) 7 'k,. (5) In this section, we propose a Bayesian model for count

_ . ) regression. We start from the standard Poisson regression
K is the kernel matrix with eTnt”GSKU = k(xi,x5), and - nq4e) where the input ix € RY, and the output variable
ks -, [k(x*”q% o k(xl*’XN)] . The kernel function is y is Poisson distributed, with a log-arrival rate that is a#n
k(x,x') = ¢(x)" E,¢(x), and hence the predictive distri-¢tion in the transformation spaeéx) € R”, i.e.,
bution only depends on inner products between the inputs
v(x) = 6(x)"8, Alx) =e"®), y ~ Poisson(A(x)), (10)
B. Compound kernel functions

. . erev(x) is the log of the arrival rate)\(x) the arrival rate
The class of functions that can be approximated by GFyH: mean ofy), and 3 € R? 4 weight vector. The likelihood

depends on the covariance, or kernel function, employe((ﬁ. ven an observation is

For example, the linear kerndl;(x,x’) = 6?(xTx’ + 1) v

leads to standard Bayesian linear regression, while a eduar plylx, B) = %e—x(x))\(x)y.
- —grll=" '
exponential (RBF) kernek, (x,x') = f7e % ,yields \we assume a Gaussian prior on the weight vector,~

Bayesian regression for locally smooth, infinitely differe N(0,%,). The posterior distribution ofs, given a training
tiable, functions. As shown in Figure 2, the segment areample{X,y}, is given by Bayes’ rule

exhibits a linear trend with the crowd size, with some local

non-linearities due to occlusions and segmentation erfiars p(B1X,y) = p(y|X, B)p(5) _ (11)
model the dominant linear trend, as well as these non-linear [ p(y| X, B)p(B)dp

effects, we can use a compound kernel with linear and RBjue to the lack of conjugacy between the Poisson likelihood
components, and the Gaussian prior, (11) does not have a closed-form
=12 expression, and so an approximation is necessary.

A. Approximate posterior distribution
Figure 2 shows an example of a GPR function adapting to local\y first derive a closed-form approximation to the posterior

non-linearities using the linear-RBF compound kemel. Th@siripution in (11), which is based on the approximation of
inclusion of additional features (particularly textureafieres) [35]. Consider the data likelihood of a training sex,y}
can make the dominant trend non-linear. In this case, a kerne o

krr(xi,x;) = 91(x?xj +1)+ 9%6 203 1%

with two RBF components is more appropriate, A v (x;
’ Pprop Pyl X, B) = [[ e omee"™ (12)
i 9 —gez lxi—x;1? 9 —gaz lIxi—x;? i1 Yir
rRR(Xi,X;) = Ofe *2 + 03¢ > @) N -
(i) (girte) p—e¥ i C(y:

The first RBF has a larger scale parameigrand models =11 [e - c ] e*C”(xi)Lj—c), (13)
the overall trend, while the second relies on a smaller scale i=1 (i +¢) i
parameted, to model local non-linearities. wherec > 0 is a constant. The approximation is based on two

The kernel hyperparametefs can be estimated from afacts. First, the term in the square brackets is the likeléhof
training sample by Type-Il maximum likelihood, which maxthe data under a log-gamma distribution of parametgrs
imizes the marginal likelihood of the training daf&, y} ¢, 1), i.e., v ~ LogGamma(y + ¢, 1) where

log p(y|X,0) = log/p(ylw,X, 0)p(w|0)dw (8) p(vly + 1) = rme Wt e (14)

— —%yTKJIy — Llog |K,| — Ylog2m, (9) A qu-gamma random variablei; th_e Iog of a gamma random
" variable A, wherev = log \. This implies that\ is gamma
where K, = K + 0,1, with respect to the parametefs distributed with parameter§y + ¢,1). Second, for a large

e.g. using standard gradient ascent methods. Details 8f thiimber of arrivalst, the log-gamma is closely approximated
optimization can be found in [19], Chapter 5. by a Gaussian [35], [37], [38],

IV. BAYESIAN POISSON REGRESSION LogGamma(k, 6) ~ N (i, 0?) (15)

While GPR is a Bayesian framework for regression prole\;
lems with real-valued output variables, it is not a natural
regression formulation when the outputs aren-negative k=0 2, 6 =o?%e" <= o? =k ', u=1log(kf). (16)

here the parameters are related by
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Hence, (14) can be approximated as

p(vly+c,1) = N(vllog(y+c), (y+¢)~"). (A7)

that the posterior distribution of, is approximately Gaussian,

p(V*|X*7X7Y)zN(V*|ﬂVa&3)a (27)

with mean and variance
fi = ¢p(x.)T(@T, 1T + X)) T ON M, (28)
62 = ¢(x )T (@5, 07 + 5 ) Th(x.). (29)

Applying the matrix inversion lemma;2 can be rewritten in
terms of the kernel function,

62 = p(x)T (8, — 2,0(07%, 0+ 2,)1eTE)) o (x,)
= k(%, %) — kKD (K +2,) 'k, (30)

wherek(, -), K, andk, are defined as in Section IlI-A. Using
(41) from the Appendix, the posterior medn can also be

Figure 3 illustrates the accuracy of the approximation faewritten in terms of the kernel function,

different values ofy + ¢. Applying (17) to replace the bracket

term in (13), and definin@ = [¢(x1) - - - d(xn )],

N
pylX, 8) ~ [ IV (v(x:)|log(yi + ¢), (i + ¢)~")]
i (18)
- emevte) Lyt
1 Ta_ |2 _ 1T 3T
I R TR (19)
em¥s,l2 oy w

-——]), ands = log(y + ¢) is the

+ c¢. Substituting into (11),
log p(B|X,y) o< logp(y| X, B) + log p(53) (20)

~ |07 - sy, —eTeTs — L)

where, = diag([;4 --
element-wise logarithm

where we have ignored terms independent3ofExpanding
the norm terms yields

logp(B|1X,y) x —3(8Tex, '3 — 28T ®x, s
+s78)ls) — a1’ p - 157y 1

x —1[AT(@s; e + 218 — 28T (98, s — c®1)] (22)

x -1 (BT (ex,re" + 5,13 - 28T 0% M), (23)

(21)

wheret = s — ¢X, 1 has elements; = log(y; + ¢) — yic.

Finally, by completing the square, the posterior distitmuis
approximately Gaussian,

p(BIX,y) = N (Blits, 5s), (24)

with mean and variance
fp = (%, 1T + 3,7 Tex, N, (25)
Sp = (0%, 1T + 2 ) (26)

Note that settingc = 0 will yield the original posterior
approximation in [35]. The constantacts as a parameter that

controls the smoothness of the approximation aroynd 0,
avoiding the logarithm of, or division by, zero. In experims,
we set this parameter o= 1.

B. Bayesian prediction

i = d(x) T8, (07,0 +%,) "t
= kI(K + Ey)_1t~

(31)
(32)

Since the posterior mean and variancevpfdepend only on
the inner product between the inputs, we can apply the “kerne
trick”, to obtain non-linear log-arrival rate functions.

The predictive distribution foy., is

Pl 0, X, y) = / P [ )p(vs e, X, y)dis,  (33)

wherep(y.|e’*) is a Poisson distribution of arrival rate. =
eV~. While this integral does not have analytic solution, a
closed-form approximation is possible. Sineg is approx-
imately Gaussian, it follows from (15)-(16) that. is well
approximated by a log-gamma distribution. From= log .

it then follows that\, is approximately gamma distributed,

Me|Xe, X,y ~ Gamma(g,, 2, 52e/).

Note that the expected time, between arrivals of the Poisson
process is modeled as the time betwegy? arrivals of a
Poisson process of ra@?e/». Hence,\. ~ e, which is
a sensible approximation. (33) can then be rewritten as

p(alxs, X,y) = / P )P, X, y)dAs,  (34)
0

wherep(y.|\«) is a Poisson distribution ang \.|x., X,y) a
gamma distribution. Since the latter is the conjugate pfoor
the former, the integral has an analytical solution, whetai
negative binomial

D(yat6,2) (51572 5\
Plyslx, X,y) = g SRt ()7 (1), (35)
52
P = et (36)

In summary, the predictive distribution gf can be approxi-
mated by a negative binomial,

ys|%., X,y ~ NegBin(e, 67) (37)

v

of meane”~ and scale2, given by (28). The prediction vari-
ance isvar(y.) = efv (1 + 62¢f+), and grows proportionally

Given a novel observatior,, we start by considering theto the variance ofv.. This is sensible, since uncertainty in

predicted log-arrival rate, = ¢(x.)7 3. It follows from (24)

the prediction ofv, is expected to increase the uncertainty of
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corresponding log-arrival rate functions are shown in {#J &d).

the count predictiony,. In the ideal case of no uncertaint
(62 0), the NB reduces to a Poisson distribution wi
both mean and variance efv. Thus, a useful measure c
uncertainty for the predictiony, is the square-root of this
“extra” variance (i.e.overdispersio)y i.e. unc(y.) = ,e/v.
Finally, the mode of}.. is adjusted downward depending on tf
amount of overdispersionpode(y) = { L(l’&g')e“”’ Zé; ,
where|-| is the floor function. ’ o

C. Learning the kernel hyperparameters

The hyperparamete of the kernelk(x,x’) can be es-
timated by maximizing the marginal likelihoog(y|X,6).
Using the log-gamma approximation in (19)y|X, ) is ap-
proximated in closed-form with (see Appendix for derivajio

log p(y| X, 0) o< —%log|K+ M %tT(K + Ey)_lt. (38)

Figure 4 presents two examples of BPR learning using

linear and RBF kernels. The predictive distributions amtptl

in Figures 4 a) and 4 c), and the the corresponding log-arr
rate functions are plotted in Figures 4 b) and 4 d). While 1
linear kernel can only account for exponential trends in 1
data, the RBF kernel can easily adapt to the local deviati
of the arrival rate.

D. Relationship with Gaussian process regression

The proposed approximate BPR is closely related to Gl
The equations foyi, and4?2 in (30, 32) are almost identica
to those of the GPR predictive distribution in (4, 5). The
are two main differences: 1) the noise tedyy of BPR in
(30) is dependent on the predictiops(this is a consequenct
of assuming a Poisson noise model), whereas the GPR r
term in (5) is i.i.d. ¢21); 2) the predictive mearn, in
(32) is computed with the log-counts (assuminge = 0),
rather than the countg of GPR (this is due to the fact tha
BPR predicts log-arrival rates, while GPR predicts count
This suggests the following interpretation for the appnoaie
BPR. Given the observed dafaX,y} and novel inputx,,

video GP model count estimate

feature extraction

S =S

motion segmentation

Fig. 5. Crowd counting from low-level features. The scenesaégmented

into crowds moving in different directions. Features argamted from each
segment and normalized to account for perspective. The aeunfipeople in
each segment is estimated with Bayesian regression.

differs from that of the GPR in a similar manner, and hence
has a similar interpretation. In summatlye proposed closed-
form approximation to BPR is equivalent to GPR on the
log-arrival rate parameter of the Poisson distribution. i$h
GP includes a special noise term, which approximates the
uncertainty that arises from the Poisson noise mo&hce
BPR can be implemented as GPR, the proposed closed-form
approximate posterior is more efficient than the Laplace or
EP approximations, which both use iterative optimization.
In addition, the approximate predictive distribution isal
calculated efficiently, since it avoids numerical integmat
Finally, standard Poisson regression belongs to the faafily
generalized linear models [39], a general regression fnarie

for linear covariate regression problems. Generalizecheder
machines, and the associated kernel Poisson regressios, we
proposed in [40]. The proposed BPR is a Bayesian formulation
of kernel Poisson regression.

V. CROWD COUNTING USING LOWLEVEL FEATURES AND
BAYESIAN REGRESSION
An outline of the proposed crowd counting system is shown
in Figure 5. Video is first segmented into crowd regions
moving in different directions. Features are then exticte
from each crowd segment, after application of a perspective

approximate BPR models the predictive distribution of t map that weighs pixels according to their approximate size i
Iog-arnvz_;ll ratev, as a GP Wl_th non-i.i.d. observgtlon noisghe 3D world. Finally, the number of people per segment is
of covarianceX,. The posterior meari, and variances; estimated from the feature vector, using the BPR module of

of v, then serve as parameters of the predictive distributige previous section. The remainder of this section dessrib
of y., which is approximated by a negative binomial ogach of these components.

mean e and scale parameter?. Note that the posterior )

variance ofv, is the scale parameter of the NB. Hence: Crowd segmentation

increased uncertainty in the predictions mf, by the GP,  The first step of the system is to segment the scene into the
translates into increased uncertainty in the prediction,0f crowd sub-components of interest. The goal is to count geopl
The approximation to the BPR marginal likelihood in (38moving in different directions or with different speeds.igh
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Fig. 6. Perspective map: a) reference person at the frontatfway, and b) at the end; c) the perspective map, which sgalels by their relative size in
the true 3d scene.
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Fig. 8. Filters used to compute edge orientation.

segmentation perimeter

reference person is then selected in the video, and the tseigh
h, and he estimated as the center of the person moves over
AB and CD, as in Figures 6 a) and 6 b). In particular, the
pixels on the near and far sides of the rectangle are assigned
weights based on the area of the object at these extremes:
pixels onAB receive weightl, those onCD weight equal to
Fig. 7. Examples of the segment mask, segment perimeternaitedges, the area rat'#;%é’ wherew, .IS_ the _Iength PfAB andw; I.S
and internal texture for the image in Figure 1 the length ofCD. The remaining pixel weights are obtained
is accomplished by first using mixture of dynamic textures by_hnearly interpolating the width of the rectangle, gn(da th
. . height of the reference person, at each image coordinate, an
[41] to segment the crowd into sub-components of distinct . . . _
. . . . .computing the area ratio. Figure 6 c) shows the resulting
motion flow. The video is represented as collection of spatiQ . . )
: . rspective map for the scene of Figure 6 a). In this case,
temporal patches, which are modeled as independent sam@lgas . e . .
. . ) .objects in the foregroundA(B) are approximatel2.4 times
from a mixture of dynamic textures. The mixture model B : . -
. . L . igger than objects in the backgrour@ID). In other words,
learned with the expectation-maximization (EM) algoritram . = . : .
: ) . . ixels onCD are weighted2.4 times as much as pixels on
described in [41]. Video locations are then scanned sequ
. . . . . We note that many other methods could be used to
tially, a patch is extracted at each location, and assigoned { . . o
. : o estimate the perspective map. For example, a combination of
the mixture component of largest posterior probabilityeTh L . ;
L . .a_standard camera calibration technique and a virtual perso
location is declared to belong to the segmentation region ) ) .
who is moved around in the scene [42], or even the inclusion

e . o T :
characteristic motions are not expected to change significa Of?he s_pat|al We|_ght|ng in the regression itself. We fou_hdt
simple interpolation procedure sufficient for our expenirtse

the computational cost of the segmentation can be reduced

by learning the mixture model from a subset of the videG. Feature extraction

(a representative clip). The remaining video can then be seg|, principle, features such as segment area should vary lin-
mented by simple computation of the posterior assignmené%rly with the number of people in the scene [10], [13]. Figur

Full implementation details are available in [41]. 2 shows a plot of this feature versus the crowd size. While the
B. Perspective normalization overall trend is indeed linear, local non-linearities arfsom

The extraction of features from crowd segments should taRevariety of factors, including occlusion, segmentatiores,
into account the effects of perspective. Because objeater! and pedestrian configuration (e.g. variable spacing of leeop
to the camera appear larger, any pixels associated withsa cl¥/ithin a segment). To model these non-linearities, an addi-
foreground object account for a smaller portion of it thaHonal 29 features, based on segment shape, edge informatio
those of an object farther away. This can be compensaftifl texture, are extracted from the video. When computing
by normalizing for perspective during feature extractierg( features based on area or size, each pixel is weighted by the
when computing the segment area). In this work, each pixelG8'responding value in the perspective map. When the fesitur
weighted according to a perspective normalization mapedagre based on edges (e.g. edge histogram), each edge pixel is
on the expected depth of the object which generated the. piXéighted by the square-root of the perspective map value.
Pixel weights encode the relative size of an object at difier 1) Segment featuresFeatures are extracted to capture
depths, with larger weights given to far objects. segment properties such as shape and size. Features are also
The perspective map is estimated by linearly interpolatif@xtracted from the segment perimeter, computed by morpho-
the size of a reference person (or object) between two eeserPgical erosion with a disk of radius 1.
of the scene. First, a rectangle is marked in the ground plane. Area— number of pixels in the segment.
by specifying points{ A, B, C,D}, as in Figure 6 a). It is « Perimeter— number of pixels on the segment perimeter.
assumed that 1JA,B,C,D} form a rectangle in 3D, and « Perimeter edge orientatior a 6-bin histogram of the
2) AB and CD are horizontal lines in the image plane. A  orientation of the segment perimeter. The orientation of

internal edges




each edge pixel is estimated by the orientation of the filt
of maximum response within a set o x 17 oriented
Gaussian filters (see Figure 8 for examples).

o Perimeter-area ratio- ratio between the segment perime
ter and area. This feature measures the complexity of {
segment shape: segments of high ratio contain irregu

perimeters, which may be indicative of the number d
people contained within. Fig. 9. Ground-truth annotations. (left) Pedsl databas®and green tracks

« » - indicate people moving away from, and towards the camemghtfrPeds2
« “Blob” count — number of connected components, Wlt@atabase: red and green tracks indicate people walking agleft, while

more than 10 pixels, in the segment. cyan and yellow tracks indicate fast objects moving rightiedt. The ROI
2) Internal edge featuresThe edges within a crowd Seg_used in all experiments is highlighted and outlined in blue.

ment are a strong clue about the number of people in it [13} the pedestrian locations are only used to test detectio
[14]. A Canny edge detector [43] is applied to the image, thes tormance of the pedestrian detectors in Section VI-E. Fo
output is masked to form the internal edge image (see Figygg ession-based counting, only the counts in each frame ar
7), and a number of features are extracted. required for training. Pedsl was annotated with two motion

« Edge length- number of edge pixels in the segment. ¢lasses: “away” from or “towards” the camera. For Peds2,

« Edge orientation- 6-bin histogram of edge orientationsihe motion was split by direction and speed, resulting in

« Minkowski dimension fractal dimension of the internal four motion classes: “right-slow”, “left-slow”, “rightst”, and

edges, which estimates the degree of “space-filling” [44eft-fast”. In addition, each dataset also has a “scenetiomo

3) Texture featuresTexture features, based on the grayelass, which is the total number of moving people in the
level co-occurrence matrix (GLCM), were used in [15] tdrame (i.e., the sum of the individual motion classes). Eplem
classify image patches into 5 classes of cravehsity(very annotations are shown in Figure 9.
low, low, moderate, high, and very high). In this work, we Each database was split into a training set, used to learn the
adopt a similar set of measurements for estimatingitmaber regression model, and a test set, used for validation. OalRed
of pedestrians in each segment. The image is first quantizad training set contains 1200 frames (frames 1401-2600), w
into 8 gray-levels, and masked by the segment. The joithfe remaining 2800 frames held out for testing. On Peds2, the
probability of neighboring pixel valuegyi, j|#), is estimated training set contains 1000 frames (frames 1501-2500) with
for four orientation,f € {0°,45°,90°,135°}. A set of three the remaining 3000 frames held out for testing. Note that
features is extracted for eadh(12 total texture features).  these splits test the ability of crowd-counting algorithtos

o Homogeneitytexture smoothnesgy = Zi,j fjj"f'_"g?l. extrapolatebeyond the training set. In contrast, spacing the

- Energy total sum-squared energy; = >, . p(i, j]0)%. tra_ir_1ing set evenly throughout the _da_ltaset would_ only tkm_stt

« Entropy randomnesshy = 3, ; p(i, j|6) log p(i, j|6). ability to interpolatebetween the training data, which provides

Finally, a feature vector is formed by concatenating the 3 insight into generalization ability.
features, into a vectat € R*’, which is used as the input forg_ Experimental Setup

the regression module of the previous section. Since Peds1 contains 2 dominant crowd motions (“away”
VI. EXPERIMENTAL EVALUATION and “towards”), a mixture of dynamic textures [41] with
The proposed approach to crowd counting was tested n = 2 components was learned fromx 7 x 20 spatio-
two pedestrian databases. temporal patches, extracted from a short video clip. Theghod
was then used to segment the full video into 2 segments. The
A. Pedestrian databases segment for the overall “scene” motion class is obtained by

Two hours of video were collected from two viewpointgaking the union of the segments of the two motion classes.
overlooking a pedestrian walkway at UC San Diego, usinSeds2 contains 4 dominant crowd motions (“right-slow”ft:le
a stationary digital camcorder. The first viewpoint, shown isjow”, “right-fast’, or “left-fast”), thus ak = 4 component
Figure 9 (left), is an oblique view of a walkway, containing gnixture was learned from3 x 13 x 10 patches (larger patches
large number of people. The second, shown in Figure 9 (righf}e required since the people are larger in this video).
is a side-view pfawglkway, containing fewer people.Vyerrefe We treat each motion class (e.g., “away”) as a separate
to these two viewpoints as Peds1 and Peds2, respectivedy. &yression problem. The 30 dimensional feature vector of
original video was captured at 30 fps with a frame size &ection \V-C, was computed from each crowd segment and
740x 480, and was later downsampled288 x 158 and 10 fps. each video frame, and each feature was normalized to zero
The first 4000 frames (400 seconds) of each video sequeRggan and unit variance. The GPR and BPR functions were
were used for ground-truth annotation. then learned, using maximum marginal likelihood to obtain

A region-of-interest (ROI) was selected on the main walkhe optimal kernel hyperparameters. We used the GPML
way (see Figure 9), and the traveling direction (motion gasimplementation [19] to find the maximum, which uses gradient
and visible center of each pedestfiawere manually an- ascent. For BPR, we modify GPML to include the special BPR
notated, every five frames. Pedestrian locations in the Kgsise term. GPR and BPR were learned with two kernels:
maining frames were estimated by linear interpolation.eNofhe linear kernel (denoted GPR-l and BPR-I) and the RBF-
RBF compound kernel (denoted GPR-rr and BPR-rr). For

1Bicyclists and skateboarders in Peds1 were treated asaregetiestrians.



TABLE | TABLE Il

COMPARISON OF REGRESSION METHODS AND FEATURE SETS CREDSL. RESULTS ONPEDS1 USING 100 TRAINING IMAGES. STANDARD
MSE err DEVIATIONS ARE GIVEN IN PARENTHESIS
Feat. Methof] away towards scefie total]| away towards scefe total MSE
Foylinear || 3.335 2.868 3.751] 9.953[[ 1.451 1.324 1.513] 4.288 Metho away towards scene
Fau GPR-l || 3.260 2.692 3.654| 9.606|| 1.435 1.278 1.489| 4.203 linear 1 4.090 (0.609) 3.659 (0.500) 4.780 (0.818)
Fou GPR-rr|| 2.970 2.029 3.787| 8.785|| 1.408 1.093 1.551| 4.051 GPR-l || 3.472 (0.288) 1.923 (0.128) 4.029 (0.298)
Fou Poissof 2.917 3.065 3.040| 9.022|| 1.336 1.360 1.331| 4.027 GPR-rr]| 3.118 (0.154) 2.272 (0.604) 4.465 (0.495)
Fou BPR- || 2.936 2.120 2.910| 7.966|| 1.336 1.1601.308| 3.804 Poisson| 3.956 (0.598) 3.605 (0.395) 3.643 (0.370)
Fou BPR-r|| 2.441 1.996 2.975|7.412|[1.210 1.124 1.320| 3.654 BPR-l || 3.118 (0.094) 2.358 (0.093) 3.569 (0.141)
Fse BPR-Ir|[ 27751 3.019 6.702| 8.867|] 1.307 1.378 1.365| 4.050 BPR-rr||2.924 (0.093) 2.320 (0.089) 3.537 (0.127)
Fi BPR-Ir||23.300 12.142 60.178|95.619|| 3.478 2.846 5.824|12.149 TABLE IlI
Fe BPRorl) 3.460 4.071 3.406]10.938|| 1.478 1.590 1.431) 4.499|  CompARISON OF REGRESSION APPROACHES OREDSL USING DIFFERENT
Fs BPR-rr|| 3.396 2.895 4.734|11.025|| 1.384 1.347 1.761| 4.491 SEGMENTATION METHODS AND 1y (“ SCENE’ CLASS).
Fa BPR-rr|| 3.923 3.224 6.117|13.264|| 1.461 1.470 1.951| 4.883
[13] BPR-rr|[ 3.264 3.105 3.640/10.010| 1.416 1.418 1.478| 4.312 scene MSE scene err
[14] BPR-rr|| 3.118 2.808 3.661| 9.587|| 1.385 1.339 1.500| 4.224 Method | DTM median GMM | DTM median GMM
sy’ dl . vl linear 3751 4.000 5.563 | 1.513 1.551 1.898
\ away” ciass scene: ciass GPR-l | 3.654 3.934 5623 | 1489 1540 1.900
1 Bk p—— GPR-Ir | 3.787 3.676 4.576 | 1.551 1.476 1.691
T I - © - GPRHl Poisson| 3.040 3.585 4.178 | 1.331 1.449 1.585
51l 1 SO BPR-l | 2.910 3.453 3.597 | 1.308 1.428 1.445
g5 g ot o PR BPR-rr | 2975 3.378 3.391 | 1.320 1.415 1.383
4 5 \\ BPR-r
Rt e e S iﬁg;%ﬁf&—,:}@?},f@ shows that BPR outperforms GPR. With linear kernels, BPR-
2 _ L : ——= | outperforms GPR-l on all classes (total erg04 versus
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 . . «pr
Fig. 10 Erro;rairn;tg;h;or training sets of different ::ailggglsslzzrdﬁe for the 4.203). In the non-linear case, BPR-T has significantly lower
“away” (left) and “scene” (right) classes. Similar plots neeobtained for the error than GPR-rr on the away and “scene” classes (e'g'
“towards” class and are omitted for brevity. 1.210 versus1.408 on the “away” class), and comparable

o performance {.124 versus1.093) on the “towards” class. In
GPR-I and BPR-I, the initial hyperparameters were set fneral, BPR has the largest gains in the sequences where
6 =1 --- 1], while for GPR-rr and BPR-Ir, the optimizationGpR has larger error. Third, the use of sophisticated reignes
was performed over 5 trials with random initializations t¢ngdels does make a difference. The error rate of the best
avoid bad local maxima. For completeness, standard lingggtnoq (BPR-I1,3.654) is 85% that of the worst method
least-squares and Poisson regressions were also tested. (linear least squared,288).

For GPR, counts were estimated by the mean predictiongqyth, performance is also strongly affected by the fetur
value 4., rounded to the nearest non-negative integer. TRed. This is particularly noticeable on the “away” class,
standard deviatiow.. was used as uncertainty measure. FQhich has larger crowds. On this class, the error steadily
BPR, counts were estimated by the mode of the predictiygcreases as more features are included in the model. Using
distribution, andunc(y.) was used as uncertainty measureys; the area featureA,) yields a counting error of.461.

The accuracy of the estimates was evaluated by the me@fhen the segment feature®,) are used, the error decreases
squared erroMSE = 5 37,7, (¢; — ¢;)°, and absolute error, 14 1384, and adding the edge feature&.() leads to a

err = L 5°M |é; — ¢i|, wherec; and ¢; are the true and further decrease t0.307. Finally, adding the texture features
estimated counts for frameand/ the number of test frames.(]:a”), achieves the lowest error of.210. This illustrates
Experiments were conducted with different subsets of the @ different components of information contributed by the
features: only the segment area (denoted/a¥ segment- different feature subsets: the estimate produced from esegm
based featuresH;); edge-based feature®); texture features features is robust but coarse, the refinement by edge and
(F+); segment and edge features,(). The full set of 30 texture features allows the modeling of various non-liitisy.
features is denoted,;;. The feature sets of [14] (segment sizgyote also that isolated use of texture features results iip ve
histogram and edge orientation histogram) and [13] (segmejyor performance (overall error df2.149). However, these

area and total edge length) were also tested. features provide important supplementary information mvhe
used in conjunction with others, as #,;. Compared to [13],
C. Results on Peds1 [14], the full feature setF,; performs better on all crowd

Table | presents counting error rates for Pedsl for eaclasses (total error$.654 versus4.312 and4.224).
of the motion classes (“away”, “towards”, and “scene”). In The effect of varying the training set size was also ex-
addition, we also report the total MSE and total absolutererramined, by using subsets of the original training set. For a
as an indicator of overall performance of each method. given training set size, results were averaged over diftere
number of conclusions are possible. First, Bayesian regmnes subsets of evenly-spaced frames. Figure 10 shows plots of
has better performance than the non-Bayesian approaabres.tke MSE versus training set size. Table Il summarizes the
example, BPR-I achieves an overall error rat&.8b4, versus results obtained with 100 training images. The experiment
4.027 for standard Poisson regression. The error is furthesas repeated for twelve different splits of the training and
decreased t8.654 by adopting a compound kernel, BPR-rrtest sets, with the mean and standard devitations reported.

Second, the comparison of the two Bayesian regression modébte how the Bayesian methods (BPR and GPR) have much
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Fig. 11. Crowd counting examples: The red and green segnaeatthe “away” and “towards” components of the crowd. Tharexted crowd count for
each segment is shown in the top-left, with the (uncertpiatyd the [ground-truth]. The prediction for the “scene”sslawhich is count of the whole scene,
is shown in the top-right. The ROI is also highlighted.
better performance than linear or Poisson regression wien are summarized in Table Ill. Counting using DTM motion
training set is small. In practice, this means that Bayesigegmentation outperforms both background subtractiom-met
crowd counting requires much fewer training examples, andds (1.308 error versusl.415 and 1.383). Because the DTM
reduced number of manually annotated images. segmentation is based on motion differences, rather they gr
We observe that Poisson and BPR perform similarly davel differences, it tends to have fewer segmentationrgrro
the “scene” class for large training sizes. Combining th@e., completely missing part of a person) when a person has
two motion segments to form the “scene” segment removsimilar gray-level to the background.
segmentation errors and small segments containing pgrtial Finally, Figure 12 displays the crowd count estimates ob-
occluded people traveling against the main flow. Hence, tteined with BPR-rr. These estimates track the ground-truth
features extracted from the “scene” segment have fewer owell in most of the test set. Furthermore, the uncertainty
liers, resulting in a simpler regression problem. Thisifiest measure (shown in green) indicates when BPR has lower con-
the similar performance of Poisson and BPR. On the othiégdlence in the prediction. This is usually when the size of the
hand, Bayesian regression improves performance for ther othrowd increases. Figure 11 shows crowd estimates for devera
two motion classes, where segmentation errors or occlusi@st frames of Pedsl. A video is also available from [46].

effects originate a larger number of outlier features. In summary, the count estimates produced by the proposed
algorithm are accurate for a wide range of crowd sizes. This
aor test train test wih 186 1 is due to both the inclusion of texture features, which are

BPR-rr

informative for high density crowds, and the Bayesian non-
linear regression model, which is quite robust.

| D. Crowd counting results on Peds2

Wz,gsa z The Peds2 dataset contains smaller crowds (at most 15
NS S, 11617 § people). We found that the segment and edge featufes (

uncertainty | |} 10.1

0 s0 1000 1s00 2000 2500 o0 sso0 4000 - worked the best on this dataset. Table IV shows the erros rate
25 ; e [T g ! 015 for the five crowd segments, using the different regression
b) 20 01 models. The best overall performance is achieved by GPR-
i 005 [, with a overall error 0of1.586. The exclusion of the texture
3 features and the smaller crowd originates a strong lineadtr
10 2 > in the data, which is better modeled with GPR-I than the
5 ]

g nonlinear GPR-rr. Both BPR-I and BPR-rr perform worse than
e ‘ o311 5 GPR-l overall {.927 and1.776 versusl.586). This is due two
0 500 1000 1500 2000. 2500 3000 3500 4000 .
‘ ‘ ‘ ‘ ‘ ‘ ‘ reasons. First, at lower counts, tf#g. features tend to grow
45 it train test ot linearly with the count. This does not fit well the exponeintia
: model that underlies BPR-l. Due to the non-linear kernel,
BPR-rr can adapt to this, but appears to suffer from some
o overfitting. Second, the observation noise of BPR is invgrse
proportional to the count. Hence, uncertainty is high fav lo
, counts, limiting how well BPR can learn local variations in
3500 4000 the data. These problems are due to reduced accuracy of the
Fig. 12.  Crowd counting results on Pedsl: a) “away”, b) “tmes, |0g-gamma approximation of (15) whéeris small. Finally, the
and_c) ‘_‘scene" classes._ Grgy levels i_ndicate pro_babilib'éshe predi_ctive estimates obtained witfF,. are more accurate than those of
distribution. The uncertainty is plotted in green, with #nees on the right. [13], [14] on all motion classes, and particularly more aate
As an alternative to motion segmentation, two backgroumd the two fast classes. This indicates that the featureespac
subtraction methods, a temporal median filter and an adaptivow proposed is richer and more informative.
GMM [45], were used to obtain the “scene” segment, which Figure 14 shows the crowd count estimates (ustfg and
was then used for count regression. The counting resu®R-I) for the five motion classes over time, and Figure 13
were improved by applying two post-processing steps to tpeesents the crowd estimates for several frames in the test
foreground segment: 1) a spatial median filter to remowget. Video results are also available from [46]. The es@é®at
spurious noise; 2) morphological dilation (disk of radius 2rack the ground-truth well in most frames, for both the fast
to fill in holes and include pedestrian edges. The resulimd slow motion classes. One error occurs for the “right-fas

g
=}
=}

1

uncertainty

i i |
0 500 1000 1500 ZOOOframGZSOO 3000
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TABLE IV
COMPARISON OF REGRESSION METHODS AND FEATURE SETS REDS2.
MSE err
Feat. Method| right-slow left-slow right-fast left-fast sceng total right-slow left-slow right-fast left-fast sceng total
Fse GPR-l 0.686 0.476 0.009 0.004 0.990| 2.165 0.485 0.417 0.009 0.004 0.671| 1.586
Fse GPR-Ir 0.877  0.508 0.024 0.009 1.142 | 2.560 0.576 0.442  0.024 0.009 0.740 | 1.790
Fse BPR- 1.055 0.598  0.017 0.009 1.253 | 2.932 0.698 0.451  0.017 0.009 0.753 | 1.927
Fse BPR-Ir 0.933 0.458 0.016 0.008 1.132 | 2.547 0.615 0.394 0.016 0.008 0.743 | 1.776
[13] GPR-I 0.736 0.614 0.017 0.032 1.144 | 2.543 0.528 0.510 0.017 0.018 0.729 | 1.802
[14] GPR-I 0.706 0.491 0.020 0.011 1.048 | 2.277 0.499 0.424  0.020 0.009 0.714 | 1.666
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Fig. 13. Counting on Peds2: The eis-timated counts for therigbt‘-‘slbw” (red), “left-slow” (green), “ri'gh?-fast" (hle), and “left-fast” (yeII(;W) components
of the crowd are shown in the top-left, with the (uncertairand the [ground-truth]. The count for the “scene” classnisvhite text.

class, where one skateboarder is missed due to an error inrtiwdel [26] (denoted “DPM”). The detectors were provided
segmentation, as displayed in the last image of Figure 13.bg the respective authors. They were both run on the full-
summary, the results on Peds2, again, suggest the efficacyesolution video framesr¢0 x 480), and a filter was applied

regression-based crowd counting from low-level features.
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to remove detections that are outside the ROI, inconsistiint

the perspective of the scene, or given low confidence. Non-
maximum suppression was also applied to remove multiple
detections of the same object.

We start by evaluating the performance of the two detectors.
Each ground-truth pedestrian was uniquely mapped to the
closest detection, and a true positive (TP) was recorddukif t
ground-truth location was within the detection bounding.bo
A false positive (FP) was recorded otherwise. Figure 15splot
the ROC curves for HOG and DPM on Pedsl and Peds2.
These curves are obtained by varying the threshold of the
confidence filter. HOG outperforms DPM on both datasets,
with a smaller FP rate per image. However, neither algorithm
is able to achieve a very high TP rate (the maximum TP rate
is 74% on Pedsl), due to the large number of occlusions in
these scenes.

0.8

— — — Pedsl1 HOG 7
Peds1 DPM
= = =Peds2 HOG
Peds2 DPM

0.6}

d) test g 04l
g
46 T 0.2t
.304 @
. : : ' 0.148 £
0 500 1000 1500 2000 +im~ 2500 3000 3500 4000 S
test train test 08 0 107 107 107" 10° 10"
15 0.6 FP /image
o)« 10 0.4 Fig. 15. ROC curves of the pedestrian detectors on Peds1 easRP
5 0.2
g s 0 TABLE V
o _1_024.§ COUNTING ACCURACY OFBAYESIAN REGRESSION(BPR, GPR)AND
0.936 PEDESTRIAN DETECTION(HOG, DPM).
0 500 1000 1500 2000 2500 3000 500  4000° | | Method | MSE err bias var)
Fig. 14. Crowd counting results on Peds2 for: (a) “rightslo(b) “left- F. BPR-T | 2.075  1.320 0.101 2.966
slow”, (c) “right-fast’, (d) "left-fast, (e) "scene. 2 | DPM [26] | 24.721  4.012  1.621 22.100
E. Comparison with pedestrian detection algorithms @ | HOG [25] | 39.755 5.321 —5.315 11510
. . . O 'DPM BPR-T| 51.489  6.298 5.256  23.875
In this section, we compare regression-based crowd count HOG BPR-l | 33.222  4.893 3.498  20.995
ing with counting using two state-of-the-art pedestrian de 7..GPRI | 0990 0671 0150 0968
tectors. The first detects pedestrians with an SVM and thel ¢ | DPM [26] 4.645 1.565 —0.983  3.680
histogram-of-gradients feature [25] (denoted “HOG”). The E HOG [25] | 10.834  2.607 —2.595  4.103
second is based on a discriminatively-trained deformahiesp DPM GPR-| 4312 1.507  —0.741 ~ 3.765
HOG GPR-l| 4.455 1.563  —0.595 4.103
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counts, suggesting that there is no systematic warpingdsstw
the detector counts and the actual counts.
F. Extended results on Pedsl and Peds2
The final experiment tested the robustness of regression-
based counting, on 2 hours of video from Pedsl and Peds2.
i j i i i i i For both datasets, the top-performing model and feature set
0 %00 1000 1500 2000 2500 3000 3500 4000 (BPR-rr with F,; for Pedsl, and GPR-I wittF,, for Peds2)
were trained using 2000 frames of the annotated dataset/(eve
other frame). Counts were then estimated on the remaining 50
minutes of each video. Examples of the predictions on Pedsl
are shown in Figure 18 (top), and full video results avadabl
from [46]. Qualitatively, the counting algorithm trackseth
0 so0 100 1300 2000 2500 3000 3s00 a0 Changes in pedestrian traffic fairly well. Most errors tend
. frame to occur when there are very few people (less than two) in
Ehg'a )1%e dgo;"r?dcé’)“gtj dgg_’duced by the HOG [25] and DPM [26pdetrs 0 goene, These errors are reasonable, considering érat th
are no training examples with such few people in Pedsl.

18 10

1 Esw \ E;ﬁ; This problem could be easily fixed by adding more training
| o g examples. Note that BPR signals its lack of confidence irethes

B

oN s ®OR

6

estimates, by assigning them large standard-deviatiogs (e
3rd and 4th images of Figure 18).
2 A more challenging set of errors occur when bicycles,
Lo - - ol 1. - - skateboarders, and golf carts travel quickly on the Pedsl
round-truth count ground-truth count A A .
Fig. 17. Errogr for different crowd sizes on (left) Peds1 aright) Peds2. walkway (e.g., 1St. image of Figure 18). Again, these errors
are reasonable, since there are very few examples of fast
Next, each detector was used to count the number of peopleving bicycles and no examples of carts in the training
in each frame, regardless of direction of motion (correslimyn set. These cases could be handled by either: 1) adding more
to the “scene” class). The confidence threshold was chosemiixture components to the segmentation algorithm to label
minimize the counting error on the training set. In additiofast moving objects as a different class; 2) detecting eutli
to the count error and MSE, we also report the bias amtjects that have different appearance or motion from the
variance of the estimatedjias = SM (e; — &) and dominant crowd. In both cases, the segmentation task issnot a
var = % Zg‘il(ci — bias)?. The counting performance of straightforward due to the scene perspective; people rgovin
DPM and HOG is summarized in Table V, and the crowih the foreground areas travel at the same speed as bikes
counts are displayed in Figure 16. For crowd counting, DPRoving in the background areas. Future work will be directed
has a lower average error rate than HOG (eid)]2 versus at developing segmentation algorithms to handle thesescase
5.321 on Peds1). This is an artifact of the high FP rate of DPM; Examples of prediction on Peds2 are also displayed in
the false detections artificially boost the count even thoihg Figure 18 (bottom). Similar to Peds1, the algorithm tradies t
algorithm has a lower TP rate. On the other hand, HOG alwagganges in pedestrian traffic fairly well. Most errors tend t
underestimates the crowd count, as is evident from Figure @ecur on objects that are not seen in the database, for eeampl
and the biases of-5.315 and —2.595. Both detectors per- three people pulling carts (7th image in Figure 18), or the
form significantly worse than regression-based crowd dognt small truck (final image of Figure 18). Again, these erroes ar
(BPR or GPR). In particular, the average error of the formégasonable, considering that these objects were not seka in
is more than double that of the latter (e4012 for DPM training set, and the problem could be fixed by simply adding
versus1.320 for BPR, on Peds1). Figure 17 shows the errdraining examples of such cases, or detecting them as mutlie
as a function of ground-truth crowd size. For the pedestrian VIl. CONCLUSIONS
detectors, the error increases significantly with the creizd, In this work we have proposed the use of Bayesian regres-
due to occlusions. On the other hand, the performance sin to estimate the size of inhomogeneous crowds, composed
Bayesian regression remains relatively constant. Thesetse of pedestrians traveling in different directions, withaiging
demonstrate that regression-based counting can perfotin vitermediate vision operations, such as object detection o
above state-of-the-art pedestrian detectors, partipw@nen feature tracking. Two solutions were presented, based on
the crowd is dense. Gaussian process and Bayesian Poisson regression. The in-
Finally, we applied Bayesian regression (BPR or GPR) dractability of the latter was addressed through the dédwa
the detector counts (HOG or DPM), in order to remove aryf closed-form approximations to the predictive distribat It
systematic bias in the count prediction. Using the trairiay was shown that the BPR model can be kernelized, to represent
a Bayesian regression function was learned to map the detecion-linear log-arrival rates, and that the hyperpararnsetethe
count to the ground-truth count. The counting accuracy en thernel can be estimated by approximate maximum marginal
test set was then computed using the regression functian. Tikelihood. Regression-based counting was validated om tw
(best) results are presented in the bottom-halves of Table lsrge datasets, and shown to provide robust count estimates
There is not a significant improvement compared to the rawgardless of the crowd size.

average error
average error

4
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Fig. 18. Example counting results n the full videos: (topH#L, and (bottom) Peds2.
Comparing the two Bayesian regression methods, BPR2) BPR Marginal Likelihood: We derive the BPR marginal
was found more accurate for denser crowds, while GPiRelihood of Section IV-C. In all equations, we only writee terms

performed better when the crowd is less dense (in whigfft depend on the kemef®, ,, 5}. Using (19), the joint log-
. .. ) ikelihood of {y, 3} can be approximated as
case the regression mapping is more linear). Both Bayesian

regression models were shown to generalize well from smalbgp(y, 81X, 0) = log p(y|X, 3,0) + log p(3]0) (42)
training sets, requiring significantly smaller amounts aht:  ~ — X log(27) — log |5, — 3[|@7 8 — 5|3, — 1" @'
annotated data than non-Bayesian crowd counting appreache N (43)

The regression-based count estimates were also shown sub-+ Zlog F(?j!—fc) — dlog(2m) — Llog|E,| — 187%, '8
stantially more accurate than those produced by stathesf-t i=1
art pedestrian detectors. Finally, regression-basedtcmmas o« —3(3
successfully applied to two hours of video, suggesting that- —1 (3

systems based on the proposed approach could be used rin A e 1 ang q defined as in Secti
real-world environments for long periods of time. Y{//-ireBy ;Oa%ifetiq;g :F]ezgqh:rne t ands are defined as in Section
One limitation, for crowd counting, of Bayesian regression '

. . . . . . . . . - - 2
is that it requires training for each particular viewpoifis s~ logp(y| X, 8,0) +logp(8|0) ~ —3(||8 — A~ %, "¢ ||,

TAB - 28" 0%, 's + 28" d1c) — L log |, (44)

L(BTAB - 28T 0%, 't) — Llog|%,], (45)

. . 46
an acceptable restriction for permanent surveillanceesyst —t7E, 10T AT, ) — Llog |, (46)
However, the training requirement may hinder the ability to 1 —lgy—1y ()2
. _ _ x—3(|g—AT"ex, ||,
quickly deploy a crowd counting system (e.g. during a parade ey e . (47)
The lack of viewpoint invariance likely stems from several Tt 2y t—t X, &7 A7 0%, ) — 5 log |2 |
colluding factors: 1) changes in segment shape due to motion= —3(||3 — A*1<I>2;1tui,1 48)

and perspective; 2) changes in a person’s silhouette due to +t7(S, + 07%,8)7't) — Llog [,
viewing angle; 3) changes in the appearance of dense crowdﬁ. in (48 h x| ion | Th inal
Future work will be directed at improving training acros%v ere in (48) we use the matrix inversion lemma. The margina

. . . L : kelihood can thus be approximated as,
viewpoints, by developing perspective invariant featuness-
ferring knowledge across viewpoints (using probabiligtic p(y|X,,6) = /p(y7ﬂ|X7 0)dp (49)
ors), or accounting for perspective within the kernel fimct
itself. Further improvements to the performance of Bayesia ~ [5,| 2 ¢~ 2t (ut®"Sp®) "'t /e’5||ﬁ”“714’251t||2mldﬂ
counting from sparse crowds should also be possible. On
BPR, a training example associated with a sparse crowd has< [Zp|~
less weight (more uncertainty) than one associated with a_ (|5 ||a|)"2¢ 2t G tFO7 e, (51)
denser crowd. This derives from the Poisson noise model, and ) )
diminishes the ability of BPR to model local variations ofSing the block determinant properiyl| can be rewritten as
sparse f:rowds (in the presence of count u_ncertainty, Bayesi |4 =2, +ox, 0T =31 -2 -8y, - 075,90
regression tends tg smoothen the regression ma.ppmg)neFutu = 1518, 18y + K- (52)
work will study noise models without this restriction.

At E o BT TR (50)

Substituting into the log of (51) yields
log p(y|X, 8,6) = 3 log |[Sy| — 5 log |®7 £,@ + Ty |
— (@, e+ 5,) 7't

APPENDIX

1) Property 1: Consider the following (53)

—1,=T o —1xT
OBy (27 5,8 +3y) = 05, & %, P + @ (39) Finally, dropping the term that does not depend on the kernel
= (%, '®" +5,)%,®.  (40) hyperparameters yields (38).
Pre-multiplying by (%, '®" + £,")~" and post-multiplying by ACKNOWLEDGMENTS
(@Tx,® +%,)"" yields The authors thank J. Cuenco and Z.-S. J. Liang for annotating

1T a1 a1 T 1 part of the ground-truth data, N. Dalal and P. Felzenszwathtte
(O, @7 +3,7) T PX, T =5,0(@ 5,2+ 5,) . (41)  detection algorithms from [25] and [26], and P. Dollar fonning
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these algorithms. The authors also thank the anonymouswexs
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0830535, 11S-0812235, and the Research Grants Councikdfiting
Kong SAR, China [9041552 (CityU 110610)].
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