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A novel approach to the design of a semantic, low-dimensional, encoding for endoscopic imagery is pro-
posed. This encoding is based on recent advances in scene recognition, where semantic modeling of
image content has gained considerable attention over the last decade. While the semantics of scenes
are mainly comprised of environmental concepts such as vegetation, mountains or sky, the semantics of
endoscopic imagery are medically relevant visual elements, such as polyps, special surface patterns, or
vascular structures. The proposed semantic encoding differs from the representations commonly used
in endoscopic image analysis (for medical decision support) in that it establishes a semantic space, where
each coordinate axis has a clear human interpretation. It is also shown to establish a connection to Rie-
mannian geometry, which enables principled solutions to a number of problems that arise in both phy-
sician training and clinical practice. This connection is exploited by leveraging results from information
geometry to solve problems such as (1) recognition of important semantic concepts, (2) semantically-
focused image browsing, and (3) estimation of the average-case semantic encoding for a collection of
images that share a medically relevant visual detail. The approach can provide physicians with an easily
interpretable, semantic encoding of visual content, upon which further decisions, or operations, can be
naturally carried out. This is contrary to the prevalent practice in endoscopic image analysis for medical
decision support, where image content is primarily captured by discriminative, high-dimensional,
appearance features, which possess discriminative power but lack human interpretability.

� 2012 Elsevier B.V. All rights reserved.
1. Motivation

Over the past decade, there has been increased research interest
in decision-support systems for endoscopic imagery. In the context
of routine examinations of the colon, an important task is to per-
form pit pattern discrimination. This is usually guided by the Kudo
criteria (Kudo et al., 1994), based on the observation of a strong
correlation between the visual appearance of the highly-magnified
mucosa and the visual appearance of dissected specimen under the
microscope. Pit pattern analysis not only facilitates in vivo predic-
tions of the histology but represents a valuable guideline for treat-
ment strategies in general. The Kudo criteria discriminates
between five pit pattern types I–V, where type III is subdivided into
III-S and III-L. Types I and II are usually characteristic of non-neo-
plastic lesions, types III and IV indicate adenomnatous polyps and
type V is highly indicative for invasive carcinoma. Apart from
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incidental image structures, such as colon folds, the pit patterns
are the predominant concepts upon which histological predictions
are made. While images where one particular pit pattern type is
prevalent are fairly rare, mixtures of pit patterns are quite com-
monly found in practice. The development of decision-support sys-
tems for endoscopic imagery is desirable for several reasons.

First, routine examinations often involve unnecessary biopsies
or polyp resections, both because physicians are under serious
time pressure and because the standard protocol dictates the use
of biopsies in cases of uncertainty. This is controversial, since
resecting metaplastic lesions is time-consuming and the removal
of invasive cancer can be hazardous.

Second, the interpretation of the acquired image material can
be difficult, due to high variability in image appearance depending
on the type of imaging equipment. Novel modalities, such as high-
magnification endoscopy, narrow band imaging (NBI) or confocal
laser endomicroscopy (CLE) all highlight different mucosal struc-
tures; CLE even provides an in vivo view of deeper tissue layers
at a microscopic scale. A critical problem is that visual criteria for
assessing the malignant potential of colorectal lesions are still
under extensive clinical evaluation and substantial experience
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Fig. 1. Endoscopy images of the colon mucosa (top row), taken by a high-magnification endoscope, showing typical mucosal structures (pit patterns). The bottom row shows
the semantic encoding proposed in this work. The height of each bar indicates the probability that a particular type of visual structure is present in the image. The red bar
reports to the type of structure that is actually present. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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(Tung et al., 2001) is usually required to achieve good results under
these criteria.

Third, decision-support systems can be a helpful aid to the
training of future physicians. Due to differences among endoscopic
imaging modalities and endoscope brands, it is advisable to train
the physician on data from the very device to be used in practice.
However, the learning of Kudo’s pit pattern classification requires
experienced physicians to go through the time-consuming selec-
tion of images representative of the different pit pattern types. This
is a tedious process, which becomes unmanageable for large-scale
datasets.

For all these reasons, there has been increasing interest in deci-
sion-support systems for endoscopic imagery over the last decade.
This effort has been predominantly directed to the use of auto-
mated image content analysis techniques in the prediction of his-
topathological results (e.g. André et al., 2009, 2010; Tischendorf
et al., 2010; Kwitt et al., 2011; Häfner et al., 2012). It has led to a
plethora of approaches that first compute a collection of localized
appearance features and then input these features to a discrimi-
nant classifier, usually a support vector machine. From a purely
technical point of view, this problem description is similar to scene
recognition problems in the computer vision literature, with the
difference that invariance properties of the image representation,
such as invariance to rotation or translation, are considered more
important in the medical field. A relevant research trend in com-
puter vision is to replace the inference of scene labels from appear-
ance descriptors alone by more abstract, intermediate-level,
representations (Fei-Fei and Perona, 2005; Lazebnik et al., 2006;
Boureau et al., 2010; Rasiwasia et al., 2006; Rasiwasia and
Vasconcelos, 2008; Dixit et al., 2011). The prevalent approach to
scene classification is to learn a codebook of so called visual words,
from a large corpus of appearance descriptors, and represent each
image as an histogram—known as the bag-of-words (BoW) histo-
gram—of codeword indices. These mid-level representations are
input to a discriminant classifier for scene label prediction.

In the context of pit-pattern classification, this classification
architecture could, in principle, be used to produce a class label,
such as neoplastic or non-neoplastic, to be presented to a physician.
However, while BoW histograms have state-of-the-art recognition
rates for both medical and computer vision applications, they are
not generally amenable to human interpretation. This is due to
the facts that they (1) are high-dimensional, and (2) define a space
whose coordinate axes lack semantic interpretation. This lack of
interpretability raises a number of difficulties to the clinical deploy-
ment of the resulting decision-support systems. First, while the
resulting predictions are valuable, it is not uncommon for the med-
ical community to reject black-box solutions that do not provide
interpretable information on how these predictions were reached.
Second, the lack of insight on the factors that determine the pre-
dicted image labels severely compromise their usefulness for phy-
sician training. Third, it has been recently argued that a more
semantically-focused mid-level representation is conducive to bet-
ter recognition results (cf. Schwaninger et al., 2006; Rasiwasia and
Vasconcelos, 2008). Several works have, in fact, shown that an im-
age representation which captures the occurrence probabilities of
predefined semantic concepts is not only competitive with BoW,
but computationally more efficient due to its lower dimensionality.
Since the semantic concepts can be chosen so as to be interpretable
by physicians, the approach is also conducive to a wider acceptabil-
ity by the medical community. For example, (André et al., 2012)
demonstrated that low-dimensional semantic encodings are highly
beneficial to the interpretation of CLE imagery.

The goal of this work is to establish a semantic encoding of
endoscopic imagery, so as to produce systems for automated
malignancy assessment of colorectal lesions of greater flexibility
than those possible with existing approaches. We demonstrate
the benefits of the proposed encoding on image material obtained
during routine examinations of the colon mucosa. The imaging
modality is high-magnification chromo-endoscopy, which offers a
level of visual detail suitable for the categorization of mucosal sur-
face structures into different pit pattern types. Some typical images
are shown in the top row of Fig. 1. The aforementioned shortcom-
ings of previous approaches are addressed by adapting a recent
method (Rasiwasia and Vasconcelos, 2008) from the scene recogni-
tion literature to the inference of semantic encodings for endo-
scopic imagery. Some examples of these encodings are shown in
the bottom row of Fig. 1. While the general principle is well estab-
lished in the computer vision literature, we demonstrate that it is a
principled solution for a number of important applications in the
domain of endoscopic image analysis. The first is the automated
assessment of the malignant potential of colorectal lesions, where
the proposed semantic encoding is shown to enable state-of-the-
art image classification with substantially increased human inter-
pretability of classifier predictions. The second is a tool to browse
endoscopic image databases by typicality of particular pit patterns,
allowing trainees in gastroenterology to find most-representative
cases for each pit pattern class. The third is a strategy to determine
images which represent the average-case for a particular pit pat-
tern type. This enables physicians to keep track of what they typ-
ically see in clinical practice. A preliminary version of this work
appeared in Kwitt et al. (2011).

2. The design of the semantic space

We start by introducing some notation. We denote by
D ¼ fðIi; ciÞg; i ¼ 1; . . . ;D a corpus of D image-caption tuples (Ii,ci),



Fig. 2. Image formation models for inference and learning.

1 LEAR implementation: http://lear.inrialpes.fr/people/dorko/downloads.html.
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where image Ii is augmented by a binary caption vector ci. Captions
are drawn from a dictionary T ¼ ft1; . . . ; tCg of C semantic con-
cepts (e.g., the pit pattern types). It is assumed that the database
D is weakly-labeled in the sense that while cij = 1 signifies the pres-
ence of the jth semantic concept in image i, cij = 0 does not neces-
sarily imply its absence. This situation is common in medical image
analysis where often only the most dominant, or most medically
relevant, concept is annotated. In this particular case, caption vec-
tors contain only one non-zero entry: the class label for the image.
It is further assumed that each image is represented by a collection
of N low-level features xi 2 X, i.e. Ii ¼ xi

1; . . . ; xi
N

� �
, computed from

N localized image patches Pi
j; j ¼ 1; . . . ;N. These patches can be

evenly distributed across the image, or obtained with any other
sampling strategy. X � Rd is a low-level feature space, e.g., the
space of SIFT (Lowe, 2004) descriptors.

The generative model for the proposed semantic encoding is
shown in Fig. 2(a). Visual features xi are independently drawn from
concepts t, and concepts are drawn from a multinomial random
variable with parameter vector s 2 [0,1]C. Given an image I, the
mutinomial parameters in s are inferred from fxigN

i¼1 as follows
(the image index j is omitted for brevity). First, the concept of larg-
est posterior probability is found per xi, i.e. t�i ¼ qbðxiÞ with

qbðxiÞ ¼ arg max
t2T

PTjXðtjxiÞ ¼ arg max
t2T

PXjTðxijtÞP
wPXjTðxijwÞ

: ð1Þ

This assumes equal prior probability for all concepts, but could be
easily extended for a non-uniform prior. The mapping qb : X!T

quantizes features into concepts in a Bayesian, minimum probabil-
ity-of-error, fashion. The concept occurrences of I are then summa-
rized in a concept occurrence vector (o1, . . . ,oC)0, where
ot ¼ i : t�i ¼ t

� ��� �� is the number of occurrences of concept t in image
I. Finally, an MAP estimate of s, under the assumption of a Dirichlet
prior of parameter a, is computed with

ŝ ¼ o1 þ a� 1P
wðow þ a� 1Þ ; . . . ;

oC þ a� 1P
wðow þ a� 1Þ

� �0
: ð2Þ

Note that a acts as a regularization parameter. In the terminology of
Rasiwasia and Vasconcelos (2008), ŝ is denoted the semantic multi-
nomial (SMN) of image I. This establishes a mapping
P : XN ! PC�1; I # s from an image represented in feature space
XN to an image represented as a point on the semantic (probability)
simplex PC�1. If the boundaries of the simplex have zero probability
(a constraint that can be enforced by the Dirichlet regularizer) the
simplex is a Riemannian manifold when endowed with the Fisher
information metric I (cf. Lebanon, 2005). Since we refer to PC�1

as the semantic (probability) simplex, ðPC�1;IÞ is denoted the
semantic manifold. It will later be shown that information geometry
provides a rich set of tools for performing various operations on this
manifold.

Learning of the P mapping requires estimates of the concept-
conditional distributions PXjT(xjt) from the available weakly-la-
beled image data. Since the concept label of each visual feature is
not known, this is done with resort to multiple instance learning
(Maron, 1998), based on the image formation model of Fig. 2(b).
The visual features extracted from all images labeled with concept
t are pooled into dataset Dt ¼ xj
ijc

j
t ¼ 1

n o
, which is then used to

estimate PXjT(xjt). The intuition is that visual features representa-
tive of the semantic concept are more likely to occur in the training
set and dominate the probability estimates. In multiple instance
learning terminology, Dt is the bag of positive examples for concept
t. Fig. 3 shows a schematic illustration of the SMN representation
for a toy three-concept problem.

2.1. Implementation

The proposed implementation of semantic encoding relies on
Gaussian mixture models to estimate the concept-conditional
probability densities PXjT(xjt). The mixture parameters are esti-
mated with the EM algorithm (Dempster et al., 1977), initialized
by k-means++ (Arthur and Vassilvitskii, 2007), and the covariance
matrices restricted to diagonal form. The low-level appearance
representation is based on SIFT descriptors1 (using 4 � 4 grid cells
with 8 orientation histogram bins), due to the prevalence and suc-
cess of SIFT in a wide variety of computer vision applications. In
our implementation, SIFT descriptors are computed on an evenly-
spaced 8 � 8 pixel grid. Previous studies (Fei-Fei and Perona, 2005,
2009) have shown that this dense-SIFT representation has good rec-
ognition performance.

3. Analysis of endoscopic imagery in semantic space

The semantic image encoding of Section 2 was applied to three
application scenarios of potential interest for endoscopic image
analysis: (1) assessment of the malignant potential of colorectal le-
sions by recognizing non-neoplastic and neoplastic lesions, (2)
semantically-focused browsing for most-representative cases and
(3) determination of average-case image representatives per
semantic concept.

3.1. Data material

Our data material are colonoscopy images (either 624 � 533 or
586 � 502 pixel), acquired throughout 2005–2009 in the Depart-
ment of Gastroenterology and Hepathology of the Medical Univer-
sity of Vienna. All images were captured with a high-magnification
Olympus Evis Exera CF-Q160ZI/L endoscope, using a magnification
factor of up to 150�. The original dataset consists of 327 images of
a total of 40 patients. To obtain a larger sample size, 256 � 256 pix-
el regions were manually extracted (with minimum overlap) to ob-
tain a final dataset of 716 images. All images were converted to
grayscale for further processing. Examination of the lesions was
performed after dye-spraying with indigo-carmine, a routine pro-
cedure to enhance structural details. Biopsies were taken of lesions
classified as pit pattern types I, II and V, since I and II need not be
removed and type V cannot be removed, as explained in Section 1.
Lesions of type III-S, III-L and IV were removed endoscopically. Ta-
ble 1 lists the number of patients and images for a dataset split into
non-neoplastic (i.e. types I, II) and neoplastic lesions (types III–V).

3.2. Recognizing non-neoplastic/neoplastic lesions

As a first application scenario, we demonstrate a method to
classify the images into non-neoplastic and neoplastic lesions, gi-
ven the proposed semantic encoding by SMNs. It is safe to claim
that this is the most well-studied application scenario in the endo-
scopic image analysis literature. Many specifically-tailored low-le-
vel appearance features have been proposed recently, mainly
considering the problem from a pure pattern classification

http://lear.inrialpes.fr/people/dorko/downloads.html


Fig. 3. Semantic encoding of images as points on the semantic simplex.

Table 2
Comparison of leave-one-patient-out classification results to various state-of-the-art
methods, on the database used in this work. In case there is no statistically significant
difference (at 5% significance) in the class predictions with respect to the top
approach (bold), the classification accuracies are underlined.

Approach Accuracy Sens. Spec. Dim.

Proposed 82.0 95.0 48.0 6
LCVP (Häfner et al., 2012) 79.6 94.5 40.4 256

OCLBP (Mäenpää et al., 2002) 70.0 84.6 31.9 6912

JC-MB-LBP (Häfner et al., 2009) 82.7 93.2 55.1 196608

Table 1
Number of images and patients for non-neoplastic and neoplastic lesions.

Non-neoplastic Neoplastic Total

Number of images 198 518 716
Number of patients 14 26 40
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perspective. While the discriminant classifier at the end of the
pipeline is often optimized for a particular feature type, our ap-
proach is based on generic SMNs. This leads to a natural classifica-
tion method that is independent of the underlying appearance-
level representation.

Although it would be possible to train a support vector machine
with an RBF kernel on the semantic representation, this would not
respect the structure of the underlying Riemannian manifold. In
fact, a RBF kernel based on the Euclidean distance would corre-
spond to assuming that the SMNs reside in flat Euclidean space.
This would ignore the fact that the SMNs are parameters of multi-
nomial distributions, and thus represent points on the multinomial
manifold. Better performance can usually be obtained by adapting
the similarity measure to the structure of the manifold. For a Rie-
mannian manifold the natural similarity measure is the associated
geodesic distance. Although geodesics tend to be difficult to com-
pute—and rarely have closed-form solution—this is not the case
for the semantic manifold. In this case, it is possible to exploit
the well-known isomorphism

F : PC�1 ! S
C�1; s # 2

ffiffiffi
s
p

ð3Þ

between the Riemannian manifolds ðPC�1;IÞ and ðSC�1; dÞ, where
SC�1 is the (C � 1) sphere (of radius two) and d the Euclidean metric
inherited when embedding S

C�1 in RC . Under this isometry, the geo-
desic distance between si and sj reduces to the great-circle distance
between F(si) and F(sj), i.e.,

dIðsi; sjÞ ¼ ddðFðsiÞ; FðsjÞÞ ¼ 2 arccos h
ffiffiffiffi
si

p
;
ffiffiffiffi
sj

p
i

� 	
: ð4Þ
This provides a closed-form solution for computing distances
between SMNs on the semantic manifold. It is also possible to
prove (see Appendix A) that the kernel defined by the negative of
this geodesic distance

kðsi; sjÞ :¼ �dIðsi; sjÞ ð5Þ

satisfies all the requirements of a conditionally positive-definite
(cpd) kernel, see (Schölkopf, 2000). This is interesting because cpd
kernels can be used in the standard SVM architecture and share
many of the closure properties of positive-definite kernels
(Schölkopf and Smola, 2001). These properties enable the use of
weighted sums of kernels or even a spatial pyramid variant of (5),
as proposed in Grauman and Darrell (2005) or Lazebnik et al.
(2006).

In summary, the use of the kernel of (5) within a SVM classifier
is a principled approach to the combination of (1) a semantic space
image representation based on low-level appearance features with
(2) a state-of-the-art kernel-based discriminant classifier that re-
spects the structure of the semantic space.

3.2.1. Experiments
A quantitative evaluation of the proposed classification strategy

was performed with a leave-one-patient-out protocol recently
adopted by many works (André et al., 2011; Häfner et al., 2012;
Kwitt et al., 2011). This is in contrast to previous studies that have
primarily followed a simple leave-one-sample-out evaluation proto-
col (Kwitt et al., 2010; Häfner et al., 2010; André et al., 2009).
Leave-one-patient-out is more restrictive in the sense that all
images from one patient are left out during SVM training. In a
leave-one-sample-out protocol, only one image (over the whole
collection) is left out per cross-validation run. When there are sev-
eral images from the same patient, this can bias the reported clas-
sification rates. In addition, leave-one-patient-out further implies
that there is no bias with respect to 256 � 256 pixel regions com-
ing from the same image as well. For those reasons, the comparison
of classification rates is restricted to recently published results, on
the same database, that follow the leave-one-patient-out protocol.

The only parameter of the proposed classifier that requires tun-
ing is the SVM cost factor C, which we optimize on the training
data in each leave-one-patient-out iteration using ten linearly
spaced values of logC 2 [�2,4]. We note that the proposed kernel
is advantageous in the sense that it requires no tuning of kernel
parameters such as the bandwidth of RBF kernels. Table 2 lists
the average recognition rate (i.e., accuracy) for non-neoplastic vs.
neoplastic lesion classification, together with sensitivity and spec-
ificity values. Sensitivity is defined as the total number of correctly
classified images showing neoplastic lesions divided by the total
number of images showing neoplastic lesions. The definition of
specificity follows accordingly. The proposed approach is com-
pared to a recent study of Häfner et al. (2012) which implements
the Opponent-Color Local-Binary-Pattern (OCLBP) features of
Mäenpää et al. (2002), the Joint Color Multiscale LBP (JC-MB-LBP)
features of Häfner et al. (2009) as well as a new feature called Local
Color Vector Pattern (LCVP). Note that all the rates reported for



Fig. 4. Identifying the images, represented by SMNs, which are most-characteristic for concept t1 (i.e. pit pattern type I).
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these approaches were obtained from color (RGB) images, while
we only use grayscale image information.2 To assess whether an ap-
proach produces statistically significant class predictions with re-
spect to the top result (bold), we employ a McNemar test at 5%
significance. Rejection of the null-hypothesis (i.e., no statistically sig-
nificant difference) is indicated by an underlined classification accu-
racy in Table 2.

We emphasize that, in contrast to the previous studies, we have
made no effort to find the optimal appearance features for pit pat-
terns. The experiment is instead designed to demonstrate that clas-
sification is possible with a much lower-dimensional
representation (cf. last column of Table 2) that can be interpreted
by humans. In fact, the proposed approach is not a direct compet-
itor to previously published works, since we pursue a somewhat
orthogonal research direction: to facilitate image understanding of
endoscopic imagery at a semantic level, and not so much to derive
new features. The proposed approach is not restricted to SIFT fea-
tures, and any future improvements in the development of features
that capture medically relevant visual structures (e.g. pit patterns)
can be used to design improved semantic spaces.

3.3. Browsing endoscopic imagery by semantic information

Providing future gastroenterologists with a tool to browse
endoscopic imagery by typicality of particular semantic concepts
is a core motivation for the use of semantic image representations.
The proposed representation addresses this problem very natu-
rally. To identify the images most-characteristic of concept ti (e.g.
pit pattern III-L), it suffices to identify the subregion of the seman-
tic simplex whose SMNs represent images where the tith concept is
prominent with probability p. This can be trivially done by select-
ing the images for which si > p, p 2 [0,1]. Fig. 4 illustrates this idea
for s1 > 0.8. Sorting the SMNs in the selected region along the ith
dimension produces a list of the most-characteristic (i.e., top-
ranked) images for concept ti.

3.3.1. Experiments
To evaluate the proposed strategy for semantically-focused

browsing, we first perform a visual comparison of the browsing re-
sults to textbook illustrations of the different pit pattern types,
shown in the top row of Fig. 5. The SMNs were sorted along the
dimension corresponding to each concept, and the K top-ranked
images were extracted. To establish a realistic clinical scenario
we ensured that the extracted images do not belong to the same
patient. We call this patient pruning of the result set. Fig. 5 shows
the images obtained when browsing for the K = 5 top-ranked
images of each pit pattern. Images that remain after the patient
pruning step are highlighted. Since the database images are not
uniformly distributed over patients, the pruning step did not pro-
duce an equal number of browsing results per concept. Neverthe-
less, a comparison to the textbook illustrations reveals the desired
2 The results reported by Häfner et al. (2012) are slightly higher when using LAB.
correspondences, e.g., the characteristic gyrus-like structures of pit
pattern IV, the round pits of pit pattern I, and the complete loss of
structure for pit pattern V. Also presented is an incorrect browsing
result for pit pattern III-L, depicting an image of type IV. This is a
typical error due to the difficulty of distinguishing types III-L and
IV, which have similar structural elements.

In addition to the visual inspection of the results in Fig. 5, we
conducted a more objective evaluation using the ground-truth cap-
tion vectors of each image. This was based on the average error rate
of the system when browsing the K top-ranked images per concept.
A leave-one-patient-out protocol was used: (1) the patient’s
images were removed from the database, (2) SMNs were estimated
from the remaining images, (3) the K top-ranked images per con-
cept were extracted (now using the whole database) and (4) the
patient pruning step was performed. The average error rate was
then calculated as the percentage of images (averaged over all
leave-one-patient-out runs) in the final browsing result of concept
ti which do not match the corresponding ground-truth caption vec-
tors (i.e., zero entry at the ith position). Fig. 6 shows the average
error rate as a function of K. At the operating point K = 10, �10%
of the images were misclassified in the final browsing result. This
rate is higher than that reported in our preliminary study (Kwitt
et al., 2011) mainly because we now use generic SIFT descriptors,
instead of the more texture-tailored DCT coefficient vectors of
Kwitt et al. (2011).

3.4. Estimation of average-case representatives

The final application scenario considered in this work is to de-
rive a semantic encoding representative of the average-case image
within a given image collection (e.g., grouped by pit pattern).
While Section 3.3 focused on the corners of the semantic simplex,
i.e., the very characteristic cases, we now focus on the average-case
images. Fig. 7 illustrates the difference between searching for the
most-characteristic image for a particular concept versus searching
for its average-case representative. Both have a clear merit: the first
is of value for training purposes while the second facilitates visual-
ization of what a physician typically sees in clinical practice.

As in the previous application scenarios, it is possible to draw
on resources from information geometry to tackle the problem in
a principled way. Rather than computing the arithmetic mean of
a collection of SMNs, which would not respect the structure of
the semantic manifold, we compute its Frechét mean. The Frechét
mean of a collection of N points a1, . . ., aN on a general (connected)
Riemannian manifold ðM; gÞ is defined as

l ¼ arg min
a2M

XN

i¼1

wid
2
gða;aiÞ ð6Þ

where g denotes the Riemannian metric and dg denotes the geodesic
distance among two points, induced by g. When M is the Euclidean
space, i.e., dg(a,ai) = ka � aik, l reduces to the arithmetic mean. In
our application, where dg :¼ dI is the geodesic distance on the
semantic manifold, the Frechét mean has no closed-form. For this



Fig. 5. Browsing result for querying the top K = 5 most-characteristic images per pit pattern. The subset of all images that remains after patient pruning is highlighted. The top
row shows a schematic textbook visualization of the Kudo criteria for pit pattern discrimination (cf. Kudo et al., 1994): Type I is characterized by normal, round pits, type II by
asteroid, stellar or papillary pits, type III-L by tubular or round pits (usually larger than type I), type III-S by tubular or round pits (usually smaller than type I), type IV by
dendritic or gyrus-like pits and type V by irregular arrangements, or a compete loss of structure.

Fig. 6. Percentage of incorrectly retrieved images in the browsing result (i.e., incorrect pit pattern) when browsing for the k = 1, . . ., 20 most-characteristic images per pit
pattern (left); average number of images (from different patients) in that browsing result (right).
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reason, we employ a gradient descent approach outlined by Pennec
(2006). Under this method, the Frechét mean lk+1 at iteration k + 1
is

lkþ1 ¼ explk

1
N

XN

i¼1

loglk
ðaiÞ

" #
: ð7Þ
l0 is a suitable initial value (e.g., chosen randomly from ai, i = 1, . . .,
N) and expx and logx denote the Riemannian exponential and log
map, respectively. Let TaM be the tangent plane at point
a;v 2 TaM the tangent vector, and c : ½0; 1� !M the geodesic start-
ing at a with velocity v. The Riemannian exponential map
expa : TaM!M;v # cð1Þ maps the tangent vector v to the end



Fig. 7. Illustration of the difference between the most-characteristic image of a pit
pattern type (here, type IV) and its average-case.
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of the geodesic. The exponential map is a local diffeomorphism in a
neighborhood NðaÞ of a. Given that NðaÞ is the largest such neigh-
borhood, the inverse mapping NðaÞ ! TaM is denoted the Rie-
mannian log map loga. Hence, (7) can by be interpreted as
mapping points of the manifold onto the tangent plane at the cur-
rent Frechét mean estimate, taking the expected value and perform-
ing the inverse mapping to the manifold.

To compute the Fréchet mean from the SMNs corresponding to
images labeled with a particular concept, we can again exploit the
isometry between ðPC�1;IÞ and ðSC�1; dÞ (cf. Section 3.2). The SMN
Frechét mean is then computed as

lkþ1 ¼ explk

1
N

XN

i¼1

loglk

FðsiÞ
kFðsiÞk

" #
: ð8Þ

On the unit-sphere, the Riemannian exponential and log map are gi-
ven by

logxðyÞ ¼
arccosðhx; yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� hx; yi2
q ðy � hx; yixÞ ð9Þ

expxðyÞ ¼ cosðkykÞxþ sinðkykÞ kyk�1y ð10Þ

Since lk resides on the unit-sphere, it is necessary to project the
Frechét mean back onto the simplex PC�1 to obtain the average-case
SMN encoding �s as �s ¼ l2

k .
Fig. 8. Top: average-case image representatives per pit pattern type and correspondin
3.4.1. Experiments
The Frechét mean computation was used in combination with

the geodesic distance to determine the average-case image per con-
cept. The strategy is as follows: given the Frechét mean �st from the
SMNs of the images labeled with concept t 2T, it is possible to
find the image Irt closest to the average-case, with respect to the
geodesic distance on the semantic manifold, i.e.

rt ¼ arg min
si2Dt

dIð�s; siÞ: ð11Þ

Fig. 8 shows the images closest to the average-case (upper part, top
row) in terms of the Frechét mean as well as the Frechét mean of
the corresponding SMNs (upper part, bottom row) itself, for each
category. For comparison, the figure also shows the most-character-
istic samples (lower part, top row) and corresponding SMNs (lower
part, bottom row). When compared to the most-characteristic
images, the introductory graphic of Fig. 1, or the browsing result
of Fig. 5, the average-case images appear less typical of each pit pat-
tern type. This reflects the observation that pit patterns rarely occur
in a pure form, and mixtures of pit patterns are a very common
occurrence in clinical practice.
4. Discussion

In this work, we have proposed a new approach for endoscopic
image analysis. It was argued that focusing on discriminative
appearance features to predict histological findings leads to
black-box decision-support systems which might lack acceptance
by the medical community. As a possible solution to this problem,
we adopted a recent semantically-focused scene-recognition ap-
proach from computer vision to establish a semantic encoding of
endoscopic images. Based on this encoding, and the induced
semantic space, we demonstrated that classification, semanti-
cally-focused browsing, and the computation of class representa-
tives can be implemented in a principled manner by drawing on
results from information geometry. Experiments on a collection
of high-magnification colonoscopy images have shown that classi-
fication in semantic space achieves accuracies similar to highly-
optimized, appearance-feature based approaches with significantly
lower feature space dimensionality. Moreover, the proposed strat-
egy for browsing images by semantic typicality has been shown
g Fréchet means. Bottom: most-representative images and corresponding SMNs.
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capable of retrieving the most-characteristic images per concept
with small browsing error. Finally, an analysis of the average-case
images per concept revealed that the average-case may in fact be
harder to interpret or categorize due to less distinctive structures
compared to the textbook illustrations. In the future, we intend
to develop a difficulty measure, similar to (André et al., 2010), for
classifying endoscopic imagery, possibly based on some sort of
average geodesic distance to the most-representative samples.
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Appendix A. Conditional positive-definiteness of Eq. (5)

We provide a thorough proof that the kernel defined in (5) is
conditionally positive-definite (cpd).

Theorem 1 (Power Series of Dot-Product Kernels (Smola et al., 2000,
2001)). Let k : Sd�1 � Sd�1 ! R denote a dot-product kernel on the
unit sphere in a d-dimensional Hilbert space. The kernel is positive
definite (pd) if and only if there is a function f : R! R such that
k(x,y) = f(hx,yi) and the coefficients of the Taylor series of f are non-
negative, i.e.

f ðtÞ ¼
X1
n¼0

cntn with cn P 0: ðA:1Þ

According to this theorem, it suffices to check the coefficients of
the Taylor series expansion of f for non-negativity to proof that k is
a pd kernel. Note, that by dot-product we refer to the standard sca-
lar product in Rd.
Proposition 1. The semantic kernel

ksðx; yÞ ¼ �2 arccosðh
ffiffiffi
x
p

;
ffiffiffi
y
p
iÞ with x; y 2 ½0;1Þd ðA:2Þ

and kxk1 = 1, kyk1 = 1 is conditionally positive definite (cpd).
Proof. First, we note that for any x 2 [0,1)d with kxk1 = 1, the
square-root

ffiffiffi
x
p

(component-wise) resides on the unit sphere
Sd�1, embedded in d-dimensional Euclidean space Rd. Given that
g:[0,1] ? [0,p] is defined as

gðtÞ ¼ p� 2 arccosðtÞ; ðA:3Þ

we can write the semantic kernel of (A.2) as

ksðx; yÞ ¼ gðh
ffiffiffi
x
p

;
ffiffiffi
y
p
iÞ � p: ðA:4Þ

Our first step is to show that the dot-product kernel
kgðx; yÞ :¼ gðh

ffiffiffi
x
p

;
ffiffiffi
y
p iÞ induced by g satisfies the condition of Theo-

rem 1 and is thus pd. Hence, we first build the Taylor series expan-
sion of arccos (x) around 0, i.e.

arccosðxÞ ¼ p
2
�
X1
n¼0

ð2nÞ!
22nðn!Þ2

1
2nþ 1

x2nþ1 8 x : jxj < 1: ðA:5Þ

The convergence condition jxj < 1 is satisfied, as jhx,yij < 1 for x,
y 2 [0,1)d. Next, we can write g(t) as

gðtÞ ¼
X1
n¼0

cnt2nþ1 with cn ¼
ð2nÞ!

22nðn!Þ2
2

2nþ 1
ðA:6Þ
and we immediately see "n: cn P 0. It follows that the dot-product
kernel kg induced by g is pd. To show that the semantic kernel is cpd,
we proceed as follows: we know from Schölkopf and Smola (2001)
that each pd kernel is also cpd and that each real constant is cpd.
According to the closure properties of pd kernels, which can be car-
ried over to the class of cpd kernels, the sum of two cpd kernels is
cpd as well. The fact that we can write the semantic kernel as

ksðx; yÞ ¼ kgðx; yÞ|fflfflfflffl{zfflfflfflffl}
cpd

þð�pÞ|fflffl{zfflffl}
cpd

ðA:7Þ

completes the proof. h
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