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Abstract

The recent availability of massive amounts of imagery, both at home
and on the Internet, has generated substantial interest in systems
for automated image search and retrieval. In this work, we review
a principle for the design of such systems, which formulates the
retrieval problem as one of decision-theory. Under this principle, a
retrieval system searches the images that are likely to satisfy the
query with minimum probability of error (MPE). It is shown how the
MPE principle can be used to design optimal solutions for practical
retrieval problems. This involves a characterization of the fundamental
performance bounds of the MPE retrieval architecture, and the use
of these bounds to derive optimal components for retrieval systems.
These components include a feature space where images are repre-
sented, density estimation methods to produce this representation,
and the similarity function to be used for image matching. It is also



shown that many alternative formulations of the retrieval problem
are closely related to the MPE principle, typically resulting from
simplifications or approximations to the MPE architecture. The MPE
principle is then applied to the design of retrieval systems that work
at different levels of abstraction. Query-by-visual-example (QBVE)
systems are strictly visual, matching images by similarity of low-level
features, such as texture or color. This is usually insufficient to
produce perceptually satisfying results, since human users tend to
make similarity judgments on the basis of image semantics, not visual
attributes. This problem is addressed by the introduction of MPE
labeling techniques, which associate descriptive keywords with images,
enabling their search with text queries. This involves computing the
probabilities with which different concepts explain each image. The
query by example paradigm is then combined with these probabilities,
by performing MPE image matching in the associated probability
simplex. This is denoted query-by-semantic-example (QBSE), and
enables example-based retrieval by similarity of semantics.



1
From Pixels to Semantic Spaces: Advances

in Content-Based Image Search

We are currently living through a confluence of three technological rev-
olutions – the advent of digital imaging, broadband networking, and
inexpensive storage – that allow millions of people to communicate and
express themselves by sharing media. It could be argued, however, that
a few pieces are still missing. While it is now trivial to acquire, store,
and transmit images, it is significantly harder to manipulate, index,
sort, filter, summarize, or search through them. Significant progress has,
without doubt, happened in domains where the visual content is tagged
with text descriptions, due to the advent of modern search engines and
their image/video search off-springs. Nevertheless, because they only
analyze metadata, not the images per se, these are of limited use in
many practical scenarios. For example the reader can, at this moment,
use one of the major image search engines to download 7,860,000 pic-
tures of “kids playing soccer”, most served from Internet sites across
the world. Yet, these are all useless, to the reader , when he/she is look-
ing for pictures of his/her kids playing soccer. Although the latter are
stored in the reader’s hard-drive, literally at “hand’s reach”, they are
completely inaccessible in any organized manner. The reader could, of
course, take the time to manually label them, enabling the computer to
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268 From Pixels to Semantic Spaces: Advances in Content-Based Image Search

perform more effective searches, but this somehow feels wrong. After all,
the machine should be working for the user, not the other way around.

The field of content-based image search aims to develop systems
capable of retrieving images because they understand them and are able
to represent their content in a form that is intuitive to humans. It draws
strongly on computer vision and machine learning, and encompasses
many sub-problems in image representation and intelligent system
design. These include the evaluation of image similarity, the automatic
annotation of images with descriptive captions, the ability to under-
stand user feedback during image search, and support for indexing
structures that can be searched efficiently. In this monograph, we review
the progress accomplished in this field with a formulation of the prob-
lem as one of decision theory. We note that the decision theoretic view
is not the only possible solution to the retrieval problem and that many
alternatives have been proposed in the literature. These alternatives are
covered by recent extensive literature reviews [24, 68, 105, 115] and will
not be discussed in what follows, other than in context of highlighting
possible similarities or differences to MPE retrieval.

1.1 Query by Visual Example

Query by visual example (QBVE) is the classical paradigm for content-
based image search. It is based on strict visual matching, ranking
database images by similarity to a user-provided query image. The steps
are as follows: user provides query, retrieval system extracts a signature
from it, this signature is compared to those previously computed for
the images in the database, and the closest matches are returned to the
user. There are, of course, many possibilities for composing image signa-
tures or evaluating their similarity, and a rich literature has evolved on
this topic [105]. While early solutions, such as the pioneering query-by-
image-content system [80], were based on very simple image processing
(e.g., matching of histograms of image colors), modern systems (1) rely
on more sophisticated representations, and (2) aim for provably optimal
retrieval performance.

In what follows, we review one such approach, usually denoted as
minimum probability of error (MPE) retrieval. The retrieval problem is
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Fig. 1.1 MPE retrieval architecture. Images are decomposed into bags of local features,
and characterized by their distributions on feature space. Database images are ranked by
posterior probability of having generated the query features.

formulated as one of classification, and all components of the retrieval
system are designed to achieve optimality in the MPE sense. This leads
to the retrieval architecture depicted in Figure 1.1. Images are first
represented as bags of local features (that measure properties such as
texture, edginess, color, etc.), and a probabilistic model (in the figure a
Gaussian mixture) is learned from the bag extracted from each image.
The image signature is, therefore, a compact probabilistic representa-
tion of how it populates the feature space. When faced with a query,
the retrieval system extracts a bag of features from it, and computes
how well this bag is explained by each of the probabilistic models in
the database. In particular, it ranks the database models according to
their posterior probability, given the query. As we will see later on, this
is optimal in the MPE sense.

Note that, besides finding the closest matches, the system assigns
a probability of match to all images in the database. This allows the
combination of visual matching with other sources of information that
may impact the relevance of each database image. For example, the text
in an accompanying web page [92], how well the image matches previous
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Fig. 1.2 MPE retrieval results. Each row shows the top three matches (among 1,500) to
the query on the left.

queries [127, 128], external events that could increase the relevance of
certain images on certain days (e.g., high demand for football images
on Sunday night), etc.

The retrieval architecture of Figure 1.1 is currently among the top
performers in QBVE [124]. These systems work well when similarity
of visual appearance correlates with human judgments of similarity.
This is illustrated by Figure 1.2, which presents the top matches, from
a database of 1500 images, to four queries. Note that the database is
quite diverse, and the images are basically unconstrained in terms of
lighting conditions, object poses, etc. (even though they are all good
quality images taken by professional photographers). The system is able
to identify the different visual attributes that, in each case, contribute
to the perception of image similarity. For example, similar color distri-
butions seem to be determinant in the matches of the first row, while
texture appears to play a more significant role in the third, shape (of the
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Fig. 1.3 A query image (left) and its top four matches by a QBVE system (right). Humans
frequently discard strong visual cues in their similarity judgments. Failure to do this can
lead to severe QBVE errors. For example, the visually distinctive arch-like structure in
the train query induces the QBVE system to retrieve images of bridges or other arch-like
structures.

flower petals) is probably the strongest cue for the results of the fourth,
and the matches of the second row are likely due to the commonality
of edge patterns in the building structures present in all images.

There are, nevertheless, many queries for which visual similarity
does not correlate strongly with human similarity judgments. Figure 1.3
presents an example of how people frequently discard very strong visual
cues in their similarity judgments. As can be seen from the close-up, the
“train” query contains a very predominant arch-like structure. From a
strictly visual standpoint, this makes it very compatible with concepts
such as “bridges” or “arches”. A QBVE system will fall in this trap,
returning as top matches the four images also shown. Note that three of
these do contain bridges or arch-like structures. Yet, the “train” inter-
pretation of the query is completely dominant for humans, which assign
very little probability to the alternative interpretations, and expect
images of trains among the retrieved results.

The mismatch between the similarity judgments of user and
machine can make the retrieval operation very unsatisfying. In the
“train” example, most people would not be to able justify the matches
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returned by the retrieval system, despite the obvious similarities of
the visual stimuli. This is the nightmare scenario for image retrieval,
since users not only end up unhappy with the retrieval results, but also
acquire the feeling that the system just “does not get it”. This can be
an enormous source of user frustration.

1.2 Semantic Retrieval

The discussion above reveals what is often called a semantic gap
between user and machine. Unlike QBVE systems, people seem to first
classify images as belonging to a number of semantic classes, and then
make judgments of similarity in the higher level semantic space where
those classes are defined. This has motivated significant interest, over
the last decade, in semantic image retrieval. A semantic retrieval system
aims for the two complementary goals of image annotation and search.
The starting point is a training image database, where each image is
annotated with a natural language caption, from which the retrieval
system learns a mapping between words and visual features. This map-
ping is then used to (1) annotate unseen images with the captions that
best describe them, and (2) find the database images that best satisfy
a natural language query.

Usually, the training corpus is only weakly labeled , in the sense that
(1) the absence of a label from a caption does not necessarily mean
that the associated visual concept is absent from the image, and (2) it
is not known which image regions are associated with each label. For
example, an image containing “sky” may not be explicitly annotated
with that label and, when it is, no indication is available regarding
which image pixels actually depict sky. Note that the implementation
of a semantic retrieval system does not require individual users to label
training images. While this can certainly be supported, to personalize
the vocabulary, the default is to rely on generic vocabularies, shared
by many systems.

Under the MPE retrieval framework, a semantic retrieval system is
a simple extension of a QBVE system. As shown in Figure 1.4, it can be
implemented by learning probabilistic models from image sets, instead
of single images. In particular, the set of training images labeled with
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Fig. 1.4 Semantic MPE labeling. Top: images are grouped by semantic concept, and a
probabilistic model learned for each concept. Bottom: each image is represented by a vector
of posterior concept probabilities.

a particular keyword (“mountain”, in the figure) is used to learn the
model for the associated visual concept. As discussed in Section 6, this
procedure converges to the true concept distribution plus a background
uniform component that has small amplitude, if the set of training
images is very diverse [16]. Given a set of models for different visual
concepts, any image can be optimally labeled, in the MPE sense, by
computing how well its features are explained by each model. In par-
ticular, the concepts are ordered by posterior probability, given the
image, and the image is annotated with those of largest probability.
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This is shown in Figure 1.4 where, among a vocabulary of more than
350 semantic concepts, an image of a country house receives, as most
likely, the labels “tree”, “garden”, and “house”.

It turns out that, under the MPE framework, it is possible to learn
semantic models very efficiently, when individual image models are
already available, i.e., when QBVE is also supported. In fact, it can
be shown that the design of a semantic MPE retrieval system has
complexity equivalent to that of an MPE system that only supports
QBVE [16, 17]. Some examples of retrieval and annotation are shown in
Figures 1.5 and 1.6. Note that the system recognizes concepts as diverse
as “blooms”, “mountains”, “swimming pools”, “smoke”, or “woman”.
In fact, the system has learned that these classes can exhibit a wide
diversity of patterns of visual appearance, e.g., that smoke can be both

Fig. 1.5 Semantic retrieval results. Each row shows the top four matches to a semantic
query. From first to fifth row: ‘blooms’, ‘mountain’, ‘pool’, ‘smoke’, and ‘woman’ .
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Fig. 1.6 Comparison of the annotations produced by the system with those of a human
subject.

white or very dark, that both blooms and humans can come in multiple
colors, multiple sizes (depending on image scale), and multiple poses, or
that pools can be mostly about water, mostly about people (swimmers),
or both. This type of generalization is impossible for QBVE systems,
where each image is modeled independently of the others.

The annotation results of Figure 1.6 illustrate a second form of
generalization, based on contextual relationships, that humans also
regularly exploit. For example, the fact that stores usually contain
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people, makes us more prone to label an image of a store (where no
people are visible) with the “people” keyword, than an image that
depicts an animal in the wild. This is also the case for the MPE seman-
tic retrieval system, whose errors tend to be (in significant part) due
to this type of contextual associations. Note, for example, that the sys-
tem erroneously associates the concept “prop” with a jet fighter, the
concept “leaf” with grass, the concepts “people” and “skyline” with a
store display, and so forth. Of course, there are also many situations
in which these associations are highly beneficial and allow the correct
identification of concepts that would otherwise be difficult to detect
(due to occlusion, poor imaging conditions, etc.).

The ability to make such contextual generalizations stems from the
weakly supervised nature of the training of the labeling system. Because
concept models are learned from unsegmented images, most positive
examples of “shop” are also part of the positive set for “people” (even
though the latter will include many non-shopping related images as
well). Hence, an image of a shop will originate some response from the
“people” model, even when it does not contain people. That response
will be weaker than that of an image of a shop that contains people, but
stronger than the response of the “shop” model to a picture of people
on a non-shopping context, e.g., fishing in a lake. These asymmetries
are routine in human reasoning and, therefore, appear natural to users,
making the errors of a semantic retrieval system less annoying than
those of its QBVE counterpart. In fact, informal surveys conducted in
our lab have shown that (1) humans frequently miss the labeling errors,
and (2) even when the error is noted, the user can frequently find an
explanation for it (e.g., “it confused a jet for a propeller plane”). This
creates the sense that, even in making errors, the semantic retrieval
system “gets it”.

1.3 Exploring Semantic Feature Spaces

Despite all its advantages, semantic retrieval is not free of limita-
tions. An obvious difficulty is that most images have multiple semantic
interpretations. Since training images are usually labeled with a short
caption, some concepts may never be identified as present. This reduces
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the number of training examples and can impair the learning of con-
cepts that (1) have high variability of visual appearance, or (2) are
relatively rare. Furthermore, the semantic retrieval system is limited
by the size of its vocabulary. Since it is still difficult to learn massive
vocabularies, this can severely compromise generalization. It is, in fact,
important to distinguish two types of generalization. The first is with
respect to the concepts on which the system is trained, or within the
semantic space. The second is with respect to all other concepts, or
outside the semantic space.

While, as discussed in the previous section, semantic retrieval gen-
eralizes better (than QBVE) inside the semantic space, this is usually
not true outside of it. One possibility, to address this problem, is to
return to the query-by-example paradigm, but now at the semantic
level, i.e., to adopt query by semantic example (QBSE) [91]. The idea
is to represent each image by its vector of posterior concept probabil-
ities (the π vector of Figure 1.4), and perform query by example in
the simplex of these probabilities. Because the probability vectors are
multinomial distributions over the space of semantic concepts, we refer
to them as semantic multinomials. A similarity function between these
objects is defined, the user provides a query image, and the images in
the database are ranked by the distance of their semantic multinomials
to that of the query. The process is illustrated in Figure 1.7.

When compared to semantic retrieval, a QBSE system is sig-
nificantly less affected by the problems of (1) multiple semantic
interpretations, and (2) difficult generalization outside of the semantic
space. This follows from the fact that the system is not faced with a
definitive natural language query, but an image that it expands into
its internal semantic representation. For example, a system not trained
with images of the concept “fishing”, can still expand a query image
of this subject into a number of alternative concepts, such as “water”,
“boat”, “people”, and “nets”, in its vocabulary. This is likely to pro-
duce high scores for other images of fishing.

When compared to QBVE, QBSE has the advantage of a fea-
ture space where it is much easier to generalize. This is illustrated
by Figure 1.8, which shows the QBSE matches to the query image
of Figure 1.3. Note how these correlate much better with human
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Fig. 1.7 Query by semantic example. Images are represented as vectors of concept proba-
bilities, i.e., points on the semantic probability simplex. The vector computed from a query
image is compared to those extracted from the images in the database, using a suitable
similarity function. The closest matches are returned by the retrieval system.

Fig. 1.8 Top four matches to the QBSE query derived from the image shown on the left.
Because good matches require agreement along various dimensions of the semantic space,
QBSE is significantly less prone to the errors made by QBVE. This can be seen by comparing
this set of image matches to those of Figure 1.3.

judgments of similarity that the QBVE matches of that figure.
Inspection of the semantic multinomials associated with all images
shown reveals that, although the query image receives a fair amount
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of probability for the concept “bridge”, it receives only slightly inferior
amounts of probability for concepts such as “locomotive”, “railroad”,
and “train”. The latter are consistent with the semantic multinomi-
als of other images depicting trains, but not necessarily with those of
images depicting bridges. Hence, while the erroneous “bridge” label
is individually dominant, it looses this dominance when the semantic
multinomials are matched as a whole.

1.4 Organization of the Manuscript and Acknowledgments

In the following sections, we study in greater detail the fundamen-
tal properties of MPE retrieval. We start by laying out its theoretical
foundations in Section 2. The sources of error of a retrieval system are
identified, and upper and lower bounds on the resulting probability of
error are derived. In Section 3, MPE retrieval architectures are related
to a number of other approaches in literature. It is shown that many
of the latter are special cases of the former, under simplifying assump-
tions that are not always sensible. In Section 4, we start to address the
practical design of retrieval systems, by proposing a particular MPE
implementation. This architecture is shown to have a number of inter-
esting properties, and perform well in QBVE retrieval experiments.
In Section 5, we consider the problem of semantic retrieval, by intro-
ducing MPE techniques for image annotation, and showing how they
can be used to retrieve images with keyword-based queries. Some core
technical issues in automated image annotation are then discussed in
Section 6, where we study the possibility of learning image labels from
weakly annotated training sets. The issue of generalization beyond the
semantic space is introduced in Section 7, where we discuss QBSE.
Finally, some conclusions are drawn in Section 8.

At this point, we would like to acknowledge the contributions of a
number of colleagues that, over the last 10 years, have helped shape
the research effort from which this work has resulted. Gustavo Carneiro
has played an instrumental role in the development of the early ideas,
from the design of multiple feature representations, to the first gen-
eration of our image annotation system. This work was then pursued
by Antoni Chan, in a collaboration that also involved Pedro Moreno
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at Google. This allowed us to evaluate the experimental performance
of the theoretical ideas, at a scale that would not be possible in an
academic laboratory. Nikhil Rasiwasia then took over, and developed
most of the QBSE framework, as well as a number of more recent
contributions that are not discussed here, mostly for lack of space.
Since this manuscript follows closely a number of papers that we
have co-written with all these colleagues, we will not include a more
extensive discussion of who-did-what here. If interested, please refer
to [16, 91, 119, 120, 124, 125]. Instead, we would like to thank a number
of other people who were instrumental in the development of many of
the ideas discussed here, including Andrew Lippman at MIT, and sev-
eral students at the Statistical Visual Computing Laboratory at UCSD.
These include Dashan Gao, Hamed Masnadi-Shirazi, Sunhyoung Han,
and Vijay Mahadevan, among others. The many discussions that we
have had over the years, about retrieval and related topics, have made
our ideas much more clear and effective.



2
Theoretical Foundations of MPE Retrieval

In this section, we introduce the fundamental theoretical concepts
underlying MPE retrieval. While, for simplicity, we concentrate on the
QBVE paradigm, all concepts are equally applicable to semantic anno-
tation and retrieval, or QBSE.

2.1 Minimum Probability of Error Retrieval Systems

A retrieval system is a mapping

g:X → Y = {1, . . . ,M}

from a feature space X to the index set, Y, of the M classes in the
database. The retrieval system is optimal, under some suitable cost, if
X and the similarity function g(·) are jointly optimized with respect to
that cost. In this monograph we adopt the minimization of the proba-
bility of retrieval error as the goal for this optimization.

281
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Definition 2.1. A retrieval system

g∗:X → Y
that, for all x ∈ X and y ∈ Y, minimizes

Prob[g(X) �= Y ],

where X is the random variable from which the feature vector x is
drawn and Y is the random variable that assigns x to its database class,
is denoted a minimum probability of error (MPE) retrieval system.

It follows from this definition that an MPE-retrieval system is an opti-
mal classifier [28, 30, 39, 57]. In fact, the MPE paradigm is a special case
of the minimum average Bayes risk approach to classification, where the
“0–1” loss or Hamming distortion is used as cost or risk function. The
set Y of class labels depends on the desired retrieval functionality. For
example, QBVE assumes that each image in the database is a class by
itself. On the other hand, for image annotation, Y is a set of concepts
defined as important for the semantic representation of the images to
retrieve. Both the formulation and algorithms presented in this section
are independent of the structure of Y.

2.1.1 Minimum Probability of Error Classifiers

To analyze the fundamental limits of retrieval performance, we start
by recalling a well known result on MPE classification [28, 39]: given
a feature space X and query feature vector x, the decision rule that
minimizes the probability of retrieval error is the Bayes classifier

g∗(x) = argmax
i
PY |X(i|x), (2.1)

where PY |X(i|x) is the posterior probability of class i given x. This
decision rule is well known in the communications literature as the
maximum a posteriori probability classifier, and defines the similarity
function of an MPE retrieval system. The probability of error of the
Bayes classifier is the Bayes error (BE)

L∗
X = 1 − EX[max

i
PY |X(i|X)], (2.2)

where EX means expectation with respect to PX. This is a lower bound
on the probability of error achievable with any other similarity function.
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Although the Bayes classifier is the optimal similarity function for
MPE retrieval, it assumes knowledge of the class-posterior probabilities
PY |X(i|x). These are usually not available and must be estimated from
a finite training sample. One popular solution is to rely on Bayes’ rule
to write (2.1) as

g∗(x) = argmax
i
PX|Y (x|i)PY (i), (2.3)

where PX|Y (x|i) is the conditional probability density for the feature
vectors drawn from the ith class and PY (i) the prior probability for
that class. The optimal decision rule is then approximated by

g(x) = argmax
i
p̂X|Y (x|i)p̂Y (i), (2.4)

where p̂X|Y (x|i) and p̂Y (i) are estimates of the quantities in (2.3). If
there is no a priori reason to favor any of the image classes in the
database, it is acceptable to assume that the class priors PY (i) are
known and uniform, i.e., p̂Y (i) = PY (i) = 1/M . This leads to a deci-
sion function that depends only on estimates for the class-conditional
densities PX|Y (x|i),

g(x) = argmax
i
p̂X|Y (x|i), (2.5)

and is known as the maximum likelihood classifier. Because these class-
conditional densities can be estimated independently for each class,
the overall training complexity scales linearly in the number of classes,
making this classifier architecture particularly appealing for problems,
such as image retrieval or speech recognition [90], where that number
is large. On the other hand, it should be emphasized that (2.5) is opti-
mal, in the MPE sense, only insofar as the probability estimates are
error-free. This is a requirement that is rarely met in practice, where
density estimates are based on a finite data sample. In fact, when the
feature space X is high-dimensional, the density estimation error can
be substantial.

2.1.2 Impact of Density Estimation Errors on the
Probability of Error

The impact of this error on the probability of error of the decision
function of (2.5) can be quantified as follows.



284 Theoretical Foundations of MPE Retrieval

Theorem 2.1. Consider a retrieval problem with equiprobable classes
PY (i) = 1/M,∀i, a feature space X , unknown class conditional densi-
ties PX|Y (x|i), and the decision function of (2.5). For such a retrieval
problem, the difference between the probability of error and the BE is
upper bounded by

Prob[g(X) �= Y ] − L∗
X ≤ ∆g,X , (2.6)

where

∆g,X =

√
2ln2
M

∑
i

√
KL[PX|Y (x|i)||p̂X|Y (x|i)] (2.7)

is the density estimation error, and

KL[PX|Y (x|i)||p̂X|Y (x|i)] =
∫
PX|Y (x|i) log

PX|Y (x|i)
p̂X|Y (x|i) dx (2.8)

the relative entropy or Kullback–Leibler (KL) divergence [22, 58, 88]
between the true, PX|Y (x|i), and estimated, p̂X|Y (x|i), densities for
class i.

Proof. See the Appendix.

We note that (2.6) is a bound on the distance between the actual
probability of error and the Bayes error, and substantially different
from various bounds available in the information theoretic literature
(see e.g., [12, 56]) that relate BE to the KL divergence between class
densities. In these bounds, the KL divergence appears as a measure
of discrimination and the bounds formalize the intuition that the
BE decreases when the separation between class-conditional densities
increases, i.e., with the increase of the KL divergence between classes.
In the theorem above, the KL divergence does not take the role of
a measure of discrimination but, instead, it appears as a measure
of density estimation error. In particular, instead of the KL diver-
gence between class-conditional densities, (2.6) is a function of the
KL divergence between the true class-conditional densities and their
estimates.
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2.2 Impact of the Representation on the Bayes and
Estimation Errors

So far, we have seen that the probability of error of a retrieval system
is lower bounded by its BE and upper bounded by the sum of its BE
and estimation error . The design of a retrieval system requires the
specification of a feature space and a probability model for density
estimation. These are denoted the components of signal representation.
They affect the Bayes and estimation errors in very distinct ways. Since
the BE only depends on the true densities, not their estimates, the
only impact of the density model is on the estimation error of (2.7).
The relationships between these two quantities have been extensively
studied in the statistics literature, and are fairly well understood [30,
65, 102, 104].

For now, we concentrate on the dependence of the Bayes and esti-
mation errors on the feature space. We assume the existence of a space
of observations Z, e.g., the space of n × n image blocks, and investi-
gate the benefits of introducing a feature transformation T :Z → X in
a retrieval system. A classical result [28] is that

L∗
X ≥ L∗

Z , (2.9)

where L∗
Z and L∗

X are, respectively, the BEs on Z and X . Furthermore,
equality is achieved if and only if T is an invertible transformation.
This implies that the introduction of a feature transformation can never
decrease the BE and seems to discourage the use of feature transfor-
mations. It turns out, however, that a feature transformation can also
diminish the density estimation error. To show this, we start by con-
sidering sequences of nested vector spaces of increasing dimension, also
known as sequences of embedded vector spaces [45].

Definition 2.2. A sequence of vector spaces {X1, . . . ,Xd}, such that
dim(Xi) < dim(Xi+1), is called embedded if there exists a sequence of
one-to-one mappings

εi : Xi → X ′
i+1, i = 1, . . . ,d − 1, (2.10)

such that X ′
i+1 ⊂ Xi+1.
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Embedded feature spaces enable a precise characterization of the trade-
off between the Bayes and estimation error.

Theorem 2.2. Let

T :Rd → X ⊂ R
d

be a linear feature transformation, and

πn
m : R

n → R
m, (2.11)

where πn
m(x1, . . . ,xm,xm+1, . . . ,xn) = (x1, . . . ,xm), the projection of the

Euclidean space along the coordinate axes. Then,

Xi = πd
i (X ), i = 1, . . . ,d − 1 (2.12)

is a sequence of embedded feature spaces such that

L∗
Xi+1

≤ L∗
Xi
. (2.13)

Furthermore, if Xd
1 = {X1, . . . ,Xd} is a sequence or random variables

such that Xi ∈ Xi,

Xi = πd
i (X), i = 1, . . . ,d, (2.14)

and {gi(x)}d
i=1 a sequence of decision functions

gi(x) = argmax
k
p̂Xi|Y (x|k), (2.15)

then

∆gi+1,Xi+1 ≥ ∆gi,Xi , (2.16)

where ∆gi+1,Xi+1 is the density estimation error of (2.7).

Proof. See the Appendix.

This theorem shows that any linear feature transformation origi-
nates a sequence of embedded vector spaces with monotonically decreas-
ing Bayes error, and monotonically increasing estimation error. It
follows that it is impossible to find a linear feature transformation that
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can minimize the Bayes and estimation errors simultaneously. On one
hand, given a feature space X , it is possible to find a subspace where
density estimates are more accurate. On the other hand, the projection
onto this subspace will increase the BE. The practical result is that,
for any feature transform used in a retrieval system, there is a need
to reach a compromise between the two sources of error. This is illus-
trated by Figure 2.1, which shows the typical evolution of the upper and
lower bounds on the probability of error as one considers successively
higher-dimensional subspaces of a feature space X . Since accurate den-
sity estimates can usually be obtained in low-dimensional spaces, the
two bounds tend to be close when the subspace dimension is small. In
this case, the probability of error is dominated by the BE. For higher-
dimensional subspaces, the decrease in BE is cancelled by an increase in
estimation error, and the actual probability of error increases. Overall,
the curve of the probability of error exhibits the convex shape depicted
in the figure, where an inflection point marks the subspace dimension
for which BE ceases to be dominant. Different feature transforms will
originate different curves.



3
A Unified View of Image Similarity

The MPE principle advocates a similarity function to be used in image
retrieval. However, the measurement of similarity between signals has
a very long history in communications and signal processing (see,
e.g., [116]). Many of the classical similarity functions have been re-
discovered in the context of image retrieval and classification. In this
section, we present an overview of several similarity functions that are
currently popular in the literature and can be seen as approximations,
or simplifications, of that of MPE retrieval.

3.1 Approximations to MPE Similarity

Figure 3.1 illustrates how various similarity functions commonly used
for image retrieval are special cases of MPE retrieval. While these func-
tions do not exhaust the set of decisions rules that can be derived
from or shown to be sub-optimal when compared to the MPE criteria
(see Chapter 3 of [28] for several others), we concentrate on them for
two reasons: (1) they have been proposed as similarity functions, and
(2) when available, derivations of their relationships to MPE similarity
are scattered around the literature.

288
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The figure illustrates that, if an upper bound on the Bayes error
of a collection of two-way classification problems is minimized instead
of the probability of error of the original problem, the MPE criteria
reduces to the Bhattacharyya distance (BD). On the other hand, if
the original criteria is minimized, but the different image classes are
assumed to be equally likely a priori, we have the maximum likelihood
(ML) retrieval criteria. As the number of query vectors approaches
infinity, the ML criteria tends to the minimum discrimination infor-
mation (MDI), which in turn can be approximated by the χ2 test by
performing a simple first-order Taylor series expansion. Alternatively,
MDI can be simplified by assuming that the underlying probability
densities belong to a pre-defined family. For auto-regressive sources,
it reduces to the Itakura–Saito distance that has received significant
attention in the speech literature. In the Gaussian case, further
assumption of orthonormal covariance matrices leads to the quadratic
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distortion (QD) measure. The next possible simplification is to assume
that all classes share the same covariance matrix, leading to the
Mahalanobis distortion (MD). Finally, assuming identity covariances
results in the Euclidean distortion (ED) measure. We next discuss in
more detail all these relationships.

3.1.1 Bhattacharyya Distance

If there are only two classes in the classification problem, (2.2) can be
written as [39]

L∗ = EX[min(PY |X(0|X),PY |X(1|X))]

=
∫
PX(x)min[PY |X(0|x),PY |X(1|x)]dx

=
∫

min[PX|Y (x|0)PY (0),PX|Y (x|1)PY (1)]dx

≤
√
PY (0)PY (1)

∫ √
PX|Y (x|0)PX|Y (x|1)dx,

where we have used the bound min[a,b] ≤
√
ab. The last integral is

usually known as the Bhattacharyya distance between PX|Y (x|0) and
PX|Y (x|1) and has been proposed (e.g., [20, 77]) for image retrieval
where, for a query density PX(x), it takes the form

g(x) = argmin
i

∫ √
PX(x)PX|Y (x|i)dx. (3.1)

The resulting classifier can thus be seen as the one which finds the
lowest upper-bound on the Bayes error for the collection of two-class
problems involving the query and each of the database classes.

3.1.2 Maximum Likelihood

It is straightforward to see that when all image classes are equally
likely a priori, PY (i) = 1/M , the application of (2.3) to a sample
D = {x1, . . .xN} of independent observations reduces to the maximum
likelihood classifier

g(D) = argmax
i

1
N

N∑
j=1

logPX|Y (xj |i). (3.2)
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While class priors PY (i) can be used to (1) account for the context in
which the retrieval operation takes place, (2) integrate information from
multiple content modalities that may be available in the database [121],
and (3) design algorithms for learning from user feedback [127, 128],
in this work we assume that there is no a priori reason to prefer any
given image over the rest. In this case, MPE and maximum likelihood
retrieval are equivalent and we will use the two terms indiscriminately.

3.1.3 Minimum Discrimination Information

If Hi, i = 1,2, are the hypotheses that x is drawn from the statistical
population with density Pi(x), the KL divergence

KL[P2(x)||P1(x)] =
∫
P2(x) log

P2(x)
P1(x)

dx (3.3)

measures the mean information per observation from P2(x) for discrim-
ination in favor of H2 against H1. Because it measures the difficulty
of discriminating between the two populations, and is (1) non-negative
and (2) equal to zero when P1(x) = P2(x),∀x [58], the KLD has been
proposed as a measure of similarity for various compression and signal
processing problems [23, 32, 33, 44, 62].

Given a density P1(x) and a family of densities M, the minimum
discrimination information criteria [58] seeks the density in M that is
the “nearest neighbor” of P1(x) in the KLD sense

P ∗
2 (x) = arg min

P2(x)∈M
KL[P2(x)||P1(x)].

If M is a large family, containing P1(x), this problem has the trivial
solution P2(x) = P1(x), which is not always the most interesting. In
other cases, a sample from P2(x) is available but the explicit form of
the distribution is not known. In these situations, it may be more useful
to seek for the distribution that minimizes the KLD subject to a stricter
set of constraints. Kullback suggested the problem

P ∗
2 (x) = arg min

P2(x)∈M
KL[P2(x)||P1(x)]

subject to ∫
T (x)P2(x) = θ,
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where T (x) is a measurable statistic (e.g., the mean when T (x) = x)
and θ can be computed from a sample (e.g., the sample mean). He
showed that the minimum is (1) achieved by

P ∗
2 (x) =

1
Z
e−λT (x)P1(x),

where Z is a normalizing constant, Z =
∫
e−λT (x)P1(x)dx, and λ a

Lagrange multiplier [10] that weighs the importance of the constraint;
and (2) equal to

KL[P ∗
2 (x)||P1(x)] = −λθ − logZ.

Gray et al. have studied extensively the case in which P1(x) belongs to
the family of auto-regressive moving average (ARMA) processes [33, 44]
and showed, among other things, that in this case the optimal solution
is a variation of the Itakura–Saito distance commonly used in speech
analysis and compression. Kupperman [58, 59] has shown that when all
densities are members of the exponential family (a family that includes
many of the common distributions of interest such as the Gaussian,
Poisson, binomial, Rayleigh, and exponential among others [30]), the
constrained version of MDI is equivalent to maximum likelihood.

The KLD has only been recently considered in the retrieval litera-
ture [26, 53, 89, 126, 129], where attention has focused on the uncon-
strained MDI problem

g(x) = argmin
i
KL[PX(x)||PX|Y (x|i)] (3.4)

where PX(x) is the density of the query and PX|Y (x|i) that of the ith
image class. Similarly to the constrained case, it is possible to derive
a connection between unconstrained MDI and maximum likelihood.
However, the connection is much stronger in the unconstrained case
since there is no need to make any assumptions regarding the type of
densities involved. In particular, by simple application of the strong law
of large numbers to (3.2), as N → ∞ g(D) converges almost surely to

g(X) = argmax
i
EX[logPX|Y (X|i)]

= argmax
i

∫
PX(x) logPX|Y (x|i)dx
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= argmin
i

∫
PX(x) logPX(x)dx −

∫
PX(x) logPX|Y (x|i)dx

= argmin
i

∫
PX(x) log

PX(x)
PX|Y (x|i)dx

= argmin
i
KL[PX(x)||PX|Y (x|i)], (3.5)

where EX is the expectation with respect to the query density PX.
This means that, independent of the type of densities, MDI is simply
the asymptotic limit of the ML criteria as the cardinality of the query
tends to infinity.1 This relationship confirms that the MPE criteria
converges to a meaningful global similarity function as the cardinality of
the query grows. It also establishes a connection between MPE retrieval
and several similarity functions that can be derived from MDI.

3.1.4 χ2 Distance

The first of such similarity functions is the χ2 statistic. Using a first-
order Taylor series approximation for the logarithmic function about
x = 1, log(x) ≈ x − 1, we obtain

KL[P1(x)||P2(x)] =
∫
P1(x) log

P1(x)
P2(x)

dx

≈
∫
P1(x)2 − P1(x)P2(x)

P2(x)
dx

=
∫ (

P1(x)2 − P1(x)P2(x)
P2(x)

− P1(x) + P2(x)
)
dx

=
∫

(P1(x) − P2(x))2

P2(x)
dx,

where we have used the fact that
∫
Pi(x)dx = 1, i = 1,2. In the retrieval

context, this means that MDI can be approximated by

g(x) ≈ argmin
i

∫ (PX(x) − PX|Y (x|i))2

PX|Y (x|i) dx. (3.6)

1 Notice that this result only holds when the true distribution is that of the query. The
alternative version of the divergence, where the distribution of the database image class
is assumed to be true, does not have an interpretation as the asymptotic limit of a local
metric of similarity.
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The integral on the right is known as the χ2 statistic and the resulting
criteria a χ2 test [84]. It has been proposed as a metric for image
similarity in [26, 89, 100]. Since it results from the linearization of the
KLD, it can be seen as an approximation to the asymptotic limit of
the ML criteria. Obviously, this linearization can discard a significant
amount of information.

3.2 The Gaussian Case

Several similarity functions of practical interest can be derived from
the MPE retrieval criteria when the class likelihoods are assumed to
be Gaussian with full rank covariance matrices. We now analyze the
relationships for three such functions: quadratic, Mahalanobis, and
Euclidean. Given the asymptotic convergence of ML to MDI, these
results could also been derived from the expression for the KLD between
two Gaussians [58], by replacing expectations with respect to the query
distribution by sample means.

3.2.1 Quadratic Distortion

When the image features are Gaussian distributed, (3.2) becomes

g(x) = argmin
i

log |Σi| +
1
N

∑
n

(xn − µi)TΣ−1
i (xn − µi)

= argmin
i

log |Σi| + L̂i, (3.7)

where

L̂i =
1
N

∑
n

(xn − µi)TΣ−1
i (xn − µi)

is the quadratic distortion (QD) measure commonly found in the per-
ceptually weighted compression literature [40, 63, 66, 81] and quadratic
discriminant analysis [30]. As a similarity measure, the QD can thus be
seen as the result of imposing two stringent restrictions on the generic
ML criteria. First, that all image sources are Gaussian and, second,
that their covariance matrices are orthonormal (|Σi| = 1,∀i).
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3.2.2 Mahalanobis Distortion

Furthermore, because

L̂i =
1
N

∑
n

(xn − µi)TΣ−1
i (xn − µi)

=
1
N

∑
n

(xn − x̂ + x̂ − µi)TΣ−1
i (xn − x̂ + x̂ − µi)

=
1
N

∑
n

(xn − x̂)TΣ−1
i (xn − x̂) − 2(x̂ − µi)TΣ−1

i

1
N

∑
n

(xn − x̂)

+(x̂ − µi)TΣ−1
i (x̂ − µi)T

=
1
N

trace[Σ−1
i

∑
n

(xn − x̂)(xn − x̂)T ] + (x̂ − µi)TΣ−1
i (x̂ − µi)T

= trace[Σ−1
i Σ̂x] + (x̂ − µi)TΣ−1

i (x̂ − µi)T

= trace[Σ−1
i Σ̂x] + Mi, (3.8)

where

x̂ =
1
N

N∑
n=1

xn

is the sample mean of xn,

Σ̂x =
1
N

N∑
n=1

(xn − x̂)(xn − x̂)T

the sample covariance, and

Mi = (x̂ − µi)TΣ−1
i (x̂ − µi)T

the Mahalanobis distortion (MD, squared Mahalanobis distance), we
see that the MD results from complementing Gaussianity with the
assumption that all classes have the same covariance (Σx = Σi =
Σ,∀i).

3.2.3 Euclidean Distortion

Finally, if this covariance is the identity (Σ = I), we obtain the
Euclidean distortion (ED, squared Euclidean distance)

Ei = (x̂ − µi)T (x̂ − µi). (3.9)
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The MD, the ED, and variations on both, have been widely used in the
retrieval literature [4, 7, 18, 25, 47, 54, 69, 69, 73, 80, 86, 87, 89, 97,
99, 101, 103, 106, 108, 113, 130, 131].

3.2.4 Some Intuition for the Advantages of MPE Retrieval

The Gaussian case is a good example of why, even if minimization of
error probability is not considered to be the right goal for an image
retrieval system, there seems to be little justification to rely on any
criteria for image similarity other than MPE. Recall that, under MPE
retrieval, the similarity function is

g(x) = argmin
i

log |Σi| +

QD︷ ︸︸ ︷
trace[Σ−1

i Σ̂x] + (x̂ − µi)TΣ−1
i (x̂ − µi)T︸ ︷︷ ︸

MD
(3.10)

and all three other criteria are approximations that arbitrarily discard
covariance information.

As illustrated by Figure 3.2, this information is important for the
detection of subtle variations, such as rotation and scaling in feature
space. In (a) and (b), we show the distance, under both QD and
MD, between a Gaussian and a replica rotated by θ ∈ [0,π]. Plot b)
clearly illustrates that, while the MD has no ability to distinguish
between the rotated Gaussians, the inclusion of the trace[Σ−1

i Σ̂x]
term leads to a much more intuitive measure of similarity: minimum
when both Gaussians are aligned and maximum when they are rotated
by π/2.

As illustrated by (c) and (d), further inclusion of the term log |Σi|
(full ML retrieval) penalizes mismatches in scaling. In plot c), we show
two Gaussians with covariances Σx = I and Σi = σ2I, centered on zero.
In this example, MD is always zero, while trace[Σ−1

i Σ̂x] ∝ 1/σ2 penal-
izes small σ and log |Σi| ∝ logσ2 penalizes large σ. The total distance
is shown as a function of logσ2 in plot d) where, once again, we observe
an intuitive behavior: the penalty is minimal when both Gaussians have
the same scale (logσ2 = 0), increasing monotonically with the amount
of scale mismatch. Notice that, if the log |Σi| term is not included, large
changes in scale may not be penalized at all.
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Fig. 3.2 (a) A Gaussian with mean (0,0)T and covariance diag(4,0.25) and its replica
rotated by θ. (b) Distance between the Gaussian and its rotated replicas as a function of
θ/π under both the QD and the MD. (c) Two Gaussians with different scales. (d) Distance
between them as a function of logσ2 under ML, QD, and MD.

3.2.5 Lp Norms

A popular metric of similarity is the Lp norm of the difference between
densities

g(X) = argmin
i

(∫
F

|PX(x) − PX|Y (x|i)|pdx
) 1

p

, p ≥ 1. (3.11)



298 A Unified View of Image Similarity

These norms are particularly common as metrics of similarity
between histograms. Consider a partition of the feature space X (with
some sensible tie braking rule) into a collection of p disjoint cells
{R1, . . . ,Rp} of representative vectors ci ∈ R

n, and D a set of features
vectors such that fr vectors land on cell Rr. Let f = {f1, . . . ,fp} be the
histogram associated with the density

PX(x) =
∑

k

fk∑
i fi

δk(x − ck), (3.12)

where δk(x − ck) is some probability density function supported in Rk.
Defining q to be the histogram of Q query vectors, pi the his-

togram of P i vectors from the ith image class, and substituting (3.12)
into (3.11)

g(x) = argmin
i

(∫
X

∣∣∣∣∣∑
r

(
qr∑
k qk

− pi
r∑

k p
i
k

)
δr(x − cr)

∣∣∣∣∣
p

dx

) 1
p

= argmin
i

(∫
X

∑
r

∣∣∣∣ qr∑
k qk

− pi
r∑

k p
i
k

∣∣∣∣p δp
r (x − cr)dx

) 1
p

= argmin
i

(∑
r

∣∣∣∣ qr∑
k qk

− pi
r∑

k p
i
k

∣∣∣∣p
∫

Rr

δp
r (x − cr)dx

) 1
p

= argmin
i

(∑
r

ωr

∣∣∣∣ qr∑
k qk

− pi
r∑

k p
i
k

∣∣∣∣p
) 1

p

(3.13)

where we have used the fact that the cells Rr are disjoint and

ωr =
∫

Rr

δp
r (x − cr)dx.

As shown in [112], the minimization of the L1 distance is equivalent to
the maximization of the histogram intersection (HI)

g(x) = argmax
i

∑
r min(qr,pi

r)∑
k qk

, (3.14)

a similarity function that has become the de-facto standard for
color-based retrieval [4, 14, 52, 54, 69, 83, 85, 89, 96, 97, 106, 107, 109,
110, 112].
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While (3.2) minimizes the classification error, measures such as the
HI minimize pointwise dissimilarity between density estimates. Clearly,
for this criterion to work, it is necessary that the estimates be close to
the true densities. However, it is known (e.g., see Theorem 6.5 of [28])
that the probability of error of rules of the type of (3.2) tends to the
Bayes error orders of magnitude faster than the associated density esti-
mates tend to the right distributions. This implies that accurate density
estimates are not required everywhere for the classification criteria to
work. In fact, accuracy is required only in the regions near the bound-
aries between the different classes because these are the only regions
that matter for the classification decisions. On the other hand, HI is
dependent on the quality of the density estimates all over X . It, there-
fore, places a much more stringent requirement on the quality of these
estimates and, since density estimation is know to be a difficult prob-
lem [118, 104], there seems to be no reason to expect it to be a bet-
ter retrieval criterion than (3.2). We next provide some experimental
evidence for this claim, through retrieval experiments on real image
databases.

3.3 Experimental Evaluation

A series of retrieval experiments was conducted to evaluate the per-
formance of the ML criteria. As benchmarks, we selected two pop-
ular representatives of the similarity functions discussed above: the
Mahalanobis distortion for texture-based retrieval and the histogram
intersection for color-based retrieval. In order to isolate the con-
tribution of the similarity function from those of the features and
the feature representation, the comparison was performed with the
feature sets and representations that are commonly used for each
of the domains: color-based retrieval was implemented by combin-
ing the color histogram with (3.2) and texture-based retrieval by
combining the features derived from the multi-resolution simultane-
ous auto-regressive (MRSAR) model [74] with (3.10). Texture retrieval
experiments were performed on the Brodatz texture database [87],
while color-based retrieval was evaluated on the Columbia object image
library [79].
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The MRSAR features were computed using a window of size 21 × 21
sliding over the image with increments of two pixels in both the hor-
izontal and vertical dimensions. Each feature vector consists of four
SAR parameters plus the error of the fit achieved by the SAR model at
three resolutions, in a total of 15 dimensions. This is a standard imple-
mentation of this model [67, 73, 74]. For color histogramming, the 3D
YBR color space was quantized by finding the bounding box for all
the points in the query and retrieval databases, and then dividing each
axis in b bins. This leads to b3 cells. Experiments were performed with
different values of b.

To evaluate the retrieval performance, we relied on standard preci-
sion/recall curves. In all the databases considered there is clear ground
truth regarding which images are relevant to a given query (e.g., differ-
ent views of the same object on Columbia) and we used it to measure
precision and recall. Each database was split into training and test sets,
the images in the test set serving as queries for performance evaluation.
We refer to this set as the query database. The remaining images com-
posed the retrieval database. The specific organization of the databases
was as follows. The 1008 images in Brodatz were divided into a query
database of 112, and a retrieval database of 896 images. The Columbia
database was also split into a query containing a single view of each
of the 100 objects available, and a retrieval database containing nine
views (separated by 40◦) of each object.

Figure 3.3 presents precision/recall curves for the two databases.
As expected, texture-based retrieval (MRSAR/MD) performs better on
Brodatz, while color-based retrieval (color histogramming) does better
on Columbia. Furthermore, due to their lack of spatial support, his-
tograms do poorly on Brodatz while, being a model specific for texture,
MRSAR does poorly on Columbia.2

More informative is the fact that, when the best performing features
and representation are used for the specific database, the ML criteria
always leads to a clear improvement in retrieval performance. In partic-
ular, for the texture database, combining ML with the MRSAR features

2 Notice that this would not be evident if we were only looking at classification accuracy,
i.e., the percentage of retrievals for which the first match is from the correct class.
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Fig. 3.3 Precision/recall curves for Brodatz (top) and Columbia (bottom). MRSAR,
MRSAR features; H, histograms; ML, maximum likelihood; MD, Mahalanobis distortion;
and I, intersection. The total number of bins in each histogram is indicated after the H.

and the Gaussian representation leads to an improvement in precision
from 5% to 10% (depending on the level of recall) over that achievable
with the Mahalanobis distortion. Similarly, on Columbia, replacing his-
togram intersection by the ML criteria leads to an improvement that
can be as high as 20%.3

3 Notice that, for these databases, 100% recall means retrieving the eight or nine images
in the same class as the query, and it is important to achieve high precision at this level.
This may not be the case for databases with hundreds of images in each class, since it is
unlikely that users may want to look at that many images.
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Fig. 3.4 Results for the same query under HI (left) and ML (right). In both images, the
query is shown in the top left corner, and the returned images in raster-scan order (left to
right, top to bottom) according to their similarity rank. The numbers displayed above the
retrieved images indicate the class to which they belong.

The latter observation provides evidence in favor of the arguments of
Section 3.2.5, where we argued that, while the ML criteria only depends
on the class boundaries, HI requires good estimates throughout the
feature space. This also suggests that, whenever there is a change in
the imaging parameters (lighting, shadows, object rotation, etc.) and
the densities change slightly, the impact on HI should be higher than
on ML. An example of this behavior is given in Figure 3.4, where we
present the results of the same query under the two similarity criteria.
Notice that, as the object is rotated, the relative percentages of the
different colors in the image change. HI changes accordingly and, when
the degree of rotation is significant, views of other objects are preferred.
On the other hand, because the color of each individual pixel is always
better explained by the density of the rotated object than by those of
other objects, ML achieves a perfect retrieval. This increased invariance
to changes in imaging conditions explains why, for large recall, the
precision of ML is consistently and significantly higher than that of HI.



4
An MPE Architecture for Image Retrieval

In this section, we build on the discussion above to design an MPE
architecture for image retrieval based on QBVE. The general form of
this architecture is illustrated in Figure 1.1. Image i in the database is
represented as a bag of features Di = {xi

1, . . . ,x
i
n}, which is used to learn

an estimate p̂X|Y (x|i) of the feature distribution PX|Y (x|i) for that
image. Given a query image, represented by the bag Q = {xq

1, . . . ,x
q
nn},

the closest match is found by evaluating the log-probability of the query
bag under all database models, and choosing the database image for
which this log-probability is largest,

g(Q) = argmax
i

∑
k

log p̂X|Y (xq
k|i). (4.1)

In this section, we discuss the implementation of the density estimation
and feature selection modules.

4.1 Density Estimation

We start by considering the problem of density estimation. Density
estimates are usually obtained by choosing a parametric probability
density function and learning its parameters from a training sample.

303
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Algorithm 1 EM algorithm (Gaussian mixtures)
Input: training set D = {z1, . . . ,zN}, and initial mixture parameters
{π1, . . . ,πp}, µ1, . . . ,µp, Σ1, . . . ,Σp.
repeat

E-step: for each zk ∈ D and mixture component c, compute

hck = PΩ|Z(c|zk) =
G(zk,µc,Σc)πc∑
l G(zk,µl,Σl)πl

(4.2)

M-step: update the mixture parameters with

πnew
c =

1
N

∑
k

hck (4.3)

µnew
c =

∑
k hckzk∑

k hck
(4.4)

Σnew
c =

∑
k hck(zk − µnew

c )(zk − µnew
c )T∑

k hck
(4.5)

until convergence

In this monograph, we consider mixture densities [11, 95, 114]

PZ(z) =
C∑

c=1

PZ|Ω(z|c)PΩ(c), (4.6)

where C is a number of mixture components, {PZ|Ω(z|c)}C
c=1 a sequence

of mixture components, and {PΩ(c)}C
c=1 a sequence of component prob-

abilities. These densities model processes with hidden structure: one
among the C components is first selected, according to the proba-
bilities PΩ(c), and observations are then drawn from the respective
mixture component. These components can be any valid probability
density functions, i.e., any set of non-negative functions integrating to
one. Most densities of practical interest can be well approximated by
mixtures with a relatively small number of components.

Mixture parameters are learned by maximum likelihood, using the
expectation-maximization (EM) algorithm [27, 46, 95]. This iterates
between two steps, an expectation step and a maximization step. The



4.1 Density Estimation 305

expectation step computes the expectation of the data likelihood with
respect to the hidden variable Ω. The maximization step then finds the
parameters of the model that maximize this expected data likelihood.
The precise equations of the two steps depend on the details of the
mixture components PX|Ω(x|c) in (4.6). Algorithm 1 summarizes the
EM steps for learning the parameters of a Gaussian mixture

PZ(z) =
∑

c

πcG(z,µc,Σc) (4.7)

of class probabilities PY (c) = πc, and Gaussian components of mean µc

and covariance Σc. This is the model that we will use in the remainder
of this work.

One interesting property of this model is that it supports parallel
evaluation of multiple MPE rules over a set embedded spaces. This
follows from a well known property of Gaussian random variables [30].

Property 4.1. If T:X → X ′ is a linear feature transformation X ∈ X
and X′ ∈ X ′ are two random variables such that X is distributed
according to

PX(x) =
∑

i

λiG(x,µi,Σi), (4.8)

where 0 ≤ λi ≤ 1,∀i,
∑

iλi = 1 and X′ = TX, then

PX′(x) =
∑

i

λiG(x,Tµi,TΣiTT ). (4.9)

Consider a linear transformation T and associated feature space
X ⊂ R

d. From Theorem 2.2, the sequence Xj = πd
i (X ) is a sequence of

embedded subspaces of X . Denoting by Πj the projection matrix asso-
ciated with πd

j , i.e., Πj = [Ij ,0d−j ], where Ij is the identity matrix of
order j and 0d−j the j × d − j zero matrix, it follows from the prop-
erty above that, if X ∈ X is distributed according to (4.8), the random
variables Xj = πd

j (X) are distributed according to

PXj (x) =
∑

i

λiG(x,Πjµi,ΠjΣiΠT
j ). (4.10)
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The collection of densities in (4.10) is the family of embedded mixture
models associated with X. It has two properties of significant practical
interest. The first is that, once an estimate is available for {λi,µi,Σi},
the parameters of PXj (x) can be obtained for any j by simply extracting
the first j components of the mean vectors µi and the upper-left j × j

sub-matrix of the covariances Σi. This implies that it is not necessary
to repeat the density estimation for each of the subspace dimensions
under consideration. Hence, the complexity of estimating all PXj (x) is
the same as that of estimating PX(x). The second is a similar result for
the complexity of evaluating image queries. It is based on the fact that
the complexity of (4.8) is dominated by the computation of ||x − µ||Σ
and |Σ|.

Lemma 4.1. Consider the contribution to PXj (Πjx), j = 1, . . . ,d of a
mixture component with mean Πjµ and covariance Sj = ΠjΣΠT

j . The
terms Mj = ||Πjx − Πjµ||Sj and Dj = |Sj | are given by the following
recursion.

Initial conditions: M1 = (x1 − µ1)2/σ1,1, D1 = S1 = σ1,1.
Recursion:

ψT
j = (uT

j−1S
−1
j−1,−1) (4.11)

pj = −(uT
j−1,σj,j)ψj (4.12)

S−1
j = Γ(S−1

j−1) +
1
pj
ψjψ

T
j (4.13)

Mj = Mj−1 +
(ψT

j Πjd)2

pj
(4.14)

Dj = pjDj−1, (4.15)

where Γ(·) is a mapping that adds to matrix · a row and a column
(which become the last row and column, respectively) of zeros, d =
x − µ, σi,j is the (i, j)th element of Σ, and uj−1 = (σ1,j , . . . ,σj−1,j)T

the vector containing the j − 1 first elements of the jth column of Σ.
The complexity of evaluating all Mj and Dj is O(d3).

Proof. See the Appendix.
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It follows from this lemma that the complexity of evaluating all
PXj (Πjx) is O(d3) and, since this is also the cost of computing Σ−1,
this complexity is the same as that required to compute PX(x). Hence,
the computations required for MPE retrieval can be performed in par-
allel across a collection of embedded subspaces, without any additional
computational cost. This property can be explored to develop compu-
tationally efficient feature selection algorithms for image retrieval [124].

4.2 Embedded Multi-Resolution Mixture Models

The parallelism of embedded mixture models is particularly useful when
combined with multiresolution feature transformations. Such transfor-
mations have a number of interesting properties. For example, they
are justified by what is known about biological vision. Ever since the
work of Hubel and Wiesel [49], it has been established that (1) human
visual processing is local, and (2) different cells in primary visual cor-
tex (i.e., area V1) are tuned for detecting different types of stimulus
(e.g., bars of different size). This indicates that, at the lowest level,
the architecture of the human visual system can be approximated by a
multi-resolution representation localized in space and frequency, and
several “biologically plausible” models of early vision are based on
this principle [8, 9, 38, 70, 98, 111]. More recently, it has been shown
that filters remarkably similar to the receptive fields of cells found in
V1 [6, 82] can be learned from training images, by imposing require-
ments of sparseness [37, 82] or independence [6] to a multiresolution
transformation.

A second interesting property is invariance. When the feature trans-
form T is a multi-resolution decomposition, embedded mixture densi-
ties can be interpreted as families of densities defined over multiple
image scales, each adding higher resolution information to the charac-
terization provided by those before it. In fact, disregarding the dimen-
sions associated with high-frequency basis functions is equivalent to
modeling densities of low-pass filtered images. In the extreme case
where only the first, or DC, coefficient is considered, the representa-
tion is equivalent to the histogram of a smoothed version of the original
image. This is illustrated in Figure 4.1.
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Fig. 4.1 A natural image (top left), its histogram of image intensities (top right), and
projections of the corresponding 64-dimensional embedded mixture onto the DC subspace
(bottom left), and the subspace of the two lower frequency coefficients (bottom right).
The embedded mixture describes the probability density of the discrete cosine transform
coefficients derived from a collection of 8 × 8 blocks extracted from the image.

This observation suggests that a natural ordering for the subspaces
generated by a multiresolution decomposition is by increasing frequency
of the basis functions associated with those subspaces. The resulting
embedded multi-resolution mixture (EMM) model (embedded mixtures
on a multi-resolution feature space) is a generalization of the color his-
togram, where the additional dimensions capture the spatial dependen-
cies that are crucial for fine image discrimination. Figure 4.2 illustrates
this point by presenting two images that have the exact same color
histogram but are perceptually quite distinct. The advantage of the
EMM generalization is that it enables fine control over the invariance
properties of the representation. Since the histogram is approximately
invariant to scaling, rotation, and translation, when only the DC sub-
space is considered the EMM representation is also invariant to all these
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Fig. 4.2 Two images that, although visually very dissimilar, have the same color histogram.

transformations. However, by including high-frequency coefficients, it
is possible to trade-off invariance for Bayes error.

4.3 Multiresolution Transforms

A number of multiresolution feature transformations can be used with
MPE retrieval. In fact, it is possible to efficiently combine many trans-
formations, so as to explicitly select the best feature subset, in the MPE
sense. This is discussed in detail in [120, 124]. In this section, we simply
review some of the most popular transformations that are available in
the literature. The discussion is, by design, brief. More details can be
found on a number of image processing textbooks [19, 50, 72].

Definition 4.1. The discrete cosine transform (DCT) [19, 55] of
size n is the orthogonal transform whose basis functions are defined
by:

A(i, j) = α(i)α(j)cos
(2x + 1)iπ

2n
cos

(2y + 1)jπ
2n

, 0 ≤ i, j,x,y < n,

(4.16)
where α =

√
1/n for i = 0, and α =

√
2/n otherwise.

The DCT is widely used in image compression, and recognition exper-
iments have shown that DCT features can lead to recognition rates
comparable to those of many features proposed in the recognition lit-
erature [121]. It is also possible to show that, for certain classes of
stochastic processes, the DCT converges asymptotically to the follow-
ing transform [55].
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Definition 4.2. Principal components analysis (PCA) is the orthog-
onal transform defined by

T = D−1/2ET , (4.17)

where EDET is the eigenvector decomposition of the covariance matrix
E[zzT ].

It is well known (and straightforward to show) that PCA generates
uncorrelated features, i.e., E[xxT ] = I. In this context, PCA is the
optimal redundancy reduction transform, i.e., the one that produces
the most parsimonious description of the input observations. For this
reason, PCA has been widely used in both compression and recogni-
tion [79, 117]. An alternative multi-resolution representation is provided
by wavelet decompositions.

Definition 4.3. A wavelet transform (WT) [71, 72] is the orthogonal
transform whose basis functions are defined by

A(i, j) =
√

2k+lΨ
(
2kx − i

)
Ψ
(
2ly − j

)0≤k,l<log2 n

(0,0)≤(i,j)<(2k,2l)
, (4.18)

where Ψ(x) is a function (wavelet) that integrates to zero.

Like the DCT, wavelets have been shown empirically to achieve good
decorrelation. However, natural images exhibit a significant amount of
higher-order dependencies that cannot be captured by orthogonal com-
ponents [82]. Eliminating such dependencies is the goal of independent
component analysis.

Definition 4.4. Independent component analysis (ICA) [15, 50] is a
feature transform T :Z → X such that, for a general PZ(z), the random
variable X = (X1, . . . ,Xd) from which feature vectors are drawn has
independent components

PX(x) =
∏

i

PXi(xi). (4.19)

The exact details of ICA depend on the particular algorithm used to
learn the basis from a training sample. Since independence is usually
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difficult to measure and enforce if d is large, ICA techniques tend to
settle for less ambitious goals. The most popular solution is to mini-
mize a contrast function, which is guaranteed to be zero if the inputs
are independent. Examples of such contrast functions are higher order
correlations and information-theoretic objective functions [15]. Popu-
lar representatives from the two types are (1) the method developed by
Comon [21], which uses a contrast function based on high-order cumu-
lants, and (2) the FastICA algorithm [51], that relies on the negative
entropy of the features.

Figure 4.3 presents sets of basis functions learned from a sample
of 100,000 examples extracted randomly from the Brodatz texture
database. The figure presents the functions learned for PCA, ICA with
the method of Comon, and ICA with the FastICA algorithm, as well
as the DCT basis (wavelet basis do not have block-based support and

Fig. 4.3 Basis functions for DCT (top left), PCA (top right) ICA learned with Comon’s
method (bottom left) and ICA learned with the fastICA method (bottom right).
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are not shown). In principle, any of these features can be used in the
EMM representation. In Section 4.5, we present a comparison of the
resulting retrieval performance.

4.4 Localized Similarity

While we have, so far, focused on the problem of similarity between
entire images, which we refer to as holistic image similarity , a good
retrieval architecture should also provide support for localized queries,
i.e., queries consisting of user-selected image regions. The ability to
satisfy such queries is of paramount importance for two fundamental
reasons. First, a retrieval architecture that supports localized similarity
will be much more tolerant to incomplete queries than an architecture
that can only evaluate global similarity. In particular, it will be able to
perform partial matches and therefore much more robust to occlusion,
object deformation, and changes of imaging parameters. This is likely
to improve retrieval accuracy even for holistic queries. Second, localized
queries are much more revealing of the user’s interests than global ones.
Consider a retrieval system faced with the query image of Figure 4.4.
Given the entire picture, the only possible inference is that the user may
be looking for any combination of the objects in the scene (fireplace,

Fig. 4.4 Example of a query image with multiple interpretations.
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bookshelves, painting on the wall, flower baskets, white table, sofas,
carpet, rooms with light painted walls) and the query is ambiguous.
By allowing the user to indicate the relevant regions of the image, the
ambiguity can be significantly reduced.

One of the main attractions of MPE retrieval is that it makes local
queries straightforward. This follows from the fact that the optimality
of (4.1) does not require the query set Q to have the same cardinality as
the sets Di used to estimate the class-conditional densities PX|Y (x|i).
In fact, it is completely irrelevant if Q consists of one query vector, a
collection of vectors extracted from a region of a query image, or all
the vectors that compose that query image. Hence, there is no differ-
ence between local and global queries. The ability of MPE similarity
to explain individually each of the vectors that compose the query
is a major advantage over criteria based on measures of similarity
between entire densities, such as Lp norms or the KL divergence, for two
fundamental reasons. First, it enables local similarity without explicit
segmentation of the images in the database. The only segmentation that
is required are the image regions which make up the query, and which
are provided by the user himself/herself. Second, since MPE retrieval
relies on a generative model (a probability density) that is compact
independently of the number of elemental regions that compose each
image, these can be made as small as desired, all the way down to the
single pixel size. Our choice of localized neighborhoods is motivated by
concerns that are not driven by the feasibility of the representation per
se, but rather by the desire to achieve a good trade-off between invari-
ance, the ability to model local image dependencies, and the ability
to allow users to include regions of almost arbitrary size and shape in
their queries.

4.5 Experiments

In this section, we present an experimental study of the retrieval archi-
tecture discussed above. In addition to the Brodatz and Columbia
datasets used in the previous section, we have also conducted experi-
ments on the Corel dataset of stock photography. While Brodatz is a
texture database and color-based methods tend to do well on Columbia,
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Corel contains generic imagery and requires retrieval algorithms that
can account for both color and texture.

4.5.1 Experimental Set-Up

All images were normalized to the sizes 240 × 360 or 360 × 240. The
image observations were 8 × 8 patches obtained with a sliding window
moved by two pixels in a raster scan fashion (with a vertical interval of
two lines), leading to a sample of about 20,000 observations per image.
Mixtures of 8 Gaussians with diagonal covariance were learned for all
images with the EM algorithm [27], initialized with the generalized
Lloyd algorithm [42] according to the codeword splitting procedure
discussed in [43]. After learning the initial set of means, all the vec-
tors in the training set were assigned to the closest (in the Euclidean
sense) mean vector, the sample covariances resulting from this assign-
ment were used as initial estimate for the covariances, and the rela-
tive frequencies of the assignments as initial estimates for the mixture
probabilities. Each image in the retrieval database was considered as a
different class.

The specific organization of the Brodatz and Columbia databases
was as in the previous section. From Corel, we selected 15 concepts1

leading to a total of 1500 images. Of these, 10% were used on the query
database, leaving the remaining 90% for retrieval. In terms of bench-
mark techniques, we used those of the previous section: MRSAR fea-
tures and the Mahalanobis distortion on Brodatz, and color histograms
with HI on Columbia. In addition to the texture and color-based
approaches, Corel allowed the comparison of MPE retrieval against
a popular empirical approach that jointly models the two attributes:
the color correlogram of [48].

4.5.2 Feature Transformation

We start with a set of results that illustrate (1) the importance of rely-
ing on a diverse dictionary of feature transforms as a means to achieve

1 “Arabian horses”, “auto racing”, “coasts”, “divers and diving”, “English country gardens”,
“fireworks”, “glaciers and mountains”, “Mayan and Aztec ruins”, “oil paintings”, “owls”,
“land of the pyramids”, “roses”, “ski scenes”, and “religious stained glass”.
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high retrieval accuracy over a diverse set of databases, and (2) how the
performance of a given transform can vary significantly with both the
type of database and the selected subspace dimension. For each query,
we measured precision at various levels of recall. The precision/recall
(PR) curves were then averaged over all queries to generate an average
PR curve for each feature transform. Figure 4.5 presents the curves of
precision, as a function of subspace dimension, at 30% recall on Bro-
datz and 10% recall on Corel (the relative precision values obtained
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Fig. 4.5 Top: precision, at 30% recall, on Brodatz. Bottom: precision, at 10% recall, on
Corel.
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with the various transformations did not vary significantly with the
level of recall).

The precision curves comply with the theoretical arguments of
Section 2.2. Since precision is inversely proportional to the probability
of error, one would expect, from those arguments, the precision curves
to be concave. This is indeed the case for all transformations (there is
a large increase in precision from 1 to 8 dimensions on both cases that
we omit for clarity of the graph). Other than this, there are two other
interesting observations. The first is that, for a given database, a poor
choice of transformation can lead to significant degradation of retrieval
performance. For example, the peak precision of the worst transforma-
tion (wavelet) on Brodatz is 10% below that of the best (DCT) and on
Corel the variation is almost 20%. Furthermore, while the wavelet basis
has the worst performance on Brodatz, it is one of the top two feature
sets on Corel. On the other hand, ICA does better on Brodatz than on
Corel. Second, even for a given feature transformation, precision can
vary dramatically with the number of embedded subspaces. For exam-
ple, the precision of the DCT features on Brodatz drops from the peak
value of about 92% to about 62% when all the subspaces are included.
Overall, the use of the first 32 coefficients of the DCT seems to achieve
good performance across all datasets. We, therefore, adopted this value
in all remaining experiments.

4.5.3 Comparison in the Texture and Color Domains

We next compared the performance of MPE retrieval with those of
MRSAR and HI, in the specific databases where the latter work best:
texture (Brodatz) for MRSAR and color (Columbia) for HI. Figure 4.6
presents the resulting PR curves, showing that MPE retrieval achieves
equivalent performance or actually outperforms the best of the two
other approaches in each image domain. This indicates that the MPE
architecture performs well for both color and texture and should there-
fore do well on a large spectrum of databases. Visual inspection of
the retrieval results suggests that, also along the dimension of per-
ceptual relevance, MPE retrieval clearly outperforms the MRSAR
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Fig. 4.6 PR measured for the MPE, MRSAR, and HI retrieval architectures. Top: curves
from Brodatz, where the best results for HI (which are shown) were obtained with his-
tograms of 192 bins. Bottom: curves from Columbia where best HI results were obtained
with histograms of 1728 bins. There was, however, a wide range of number of bins where
the performance was nearly constant, as illustrated by the second curve, obtained with
histograms of 512 bins.

and histogram-based approaches. Figure 4.7 presents representative
examples of the three of major advantages of the MPE retrieval system:
(1) when it makes errors, these tend to be perceptually less disturbing
than those of the other approaches, (2) when there are several visually
similar classes in the database, images from these classes tend to be
retrieved together, and (3) even when the performance is worse than
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Fig. 4.7 Comparison of MPE retrieval results (left) with those of HI on Columbia and
MRSAR on Brodatz (right).

that of the other approaches in terms of PR, the results are frequently
better from a perceptual standpoint.

The two pictures on the top row exemplify how MPE retrieval
can lead to perceptually pleasing retrieval results, even when the PR
performance is only mediocre. In this case, while HI retrieves several
objects unrelated to the query, MPE only returns objects that, like
the query, are made of wood blocks. This is due to the fact that, by
relying on features with spatial support, the embedded multiresolution
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mixture representation is able to capture the local appearance of the
object surface. Hence, it tends to match surfaces with the same shape,
texture, and reflectance properties. This is not possible with color
histograms.

The two images on the center exemplify situations where both
approaches perform perfectly in terms of PR, yet the perceptual
retrieval quality is very different. MRSAR ranks all the images in
the query class at the top, but produces poor matches after that. On
the other hand, MPE retrieves images that are visually similar to the
query after all the images in its class are exhausted. This observa-
tion is frequent and derives from the fact that the MRSAR features
have no perceptual justification. On the other hand, because a good
match under MPE retrieval implies that the query and retrieved images
should populate the space of spatial frequencies in a similar fashion, this
approach tends to group images that have energy along the same orien-
tations and a frequency spectrum with the same types of periodicities.
These characteristics are known to be relevant for human judgments of
similarity [67].

Finally, the pictures on the bottom row illustrate how, even when
it has higher PR, HI can lead to perceptually poorer results than the
MPE approach. In this case, images of a pear and a duck are retrieved
by HI after the images in the right class (“Advil box”), even though
there are several boxes with colors similar to those of the query in
the database. On the other hand, MPE retrieval only retrieves boxes,
although not in the best possible order.

4.5.4 Generic Retrieval

In addition to color and texture, we performed experiments on the Corel
database, where a combination of the two cues is usually needed to eval-
uate image similarity. Figure 4.8 presents a comparison, in terms of PR,
of MRSAR, HI, the color correlogram, and MPE retrieval. It is clear
that the texture model alone performs very poorly, color histogram-
ming does significantly better, and the correlogram further improves
performance by about 5%. However, all the empirical approaches are
significantly less effective than MPE retrieval.
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Fig. 4.8 PR on Corel for MRSAR, HI (512 bin histograms), color correlogram (CAC), and
MPE retrieval. The features selected by MPE were the DCT set with 46 subspaces.

4.5.5 Localized Queries

We next considered region-based queries. For this, we started by repli-
cating the experiments above but now considering incomplete queries,
i.e., queries consisting only of a subset of the query image. All parame-
ters were set to the values that were previously used to evaluate global
similarity and a series of experiments conducted for query sets of dif-
ferent cardinalities. From a total of 256 non-overlapping blocks, the
number of vectors contained in the query varied from 1 (0.3% of the
image) to 256 (100%).2 Blocks were selected starting from the center
in an outward spiral fashion.

Figure 4.9 presents PR curves for these experiments. The figure
clearly shows that it only takes a small subset of the query feature
vectors to achieve retrieval performance identical to the best possible.
In both cases, 64 query vectors, 0.4% of the total number that could
be extracted from the image and covering only 25% of its area, are
enough. In fact, for Columbia, performance is significantly worse when
all 256 vectors are considered than when only 64 are used. This is

2 Notice that even 256 vectors are a very small percentage (1.5%) of the total number of
blocks that could be extracted from the query image if overlapping blocks were allowed.
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Fig. 4.9 PR curves of EMM/ML on Brodatz (top) and Columbia (bottom). X QV means
that only X feature vectors from the query image were actually included in query.

due to the fact that, in Columbia, all objects appear over a common
black background that can cover a substantial amount of the image
area. As Figure 4.10 illustrates, when there are large variations in scale
among the different views of the object used as query, the consequent
large differences in uncovered background can lead to retrieval errors.
In particular, images of objects in a pose similar to that of the query
are preferred to images of the query object in very different poses.

Notice that these are two natural interpretations of similarity (prefer
objects similar to the query and presented in the same pose vs. prefer
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Fig. 4.10 Global similarity (left) can lead to worse precision/recall than localized similarity
(right) on Columbia due to the large black background common to all objects.

the query object in different poses) and MPE retrieval seems to oscil-
late between the two. Under global similarity, the more generic inter-
pretation (pictures of box-shaped objects in a particular orientation) is
favored. When the attention of the retrieval system is focused explic-
itly on the query object (localized query), this object becomes preferred
independently of its pose. Obviously, PR cannot account for these types
of subtleties and the former interpretation is heavily penalized. In any
case, these experiments show that MPE retrieval has some robustness
against missing data and can therefore handle localized queries.



5
MPE Image Annotation and Semantic Retrieval

So far, we have considered architectures for QBVE. This is not always
a natural retrieval paradigm. For example, the user may not even have
a good query image at hand. The natural next step is to consider the
design of semantic retrieval systems. These are systems where database
images are annotated with semantic labels, enabling the user to specify
the query through a natural language description of the visual con-
cepts of interest. The central problem is how to automatically extract
semantic descriptors from images. We next consider this problem.

5.1 Semantic Labeling and Retrieval

Consider a database T = {I1, . . . ,IN} of images Ii and a semantic
vocabulary L = {w1, . . . ,wT } of semantic labels wi. The goal of seman-
tic image annotation is to, given an image I, extract the set of seman-
tic labels, or caption,1 w that best describes it. The goal of semantic
retrieval is to, given a semantic label wi, extract the images in the
database that contain the associated visual concept. In both cases,

1 A caption is represented by a binary vector w of T dimensions whose kth entry is 1 when
wk is a member of the caption and 0 otherwise.

323
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learning is based on a training set D = {(I1,w1), . . . ,(ID,wD)} of
image–caption pairs. The training set is said to be weakly labeled if
(1) the absence of a semantic label from caption wi does not necessar-
ily mean that the associated concept is not present in Ii, and (2) it
is not known which image regions are associated with each label. For
example, an image containing “sky” may not be explicitly annotated
with that label and, when it is, no indication is available regarding
which image pixels actually depict sky. Weak labeling is expected in
practical retrieval scenarios since (1) each image is likely to be anno-
tated with a small caption that only identifies the semantics deemed as
most relevant to the labeler, and (2) users are rarely willing to manually
annotate image regions.

Under the MPE criteria, image labeling is defined as a multiclass
classification problem. The classes are the elements of the semantic
vocabulary L, which compete for the image to label at annotation
time. This form of supervised multiclass labeling (SML) requires the
introduction of a random variable W , which takes values in {1, . . . ,T},
so that W = i if and only if x is a sample from concept wi. Each class is
characterized by a class-conditional distribution PX|W (x|i). Given a set
of feature vectors F extracted from a (previously unseen) test image I,
the image’s MPE label is

i∗(F) = argmax
i
PW |X(i|F). (5.1)

Similarly, given a query concept wi, MPE semantic retrieval consists of
returning the database image of index

j∗(wi) = argmax
j
PX|W (Fj |i), (5.2)

where Fj is the set of feature vectors extracted from the jth database
image, Ij . The posterior probabilities PW |X(i|F) are computed by
application of Bayes rule

PW |X(i|x) =
PX|W (x|i)PW (i)

PX(x)
(5.3)

where PW (i) is the prior probability of class i. Note that, at annotation
time, SML produces an ordering of the semantic classes by posterior
probability PW |X(i|F). This ordering is optimal in the MPE sense.
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5.2 Estimation of Semantic Class Distributions

The ith semantic class density is estimated from a training set Di

containing all feature vectors extracted from images labeled with con-
cept wi. However, many of the concepts only occupy a fraction of the
images that contain them. Since most images are a combination of var-
ious concepts, the assembly of a training set for each semantic class
should be preceded by (1) careful semantic segmentation, and (2) iden-
tification of the image regions containing the associated visual feature
vectors. In practice, the manual segmentation of all database images
with respect to all concepts of interest is infeasible. Existing segmen-
tation algorithms are also unable to produce a decomposition of each
image into a plausible set of semantic regions. A pressing question is
then whether it is possible to estimate the densities of a semantic class
without prior semantic segmentation, i.e., from a training set containing
a significant percentage of feature vectors from other semantic classes.
This question has been studied in the machine learning literature, and
it is usually referred to as multiple instance learning [1, 3, 29, 75, 76].

Unlike classical learning, which is based on sets of positive and nega-
tive examples, multiple instance learning addresses the problem of how
to learn models from positive and negative bags of examples. A bag is a
collection of examples and is considered positive if at least one of those
examples is positive. Otherwise, the bag is negative. The key property
is that, for sufficiently large bags, the empirical distribution of feature
vectors in the positive bag tends to approximate the distribution of
the positive class. Although this has been mostly demonstrated exper-
imentally, the experimental evidence is substantial. For example, [75]
has shown that the peak of the empirical distribution tends to occur in
the region of support of the positive examples, [123] has shown that the
empirical distribution performs well when used as the concept’s class
conditional distribution for image classification, and [36] has shown
that clustering the collection of feature vectors produces a codebook of
parts which are representative of the positive class (e.g., eyes, mouth,
or nose for a face concept).

The intuition for this behavior is simple: while the negative exam-
ples present in positive bags tend to be spread all over the feature space,
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the positive examples are much more likely to be concentrated within a
small region of the latter. Hence, the empirical distribution of positive
bags is well approximated by a mixture of two components: a uniform
component from which negative examples are drawn, and the distri-
bution of positive examples. The key insight is that, because it must
integrate to one, the uniform component tends to have small ampli-
tude (in particular if the feature space is high dimensional). It follows
that, although the density of the common concept may not be domi-
nant in any individual image, the consistent appearance in all images
makes it dominant over the entire positive bag. Hence, a density esti-
mate produced from the entire bag should be a close approximation to
the density of the target concept. In the following section, we provide
a more precise characterization of this intuition, and some theoretical
results on the learnability of concepts using the multiple instance learn-
ing paradigm. For now, we consider the problem of learning semantic
class densities efficiently.

5.3 Efficient Density Estimation

Since concept densities must be learned from large numbers of images,
the direct estimation of PX|W (x|i) from the set of all feature vectors
extracted from all training images that contain concept wi is usually
infeasible. A more effective strategy is to reuse computation. Given a
training set Di of Di images, a density estimate is first produced for
each image in Di, originating a sequence PX|L,W (x|l, i), l ∈ {1, . . .Di},
where L is a hidden variable that indicates the image number. The
concept density is then estimated in a second step, by combining the
individual image density estimates. This can be done in two ways: model
averaging and hierarchical estimation.

Under the model averaging strategy, the concept density is obtained
by averaging the individual image densities

PX|W (x|i) =
1
Di

Di∑
l=1

PX|L,W (x|l, i). (5.4)

The direct application of (5.4) is feasible when the densities
PX|L,W (x|l, i) are defined over a (common) partition of the feature



5.3 Efficient Density Estimation 327

space. For example, if all densities are histograms defined on a partition
of the feature space S into Q cells {Sq}, q = 1, . . . ,Q, and hq

i,l the num-
ber of feature vectors from class i that land on cell Sq for image l, then
the average class histogram is simply

ĥq
i =

1
Di

Di∑
l=1

hq
i,l.

However, when (1) the partition is not the same for all histograms or
(2) more sophisticated models (e.g., mixture or non-parametric density
estimates) are adopted, model averaging is not as simple.

Consider, for example, the Gauss mixture model

PX|L,W (x|l, i) =
∑

k

πk
i,lG(x,µk

i,l,Σ
k
i,l), (5.5)

where
∑

k π
k
i,l = 1. Direct application of (5.4) leads to

PX|W (x|i) =
1
Di

∑
k

Di∑
l=1

πk
i,lG(x,µk

i,l,Σ
k
i,l), (5.6)

i.e., a Di-fold increase in the number of Gaussian components per mix-
ture. Since, at annotation time, this probability has to be evaluated for
each semantic class, it is clear that straightforward model averaging
will lead to an extremely slow annotation process.

An efficient alternative is to adopt a hierarchical density estima-
tion method first proposed in [122] for image indexing. This method is
based on a mixture hierarchy, where children densities consist of differ-
ent combinations of subsets of the parents’ components. In the semantic
labeling context, image densities are children and semantic class den-
sities their parents. As shown in [122], it is possible to estimate the
parameters of class mixtures directly from those available for the indi-
vidual image mixtures, using a two-stage procedure. The first stage is
the model averaging of (5.6). Assuming that each image mixture has
K components, this leads to a class mixture of DiK components with
parameters

{πk
j ,µ

k
j ,Σ

k
j }, j = 1, . . . ,Di, k = 1, . . . ,K. (5.7)
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Algorithm 2 Hierarchical EM algorithm (Gaussian mixtures)

Input: set of parameters, {πk
j ,µ

k
j ,Σ

k
j }, j = 1, . . . ,Di, k = 1, . . . ,K,

of the average model of (5.4), and initial mixture parameters
{πm

c ,µ
m
c ,Σ

m
c },m = 1, . . . ,M of the class mixture.

repeat
E-step: for each component {πk

j ,µ
k
j ,Σ

k
j } of the average model and

each component {πm
c ,µ

m
c ,Σ

m
c } of the class mixture, compute

hm
jk =

[
G(µk

j ,µ
m
c ,Σ

m
c )e−

1
2 trace{(Σm

c )−1Σk
j }
]πk

j
πm

c∑
l

[
G(µk

j ,µ
l
c,Σl

c)e
− 1

2 trace{(Σl
c)−1Σk

j }
]πk

j
πl

c

(5.8)

M-step: update the class mixture parameters with

(πm
c )new =

∑
jk h

m
jk

DiK
(5.9)

(µm
c )new =

∑
jk

wm
jkµ

k
j , where wm

jk =
hm

jkπ
k
j∑

jk h
m
jkπ

k
j

(5.10)

(Σm
c )new =

∑
jk

wm
jk

[
Σk

j + (µk
j − (µm

c )new)(µk
j − (µm

c )new)T
]
.

(5.11)

until convergence

The second is an extension of EM which clusters the Gaussian compo-
nents into a M -component mixture, where M is the number of com-
ponents desired at the class level. This hierarchical extension of EM is
presented in Algorithm 2.

Note that the number of parameters in each image mixture is orders
of magnitude smaller than the number of feature vectors in the image
itself. Hence, the complexity of estimating the class mixture param-
eters is negligible when compared to that of estimating the individ-
ual mixture parameters for all images in the class. It follows that the
overall training complexity is dominated by the latter task, i.e., only
marginally superior to that of model averaging. On the other hand, the
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Algorithm 3 Learning concept mixtures
Input: Training image database T , number of components in image
K1 and concept K2 mixture models.
for each image Ii ∈ T do

extract a set F = {x1, . . . ,xM} of features from Ii

estimate the parameters {πk
i ,µ

k
i ,Σ

k
i }

K1
k=1 of a Gauss mixture model

PX|L(x|i) =
K1∑
k=1

πk
i G(x,µk

i ,Σ
k
i ) (5.12)

that maximize the likelihood of F , using the EM procedure of
Algorithm 1.

end for
for each semantic class ω ∈ L do

build a training image set T̃ ⊂ T , where ω ∈ wi for all Ii ∈ T̃ .
set

PW (ω) = |T̃ |/|T |

learn a concept-mixture

PX|W (x|ω) =
K2∑
k=1

πk
wG(x,µk

w,Σ
k
w) (5.13)

by applying the hierarchical EM procedure of Algorithm 2 to the
image-level mixtures of (5.12) associated with the images Ii ∈ T̃ .

end for
Output: concept level mixtures PX|W (x|ω) and concept probabili-
ties PW (ω).

complexity of evaluating likelihoods is significantly smaller than that
of model averaging.

5.4 Algorithms

In this section, we summarize the three algorithms used for MPE con-
cept learning, annotation, and retrieval. The learning and annotation
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Algorithm 4 Image annotation
Input: Image I to annotate, concept models PX|W (x|ω), and prob-
abilities PW (ω).
extract a set F = {x1, . . . ,xM} of features from I
for each semantic class ω ∈ L do

compute (unnormalized) posterior probabilities

γω =
∑

k

logPX|W (xk|ω) + logPW (ω)

end for
annotate the test image with the five classes ωi of largest posterior
probability, γωi .
Output: image annotations ωi and posterior probabilities γωi .

Algorithm 5 Image retrieval
Input: database of test images TT , concept models PX|W (x|ω) and
probabilities PW (ω), and query word ωq.
for each image It ∈ TT do

annotate It using Algorithm 4 with models PX|W (x|ω), and prob-
abilities PW (ω).

end for
rank the images labeled with the query word ωq by decreasing pos-
terior probability γωq .
Output: image ranking.

processes are also illustrated by Figure 1.4. For the algorithm that
learns concept models, we assume a training set D = {(I1,w1), . . . ,
(ID,wD)} of image-caption pairs, where Ii ∈ T with T = {I1, . . . ,ID},
and wi ⊂ L, with L = {w1, . . . ,wT }. The learning procedure is pre-
sented in Algorithm 3. A mixture model is learned for each image in T
and the mixtures associated with each concept are then pooled to learn
the concept density. The concept probabilities PW (ω) are set to the
ratios of the number of images labeled with each concept ω and the
total number of images.

The annotation algorithm uses the concept models and probabilities
to identify the concepts that best describe a given image I to annotate.
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This is done with the MPE rule, i.e., by selecting the concepts of largest
posterior probability. Finally, the retrieval algorithm has inputs (a) a
query concept ωq, and (b) a database of test images TT , such that
TT

⋂
TD = ∅. It returns a set of images from TT , ordered by posterior

probability of depicting the concept. We have found, experimentally,
that the restriction to the images for which the query is a top label
increases the robustness of the ranking (as compared by the simple
ranking by label posterior).

5.5 Experiments

A number of proposals for semantic image annotation and retrieval
have appeared in the literature. In general, it is difficult to compare
different algorithms, unless their performance has been evaluated with
a common experimental protocol. A popular protocol, here referred to
as Corel5K, has been adopted by a number of research groups [31,
35, 60]. There are, nevertheless, two significant limitations associated
with the Corel5K protocol. First, because it is based on a relatively
small database, many of the semantic labels in Corel5K have a very
small number of examples. This makes it difficult to guarantee that the
resulting annotation systems have good generalization. Second, because
the size of the caption vocabulary is also relatively small, Corel5K does
not test the scalability of annotation/retrieval algorithms.

Some of these limitations are corrected by the Corel30K protocol,
which is an extension of Corel5K based on a substantially larger
database. Neither of the two protocols is, however, easy to apply to
massive databases since both require the manual annotation of each
training image. The protocol proposed by Li and Wang [64] (which we
refer to as PSU) is a suitable alternative for testing large-scale label-
ing and retrieval systems. Because each of the three protocols has been
used to characterize a non-overlapping set of semantic labeling/retrieval
techniques, we performed an evaluation on all three.

5.5.1 The Corel5K and Corel30K Protocols

The evaluation of a semantic annotation/labeling and retrieval system
requires three components: an image database with manually produced
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annotations, a strategy to train and test the system, and a set of mea-
sures of retrieval and annotation performance. The Corel5K benchmark
[31, 35, 60] is based on the Corel image database: 5000 images from
50 Corel Stock Photo CDs were divided into a training set of 4000
images, a validation set of 500 images, and a test set of 500 images. An
initial set of model parameters is learned on the training set. Parame-
ters that require cross-validation are then optimized on the validation
set, after which this set is merged with the training set to build a new
training set of images. Non-cross-validated parameters are then tuned
with this training set. Each image has a caption of 1–5 semantic labels,
and there are 371 labels in the data set.

Image annotation performance is evaluated by comparing the cap-
tions automatically generated for the test set with the human-produced
ground-truth. Similar to [35, 60], we define the automatic annotation as
the five semantic classes of largest posterior probability, and compute
the recall and precision of every word in the test set. For a given seman-
tic descriptor, assuming that there are wH human annotated images in
the test set, and the system annotates wauto, of which wC are correct,
recall and precision are given by recall = wC

wH
, and precision = wC

wauto
,

respectively. As suggested in previous works [35, 60], the values of recall
and precision are averaged over the set of words that appear in the test
set. Finally, we also consider the number of words with non-zero recall
(i.e., words with wC > 0), which provides an indication of how many
words the system has effectively learned.

The performance of semantic retrieval is also evaluated by mea-
suring precision and recall. Given a query term and the top n image
matches retrieved from the database, recall is the percentage of all
relevant images contained in the retrieved set, and precision the
percentage of the n which are relevant (where relevant means that
the ground-truth annotation of the image contains the query term).
Once again, we adopted the experimental protocol of [35], evaluating
retrieval performance by the mean average precision (MAP). This is
defined as the average precision, over all queries, at the ranks where
recall changes (i.e., where relevant items occur).

The Corel30K protocol is similar to Corel5K but substantially
larger, containing 31,695 images and 5,587 words. Of the 31,695 images,
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90% were used for training (28,525 images) and 10% for testing (3170
images). Only the words (950 in total) that were used as annotations
for at least 10 images were trained.

5.5.2 The PSU Protocol [64]

For very large image sets, it may not even practical to label each train-
ing image with ground-truth annotations. An alternative approach,
proposed by Li and Wang [64], is to assign images to loosely defined
categories, where each category is represented by a set of words that
characterize the category as a whole, but may not accurately charac-
terize each individual image. For example, a collection of images of
tigers running in the wild may be annotated with the words “tiger”,
“sky”, “grass”, even though some of the images may not actually depict
sky or grass. We refer to this type of annotation as noisy supervised
annotation. While it reduces the time required to produce ground-
truth annotations, it introduces noise in the training set, where each
image in some category may contain only a subset of the category
annotations.

Li and Wang [64] relied on noisy supervised annotation to label
very large databases, by implementing a two-step annotation proce-
dure, which we refer to as supervised category-based labeling (SCBL).
The image to label is first processed with an image category classifier
that identifies the five image categories to which the image is most likely
to belong. The annotations from those categories are then pooled into
a list of candidate annotations with frequency counts for re-occurring
annotations. The candidate annotations are then ordered based on the
hypothesis test that a candidate annotation has occurred randomly in
the list of candidate annotations.

More specifically, the probability that the candidate word appears
at least j times in k randomly selected categories is

P (j,k) =
k∑

i=j

I(i ≤ m)

(
m
i

)(
n−m
k−i

)(
n
k

)
where I(.) is the indicator function, n the total number of image cate-
gories, and m the number of image categories containing the word. For
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n,m 
 k, the probability can be approximated by

P (j,k) ≈
k∑

i=j

(
k

i

)
pi(1 − p)k−i,

where p = m/n is the frequency with which the word appears in the
annotation categories. A small P (j,k) indicates a low probability that
the candidate word occurred randomly (i.e., the word has high signifi-
cance as an annotation). Hence, candidate words with P (j,k) below a
threshold value are selected as the annotations.

Li and Wang [64] also proposed an experimental protocol, based
on noisy supervised annotation, for the evaluation of highly scalable
semantic labeling and retrieval systems. This protocol, which we refer
to as PSU, is also based on the Corel image set, containing 60,000
images with 442 annotations. The image set was split into 600 image
categories of 100 images each, which were then annotated with a general
description that reflects the image category as a whole. For performance
evaluation, 40% of the PSU images were reserved for training (23,878
images), and the remainder (35,817 images) used for testing. Note that
Li and Wang [64] only used 4,630 of the 35,817 possible test images,
whereas all the test images were used in the experiments reported here.
Annotation and retrieval performance were evaluated with the same
measures used in Corel5K and Corel30K.

5.6 Experimental Results

In this section, we compare the performance of SML with various previ-
ous approaches. We start with a comparison against methods that have
been evaluated on Corel5K. We then compare SML to SCBL on the
larger PSU benchmark. Finally, we perform a study of the scalability
and robustness of SML.

5.6.1 Image Representation

All experiments were based on the image representation previously used
in the QBVE experiments of Section 4. In all cases, we used DCT
features. For the implementation of SML, a Gaussian mixture of 64
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components was fit to the entire collection of images associated with
each annotation. We will refer to this class representation as GMM-
DCT. The images from the PSU database were annotated using both
the SML and SCBL methods. In the latter case, the classifiers for the
image categories had 64 mixture components and used the GMM-DCT
representation (i.e., in SML, equivalent to setting the image categories
as the annotation words).

5.6.2 Comparison of SML and Unsupervised Labeling

Table 5.1 presents the results obtained for SML and various previously
proposed methods (results from [60, 35]) on Corel5K. Specifically, we
considered the co-occurrence model of [78], the translation model of
[31], the continuous-space relevance model of [35, 60], and the multiple-
Bernoulli relevance model (MBRM) of [35]. Overall, SML achieves the
best performance, exhibiting a gain of 16% in recall for an equivalent
level of precision when compared to the next best results (MBRM).
Furthermore, the number of words with positive recall increases by
15%. Figure 1.6 presents some examples of the annotations produced.
Note that, when the system annotates an image with a descriptor not
contained in the human annotation groundtruth, this annotation is
frequently plausible.

Table 5.2 shows that, for ranked retrieval on Corel, SML produces
results superior to those of MBRM. In particular, it achieves a gain

Table 5.1. Performance comparison of automatic annotation on Corel5K.

Models Co-occurrence Translation CRM MBRM SML

#words with recall > 0 19 49 107 122 137
Results on all 260 words

Mean per-word recall 0.02 0.04 0.19 0.25 0.29
Mean per-word precision 0.03 0.06 0.16 0.24 0.23

Table 5.2. Retrieval results on Corel5K.

Mean average precision for corel dataset

Models All 260 words Words with recall > 0
SML 0.31 0.49
MBRM 0.30 0.35



336 MPE Image Annotation and Semantic Retrieval

of 40% mean average precision on the set of words that have pos-
itive recall. Figure 1.5 illustrates the retrieval results obtained with
one word queries for challenging visual concepts. Note the diversity
of visual appearance of the returned images, indicating that SML has
good generalization ability.

5.6.3 Comparison of SML and SCBL

We next compared the image categorization performance of the
GMM-DCT class representation with that of the representation of
[64]. In [64], an image category is represented by a two-dimensional
multi-resolution hidden Markov model (2D-MHMM) defined on a
feature space of localized color and wavelet texture features at multiple
scales. An image was considered to be correctly categorized if any
of the top r categories is the true category. Table 5.3 shows the
accuracy of image categorization using the two class representations.
GMM-DCT outperformed the 2D-MHMM of [64] in all cases, with an
improvement of about 0.10 (from 0.26 to 0.36). Figure 5.1 (left) shows
the categorization accuracy of GMM-DCT versus the dimension of the
DCT feature space. It can be seen that the categorization accuracy
increases with the dimension of the feature space, but remains fairly
stable over a significant range of dimensions.

We next compared the annotation performance of the two steps of
SCBL, using the GMM-DCT representation (we denote this combina-
tion by SCBL-GMM-DCT) and [64]. Following [64], the performance
was measured using “mean coverage”, which is the percentage of
ground-truth annotations that match the computer annotations.
Table 5.4 shows the mean coverage of SCBL-GMM-DCT and of [64],
using a threshold of 0.0649 on P (j,k), as in [64], and without using a
threshold. Annotations using GMM-DCT outperform those of [64] by

Table 5.3. Accuracy of image categorization on PSU database.

Class representation r = 1 r = 2 r = 3 r = 4 r = 5

GMM-DCT 0.2090 0.2701 0.3094 0.3379 0.3615
2D-MHMM 0.1188 0.1706 0.2076 0.2324 0.2605
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Fig. 5.1 Left: image categorization accuracy on PSU using GMM-DCT versus the dimension
of the DCT feature space. Right: mean coverage of annotation on PSU using SCBL-GMM-
DCT versus the dimension of the DCT feature space.

Table 5.4. Mean coverage for annotation on PSU database.

Method Threshold = 0.0649 No threshold

SCBL-GMM-DCT 0.3420 0.6124
Li and Wang [64] 0.2163 0.4748

about 0.13 (from 0.22 to 0.34 using a threshold, and 0.47 to 0.61 for
no threshold). Figure 5.1 (right) shows the mean coverage versus the
dimension of the DCT feature space. Again, performance increases
with feature space dimension, but remains fairly stable over a large
range of dimensions.

Finally, we compared SCBL and SML when both methods used
the GMM-DCT representation. SCBL annotation was performed by
thresholding the hypothesis test (SCBL-GMM-DCT threshold), or
by selecting a fixed number annotations (SCBL-GMM-DCT fixed).
Figure 5.2 presents the precision-recall (PR) curves produced by the
two methods. The SML curve has the best overall precision at 0.23,
and its precision is clearly superior to that of SCBL at most levels of
recall. There are, however, some levels where SCBL-GMM-DCT leads
to a better precision. This is due to the coupling of words within the
same image category, and to the noise in the ground-truth annotations
of PSU. A more detailed discussion is available in [16].
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Fig. 5.2 Precision-recall for SCBL and SML using GMM-DCT on the PSU database.

In summary, the experimental results show that the GMM-DCT
representation substantially outperforms the 2D-MHMM of [64] in both
image categorization and annotation using SCBL. When comparing
SML and SCBL based on the GMM-DCT representation, SML achieves
the best overall precision, but for some recall levels SCBL can achieve
a better precision due to coupling of annotation words and noise in the
annotation ground truth.



6
Weakly Supervised Estimation

of Probability Densities

In the previous section, we have seen that effective image classifiers can
be learned hierarchically and with very weak supervision. To estimate
class-conditional feature distributions, we simply pooled all the feature
vectors from all the image associated with each class. In principle, this
might appear to be a bad idea. After all, many of the features extracted
from any image of a given class may not even belong to that class. This
is illustrated by the top portion of Figure 6.1. The image shown con-
tains a number of visual concepts, and has been manually annotated
as belonging to the classes “people”, “beach”, “sand”, “palm trees”,
“hut”, and “vacation”. As shown on the right, feature vectors extracted
from this image will cover a large region of the feature space. In particu-
lar, we illustrate how various sub-regions of the space are populated by
feature vectors from different classes, e.g., “hut”, “palm trees”, “sand”
(shown in red), or “people” (shown in green). When the image is used
as an example of the “people” class, most of the feature vectors will
actually fall outside the region of the space associated with this con-
cept (the green area). How is it, then, that the classifier can learn to
disregard all the red areas, and declare the presence of the “people”
concept only when faced with feature vectors from the green region?
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caption: people, beach, sand,
palm trees, hut, vacation
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Fig. 6.1 Top: a typical image contains feature vectors associated with various visual con-
cepts. Only some of these will correspond to a particular interpretation of the image, e.g.,
“people”. Bottom: when a diverse set of images labeled with a common concept (again
“people”) is assembled, the resulting feature distribution is dominated by the distribution
of that concept.

We have already hinted that the answer is multiple instance learn-
ing. While all this training noise makes it impossible to learn the people
concept from a single image, this becomes possible from a collection of
images. The key requirement is that this collection be diverse. By this
it is meant that, while all images will depict “people”, the remaining
concepts must be random. For example, people should appear indoors
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in some images, outdoors in others, sometimes on the beach, others
on mountains, others in urban environments, and so forth. This is
illustrated by the bottom portion of Figure 6.1. Note that all images
in this figure contribute feature vectors to the region populated by the
people concept (again shown in green). However, since the backgrounds
are diverse, each image contributes to a different set of red regions. If the
space is large, there will be many such regions, and each will get a few
feature vectors. Hence, a histogram computed over the entire space
will contain a very strong peak for the green cell, and much smaller
feature vector counts for the red cells. This implies that the probability
distribution is dominated by the green region, and a density estimate
learned from the entire feature set will approximate that learned from
the “people” features alone. In this section, we attempt to quantify
some of these statements by considering the following questions. Is
the distribution learned from the whole image set really dominated by
the distribution of the common concept? What are the variables that
affect the convergence to this distribution as the training set grows?
How can one quantify the statement that the backgrounds should be
diverse? What is meant when it is said that the space should be large
enough? We derive theoretical answers to these questions that help
understand the effectiveness of the classifiers introduced in the previous
section.

6.1 Weakly Supervised Density Estimation

We start by analyzing the simple synthetic example of Figure 6.2. This
example illustrates the problem of learning semantic class densities for a
hypothetical set of images containing four semantic Gaussian concepts.
Each concept has probability πi ∈ [0,1], i.e., it occupies πi of the image
area, on average. Introducing a hidden variable L for the image number,
the distribution of each image can be written as

PX|L(x|l) =
4∑

i=1

πiG(x,µl
i,σ

l
i), (6.1)

where
∑4

i=1πi = 1,(µl
i,σ

l
i) are the mean and variance of the ith Gaus-

sian associated with the lth image, with G(x,µ,σ) = 1
σ
√

2π
e−(x−µ)2/2σ2

,
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Fig. 6.2 Synthetic example of multiple instance learning of semantic class densities. Top and
center rows: probability distributions of individual images (PX|L(x|l)). Each image distribu-
tion is simulated by a mixture of the distribution of the concept of interest (dashed line) and
three distributions of other visual concepts present in the image (solid line). All concepts are
simulated as Gaussians of different mean and variance. Bottom row: empirical distribution
PX(x) obtained from a bag of D = 1000 simulated images, the estimated class conditional
distribution (using maximum likelihood parameter estimates under a mixture of Gaussians
model) P̂X|W (x|w), and the true underlying distribution PX|W (x|w) = G(x,µw,σw) of the
common concept w. Each column is associated with a different value of π1 in (6.1).
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and the distribution of the bag of D images is

PX(x) =
D∑

l=1

PX|L(x|l)PL(l) =
1
D

D∑
l=1

4∑
i=1

πiG(x,µl
i,σ

l
i)

where we have assumed that all images are equally likely.
If one of the four components (e.g., the first, for simplicity) is always

the density of concept w, e.g., µl
1 = µw and σl

1 = σw,∀l, and the others
are randomly selected from a pool of Gaussians of uniformly distributed
mean and standard deviation, then

PX(x) =
4∑

i=1

1
D

D∑
l=1

πiG(x,µl
i,σ

l
i)

= π1G(x,µw,σw) +
4∑

i=2

πi

D

D∑
l=1

G(x,µl
i,σ

l
i)

and, from the law of large numbers, as D → ∞

PX(x) = π1G(x,µw,σw) + (1 − π1)
∫

G(x,µ,σ)pµ,σ(µ,σ)dµdσ,

where pµ,σ(µ,σ) is the joint distribution of the means and variances
of the components other than that associated with w. Hence, the dis-
tribution of the positive bag for concept w is a mixture of (1) the
concept’s density, and (2) the average of many Gaussians of different
mean and covariance. The latter converges to a distribution that is
approximately uniform and, in order to integrate to one, must have
small amplitude, i.e.,

lim
D→∞

PX(x) = π1G(x,µw,σw) + (1 − π1)κ,

with κ ≈ 0.
Figure 6.2 presents a simulation of this effect, when µ ∈ [−100,100],

σ ∈ [0.1,10], µw = 30, σw = 3.3, and the bag containsD = 1,000 images.
Figure 6.3 presents a comparison between the estimate of the distribu-
tion of w, P̂X|W (x|w), obtained by fitting (in the maximum likelihood
sense) a mixture of five Gaussians (using the EM algorithm) to the
entire bag, and the true distribution PX|W (x|w) = G(x,µw,σw). The
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Fig. 6.3 KL divergence between estimated, P̂X|W (x|w), and actual, PX|W (x|w), class con-
ditional density of concept w as a function of the number of training images D, for different
values of π1. Error bars illustrate the standard deviation over a set of 10 experiments for
each combination of D = {1, . . . ,1000} and π1 = 0.3,0.4.

comparison is based on the Kullback–Leibler (KL) divergence,

KL[P̂X|W (x|w)||PX|W (x|w)] =
∫
P̂X|W (x|w) log

P̂X|W (x|w)
PX|W (x|w)

dx,

and shows that, even when π1 is small (e.g., π1 = 0.3), the distribution
of concept w dominates the empirical distribution of the bag, as the
number D of images increases.

Figure 6.4 shows that the same type of behavior is observed in real
image databases. In this example, semantic densities were learned over
a set of training images from the Corel database, using the methods
of the previous section. A set of test images were then semantically
segmented by (1) extracting a feature vector from each location in
the test image, and (2) classifying this feature vector into one of the
semantic classes present in the image (semantic classes were obtained
from the caption provided with the image [31]). Figure 6.4 depicts the
indexes of the classes to which each image location was assigned (class
indexes shown in the color bar on the right of the image) according to

i∗(F) =

{
argmaxiPW |X(i|F), if PW |X(i|F) > τ

0, otherwise
(6.2)
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Fig. 6.4 Original images (top row) and posterior assignments (bottom row) for each image
neighborhood (Undec. means that no class has a posterior bigger that τ in (6.2)).
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where F is the set of feature vectors extracted from the image to
segment, τ = 0.5,

PW |X(i|F) =
PX|W (F|i)PW (i)

PX(F)

with

PX|W (F|i) =
∏
k

PX|W (xk|i), (6.3)

PW (i) uniform,

PX(F) = PX|W (F|i)PW (i) + PX|W (F|¬i)PW (¬i),

and the density for “no class i” (¬i) learned from all training images
that did not contain class i in their caption. In order to facilitate visual-
ization, the posterior maps were reproduced by adding a constant, the
index of the class of largest posterior, to that posterior. Regions where
all posteriors were below threshold were declared “undecided”. Finally,
the segmentation map was smoothed with a Gaussian filter. Note that,
while coarse, the segmentations do (1) split the images into regions of
different semantics, and (2) make correct assignments between regions
and semantic descriptors. This shows that the learned densities are
close to the true semantic class densities.

6.2 Concept Learnability

Having provided some empirical evidence for the convergence of mul-
tiple instance learning, we turn to the derivation of theoretical results
on the learnability of semantic concepts. As before, images are repre-
sented as collections of feature vectors, i.e., Ii = {xi

1, . . . ,x
i
n} for the ith

image, and concepts are drawn from a random variable W that assigns
a probability distribution to a concept vocabulary L. The goal is to
learn the probability distribution associated with a certain concept c,
PX|W (x|c), which we will refer to as Pc(x) for simplicity. Learning is
based on a training set Dc. Each image I ∈ Dc is a sample of feature
vectors from a distribution

PX(x) = πPc(x) + (1 − π)PB(x). (6.4)
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The probability π is the percentage of the image area covered by c,
on average, and PB(x) a background distribution that accounts for
everything else. Since any probability distribution can be approximated
arbitrarily well by a (potentially infinite) mixture of Gaussians, we
assume that the background density is of this form. We further assume
that it is a mixture of K − 1 equal probability (1/K) components1 and
that π = 1/K.

Definition 6.1. Image Ii in the training set D is a sample from a
random variable of probability density function

P i
X(x) =

1
K


Pc(x) +

K−1∑
j=1

G(x,µi
j ,Σ

i
j)


 . (6.5)

The training set D is denoted diverse if the background distributions
are themselves a diverse set. This can be formalized by making the
Gaussian parameters µi

j and Σi
j samples from some random variable.

Definition 6.2. D is a diverse training set if µi
j , and Σi

j are indepen-
dent samples from two independent random variables with probability
density functions

Pµ(µ) = G(µ,µ0,Σ0)

and PΣ(Σ), such that EΣ[Σ] = S, and (for some ε ≥ 0)

|EΣ[G(x,µ0,Σ + Σ0)] − G(x,µ0,S + Σ0)]| ≤ ε. (6.6)

The assumption of a Gaussian distribution for µ is not crucial for the
discussion that follows. In particular, all results could be generalized to
the case of a Gaussian mixture and, therefore, any Pµ(µ) of practical
interest. The Gaussian assumption makes the notation much simpler,
and enables a simple characterization of the diversity of the means, by

1 This is mostly to simplify notation, all results that follow could be extended to the case
where each component has an individual weight.
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making the differential entropy of µ a simple function of Σ0, namely

H(µ) =
d

2
ln(2πe) +

1
2

ln |det(Σ0)|. (6.7)

We refer to Σ0 as the diversity parameter of D. The condition of (6.6)
is a technical condition, required by the proofs derived in the remainder
of this section. We note, however, that it is a very mild restriction on
PΣ(Σ). If, for example, the Gaussian components of (6.5) are produced
by a kernel density estimator, it is common practice for all covariances
to be identical, i.e., Σi

j = S. In this case, PΣ(Σ) is a delta function
centered at S, and (6.6) holds with ε = 0. In general, the condition
will hold if Σ + Σ0 ≈ S + Σ0 for all Σ such that PΣ(Σ) > 0, i.e., if the
spread of PΣ(Σ) around the mean value S is small compared to S + Σ0.
This is true whenever Σ0 is large, which (as we will see below) is a
necessary condition for the concept distribution to be learnable. Note
that, if the support of PΣ(Σ) is bounded, it is possible, by making Σ0

arbitrarily large, to make (6.6) hold with arbitrarily small ε.
The following theorem shows that the distribution of a diverse set of

images of concept c converges to a mixture of the concept distribution
and a background component of spread determined by the diversity
parameter Σ0.

Theorem 6.1. If D is a diverse training set, according to Defini-
tions 6.1 and 6.2, and

PN (x) =
1
N

N∑
i=1

P i
X(x) (6.8)

then, with probability one, for all x

lim
N→∞

|PN (x) − f(x)| ≤ δ (6.9)

with

f(x) =
1
K
PC(x) +

(
1 − 1

K

)
G(x,µ0,S + Σ0) (6.10)

and

δ = (1 − 1/K)ε. (6.11)
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Proof. See the Appendix.

The theorem enables a number of insights on the feasibility of learn-
ing the concept c under the weakly supervised learning paradigm. For
a large training set, the empirical distribution learned from D will be a
good approximation to f(x). If the first component of (6.10) dominates
the second, it follows that the empirical distribution will be close to the
concept distribution for most values of x. Hence, the learnability of the
concept can be evaluated by measuring how dominant the first compo-
nent is. One possible measure of such dominance is the ratio between
the amplitudes of the concept and background components.

Definition 6.3. The learnability of concept c is

κc = sup
x

(
Pc(x)

(K − 1)G(µ0,µ0,S + Σ0)

)
(6.12)

If κc ≈ 1, the concept component of (6.10) has amplitude similar to that
of the background component and is not likely to be easy to identify.
One the other hand, κc is large when (6.10) is a mixture of the concept
component and a background component of much smaller amplitude.

This definition enables the formal characterization of a number of
properties of concept learnability. We start by noting that the ampli-
tude of the background distribution is

G(µ0,µ0,S + Σ0) = [(2π)d det(S + Σ0)]−1/2

and, from (6.7), |det(Σ0)| = (2π)−de2H(µ)−d. It follows that, when
Σ0 
 S,2

G(µ0,µ0,S + Σ0) ≈ ed/2−H(µ).

Hence, it is possible to arbitrarily decrease the amplitude of the back-
ground distribution by raising its differential entropy. The interesting
insight provided by the theorem is therefore that, no matter how small
the percent of the area that it covers individually on each image (1/K),

2 The notation Σ0 
 S is equivalent to det(S + Σ0) ≈ det(Σ0).
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the concept is learnable if this entropy is sufficiently large. In fact, when
Σ0 
 S,

κc =
1

(K − 1)
eH(µ)−d/2 sup

x
Pc(x), (6.13)

and the linear decrease of learnability with concept area is dominated
by an exponential increase with differential entropy.

The theorem also provides insight on how concept learnability
depends on the dimension d of the feature space. Consider the case
where Pc(x) is a Gaussian of covariance σ2

c I, S = s2I, and Σ0 = σ2
0I.

Then, from (6.12),

κc =
1

K − 1

(
s2 + σ2

0
σ2

c

)d/2

and, as long as s2 + σ2
0 > σ2

c , the learnability of c increases exponen-
tially with d. That is, concepts become exponentially easier to learn
as the dimension of the space increases. Note, once again, that the
linear decrease of learnability with the decrease of the image area cov-
ered by the concept is overwhelmed by this exponential dependence on
dimensionality. The case of a non-Gaussian concept is more difficult
to analyze, but qualitatively similar. Note that, under the assumption
that supxPc(x) decreases exponentially with d (due to the requirement
that Pc(x) integrates to one),

sup
x
Pc(x) = O(a−d)

with a > 0, it follows from (6.12) that

κc ∝ O


[√

2π(s2 + σ2
0)

a

]d



and, as long as a <
√

2π(s2 + σ2
0), concept learnability increases expo-

nentially with the dimension d.
In summary, concepts can be learned with weak supervision if

(1) the background distribution is diverse enough, or (2) the dimen-
sion of the feature space is large enough. Furthermore, learnability
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increases exponentially with these two parameters. This effect domi-
nates any potential decrease in learnability due to the limited area of
the concept within the training images. Weakly supervised learning is
thus, in principle, possible even for concepts that occupy a small area
in all training images. It suffices that concept training sets are large,
present the concept against a large diversity of backgrounds, and learn-
ing is performed on high-dimensional feature spaces.



7
Query By Semantic Example

In the previous sections we have studied two retrieval paradigms: one
based on visual queries, denoted as query-by-visual-example (QBVE),
and the other based on text, denoted as semantic retrieval (SR). Under
QBVE, each image is decomposed into a number of low-level visual
features and image retrieval is formulated as the search for the MPE
match to the collection of feature vectors extracted from a query image.
Under SR, images are annotated with semantic keywords, enabling
users to specify their queries through a natural language description
of the visual concepts of interest. Both paradigms have their strengths
and weaknesses. SR has the advantage of evaluating image similarity at
a higher level of abstraction and, therefore, better generalization than
what is possible with QBVE. On the other hand, the performance of
SR systems tends to degrade for semantic classes that they were not
trained to recognize. Since it is still difficult to learn appearance models
for massive concept vocabularies, this could compromise the generaliza-
tion gains due to abstraction. This problem is seldom considered in the
literature, where most evaluations are performed with query concepts
that are known to the retrieval system [5, 13, 16, 31, 35, 61].

352
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In fact, it is not even straightforward to compare the two retrieval
paradigms because they assume different levels of query specification.
While a semantic query is usually precise (e.g., ‘the White House’), a
visual example (a picture of the ‘White House’) will depict various con-
cepts that are irrelevant to the query (e.g., the street that surrounds
the building, cars, people, etc.). It is, therefore, possible that better
SR results could be due to a better interface (natural language) rather
than an intrinsic advantage of representing images semantically. In this
section, we introduce a framework for the objective comparison of the
two formulations, by extending the query-by-example paradigm to the
semantic domain. This consists of defining a semantic feature space,
where each image is represented by the vector of posterior concept
probabilities assigned to it by an SR system, and performing query-by-
example in this space. We refer to the combination of the two paradigms
as query-by-semantic-example (QBSE), and present a comparison of its
performance with that of QBVE. It is shown that QBSE has signifi-
cantly better performance for both concepts known and unknown to
the retrieval system, i.e., it can generalize beyond the vocabulary used
for training. It is also shown that the performance gain is intrinsic to
the semantic nature of image representation.

7.1 Query by Visual Example vs Semantic Retrieval

Both QBVE and SR have advantages and limitations. Because concepts
are learned from collections of images, SR can generalize significantly
better than QBVE. For example, by using a large training set of images
labeled with the concept ‘sky’, containing both images of sky at daytime
(when it is mostly blue) and sunsets (when it is mostly orange), an SR
system can learn that ‘sky’ is sometimes blue and others orange. This
is not easy to accomplish with QBVE, which only has access to two
images (the query and that in the database) and can only perform
direct matching of visual features. We refer to this type of abstraction
as generalization inside the semantic space, i.e., inside the space of
concepts that the system has been trained to recognize.

While better generalization is a strong advantage for SR, there are
some limitations associated with this paradigm. An obvious difficulty
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Fig. 7.1 An image containing various concepts: ‘train’, ‘smoke’, ‘road’, ‘sky’, ‘railroad’,
‘sign’, ‘trees’, ‘mountain’, ‘shadows’, with variable degrees of presence.

is that most images have multiple semantic interpretations. Figure 7.1
presents an example, identifying various semantic concepts as sensible
annotations for the image shown. Note that this list, of relatively salient
concepts, is a small portion of the keywords that could be attached
to the image. Other examples include colors (e.g., ‘yellow’ train), or
objects that are not salient in an abstract sense but could become very
relevant in some contexts (e.g., the ‘paint’ of the markings on the street,
the ‘letters’ in the sign, etc.). In general, it is impossible to predict all
annotations that may be relevant for a given image. This is likely to
compromise the performance of an SR system. Furthermore, because
queries are specified as text, an SR system is usually limited by the
size of its vocabulary.1 In summary, SR can generalize poorly outside
the semantic space.

1 It is, of course, always possible to rely on text processing ideas based on thesauri and
ontologies like WordNet [34] to mitigate this problem. For example, query expansion can
be used to replace a query for ‘pollution’ by a query for ‘smoke’, if the latter is in the
vocabulary and the former is not. While such techniques are undeniably useful for practical
implementation of retrieval systems, they do not reflect an improved ability, by the retrieval
system, to model the relationships between visual features and words. They are simply an
attempt to fix these limitations a posteriori (i.e., at the language level). In practice, it is
not always easy to perform text-based query expansion when the vocabulary is small, as
is the case for most SR systems, or when the queries report to specific instances (e.g., a
person’s name).
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Since visual retrieval has no notion of semantics, it is not constrained
by either vocabulary or semantic interpretations. When compared to
SR, QBVE systems can generalize better outside the semantic space.
In the example of Figure 7.1, a QBVE would likely return the image
shown as a match to a query depicting an industrial chimney engulfed
in dark smoke (a more or less obvious query prototype for images of
‘pollution’) despite the fact that the retrieval system knows nothing
about ‘smoke’, ‘pollution’, or ‘chimneys’. Obviously, there are numerous
examples where QBVE correlates much worse with perceptual similar-
ity than SR. We have already seen that when the latter is feasible, i.e.,
inside the semantic space, it has better generalization. Overall, it is sen-
sible to expect that SR will perform better inside the semantic space,
while QBVE should fare better outside of it. QBSE aims to achieve
good generalization both within and outside the semantic space.

7.2 Query by Semantic Example

A QBSE system operates at the semantic level, representing an image I
by a vector of concept counts C = (c1, . . . , cL)T . Each feature vector xi

of the image is assumed to be sampled from the probability distribution
of a semantic class (concept). Concept probabilities are learned with a
semantic labeling system, as discussed in the previous sections, and the
probability of the ith concept, given the observed feature vectors in I, is

πi = PW |X(i|I). (7.1)

ci is the number of feature vectors drawn from the ith concept. The
count vector for the yth image is drawn from a multinomial variable T
of parameters πy = (π1

y , . . . ,π
L
y )T

PT|Y (C|y;πy) =
n!∏L

k=1 ck!

L∏
j=1

(πj
y)

cj . (7.2)

The random variable T can be seen as the result of a feature
transformation from the space of visual features X to the L-
dimensional probability simplex SL. This mapping, Π:X → SL such
that Π(X) = T, establishes a correspondence between images and
points πy ∈ SL, as illustrated by Figure 1.7. Since the entries of πy
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are the posterior probabilities of the semantic concepts ωi, i = 1, . . . ,L
given the yth image, we refer to the probability simplex SL as the
semantic simplex , and to the probability vector πy itself as the
semantic multinomial (SMN) that characterizes the image.

7.3 The Semantic Multinomial

As is usual in probability estimation, the posterior concept probabilities
of (7.1) can be inaccurate for concepts with a small number of training
images. Of particular concern are cases where some of the πi are very
close to zero and can become ill-conditioned during retrieval, where
noisy estimates are amplified by ratios or logs of probabilities. A com-
mon solution is to introduce a prior distribution to regularize these
parameters. For this, it is worth considering an alternative procedure
for the estimation of the πi. Instead of (7.1), this consists of computing
the posterior concept probabilities PW |X(w|xk),w ∈ {1, . . . ,L} of each
feature vector xk, assign xk to the concept of largest probability, and
count the number cw of vectors assigned to each concept. The maximum
likelihood estimate of the probabilities is then given by [30]

πML
w = argmax

πw

L∏
j=1

π
cj

j =
cw∑
j cj

=
cw
n
. (7.3)

Regularization can then be enforced by adopting a Bayesian parameter
estimation viewpoint, where the parameter π is considered a random
variable and a prior distribution PΠ(π) introduced to favor parameter
configurations that are, a priori, more likely.

Conjugate priors are frequently used, in Bayesian statistics [41], to
estimate parameters of distributions in the exponential family, as is the
case of the multinomial. They lead to a closed-form posterior (which
is in the family of the prior), and maximum a posteriori probability
parameter estimates which are intuitive. The conjugate prior of the
multinomial is the Dirichlet distribution

π ∼ Dir(α) =
Γ
(∑L

j αj

)
∏L

j=1 Γ(αj)

L∏
j=1

π
αj−1
j (7.4)
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of hyper-parameters αi, and where Γ(.) is the Gamma function. Setting2

αi = α, the maximum aposteriori probability estimates are

πposterior
w = argmax

πw

PT|Π(c1, . . . , cL|π)PΠ(π)

= argmax
πw

L∏
j=1

π
cj

j

L∏
j=1

πα−1
j

=
cw + α − 1∑L

j=1(cj + α − 1)
. (7.5)

This is identical to the maximum likelihood estimates obtained from a
sample where each count is augmented by α − 1, i.e., where each image
contains α − 1 more feature vectors from each concept. The addition
of these vectors prevents zero counts, regularizing π. As α increases,
the multinomial distribution tends to uniform.

Thresholding the individual feature vector posteriors and counting
is likely to produce worse probability estimates than those obtained,
with (7.1), directly from the entire collection of feature vectors. Never-
theless, the discussion above suggests a strategy to regularize the prob-
abilities of (7.1). Noting, from (7.3), that cw = nπML

w , the regularized
estimates of (7.5) can be written as

πposterior
w =

πML
w + π0∑L

j (πML
j + π0)

,

with π0 = α−1
n . Hence, regularizing the estimates of (7.1) with

πreg
w =

πw + π0

1 + Lπ0
(7.6)

is equivalent to using maximum aposteriori probability estimates, in the
thresholding plus counting paradigm, with the Dirichlet prior of (7.4).
We have found that values of Lπ0 ∈ [0.001,0.1] perform best in retrieval
experiments (see [91] for details).

2 Different hyper-parameters could also be used for the different concepts.
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7.4 Image Similarity

A QBSE system operates on the simplex SL, according to a similarity
mapping f : SL → {1, . . . ,D} such that

f(π) = argmax
y
s(π,πy), (7.7)

where π is the query SMN, πy the SMN that characterizes the yth
database image, and s(·, ·) an appropriate similarity function.

We have compared various similarity functions. The KL divergence
between two semantic multinomials π and π′ is

sKL(π,π′) = KL(π||π′) =
L∑

i=1

πi log
πi

π′
i

. (7.8)

We have already seen that it is the asymptotic limit of (4.1) when Y is
uniformly distributed. A symmetric version can be defined as

ssymmKL(π,π′) = KL(π||π′) + KL(π′||π) (7.9)

=
L∑

i=1

πi log
πi

π′
i

+
L∑

i=1

π′
i log

π′
i

πi
. (7.10)

The Jensen–Shannon divergence (JS) is a measure of whether two sam-
ples, as defined by their empirical distributions, are drawn from the
same source distribution [22]. It is defined as

sJS(π,π′) = KL(π||π̂) + KL(π′||π̂), (7.11)

where π̂ = 1
2π + 1

2π
′. This divergence can be interpreted as the average

distance (in the KL sense) between each distribution and the average
of all distributions.

It is also possible to rely on Lp distances

sLp(π,π′) =

(
L∑

i=1

|πi − π′
i|p
) 1

p

, p ≥ 1. (7.12)

For p = 2, we have the Euclidean distance, whose minimization is equiv-
alent to maximizing the correlation

sCO(π,π′) = πTπ′ =
L∑
i

πi × π′
i (7.13)
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whenever ||π|| = 1. This is not the case for semantic multinomials,
which motivates an alternative correlation measure, the normalized
correlation,

sNC(π,π′) =
πTπ′

||π||||π′|| =
∑L

i πi × π′
i√∑

π2
j

√∑
π′2

j

. (7.14)

Finally, we have already seen that the minimization of the L1 norm is
equivalent to the maximization of the histogram intersection (HI) [112],

sHI(π,π′) =
L∑

i=1

min(πi,π
′
i). (7.15)

7.5 Properties of QBSE

As a query paradigm, QBSE has a number of interesting properties.
First, the mapping of the visual features to the probability simplex SL

can be seen as an abstract mapping of the image to a semantic space,
where each concept probability πi

y, i = 1, . . . ,L, is a semantic feature.
Semantic features, or concepts, outside the vocabulary simply define
directions orthogonal to the learned semantic space. This implies that,
by projecting these dimensions onto the simplex, the QBSE system
can generalize beyond the known semantic concepts. In the example of
Figure 7.1, the mapping of the image onto the semantic simplex assigns
high probability to (known) concepts such as ‘train’, ‘smoke’, ‘railroad’,
etc. This makes the image a good match for other images containing
large amounts of ‘smoke’, such as those depicting industrial chimneys or
‘pollution’ in general. The system can therefore establish a link between
the image of Figure 7.1 and ‘pollution’, despite the fact that it has no
explicit knowledge of the ‘pollution’ concept.3 Second, when compared
to QBVE, QBSE complements all the advantages of query by example
with the advantages of a semantic representation. Moreover, since in
both cases queries are specified by the same examples, any differences
in their performance can be directly attributed to the semantic vs.

3 Note that this is different from text-based query expansion, where the link between ‘smoke’
and ‘pollution’ must be explicitly defined. In QBSE, the relationship is instead inferred
automatically, from the fact that both concepts have commonalities of visual appearance.
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visual nature of the associated image representations.4 This enables
the objective comparison of QBVE and QBSE.

7.6 Multiple Image Queries

Semantic image labeling is, almost by definition, a noisy endeavor. This
is a consequence of the fact that various interpretations are usually
possible for a given arrangement of image intensities. An example is
given in Figure 7.2, where we show the query image of Figure 1.3 and
the associated SMN. While most of the probability mass is assigned to
concepts that are present in the image (‘railroad’, ‘locomotive’, ‘train’,
‘street’, or ‘sky’), two of the concepts of largest probability are ‘bridge’
and ‘arch’. We already saw that the locomotive’s roof resembles the arch
of a bridge. This visual feature seems to be highly discriminant since,
when used as a query in a QBVE system, most of the top matches are
images with arch-like structures, not trains (see Figure 1.3). While these
types of errors are difficult to avoid, they are accidental . In particular,
the arch-like structure of Figure 7.2 is the result of viewing a particular

Fig. 7.2 An image and its associated SMN. Note that, while most of the concepts of largest
probability are present in the image, the SMN assigns significant probability to ‘bridge’ and
‘arch’. These are due to the geometric structure shown on the image close-up.

4 This assumes, of course, that a common framework, such as MPE, is used to implement
both the QBSE and QBVE systems.
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type of train, at a particular viewing angle, and a particular distance.
It is unlikely that similar structures will emerge consistently over a
set of train images. A pressing question is then whether it is possible
to exploit the lack of consistency of these errors to obtain a better
characterization of the query image set?

Once again, we resort to the multiple instance learning paradigm,
formulating the problem as one of learning from bags of examples. In
QBSE, each image is modeled as a bag of feature vectors, which are
drawn from the different concepts according to the probabilities πi.
When the query consists of multiple images, or bags, the negative
examples that appear across those bags are inconsistent (e.g., the fea-
ture vectors associated with the arch-like structure which is prominent
in Figure 7.2), and tend to be spread over the feature space (because
they also depict background concepts, such as roads, trees, mountains,
etc., which vary from image to image). On the other hand, feature
vectors corresponding to positive examples are likely to be concen-
trated within a small region of the space. It follows that, although the
distribution of positive examples may not be dominant in any individ-
ual bag, the consistent appearance in all bags makes it dominant over
the entire query ensemble. This suggests that a better estimate of the
query SMN should be possible by considering a set of multiple query
images.

Under MPE retrieval, query combination is relatively straightfor-
ward to implement by QBVE systems. Given two query images I1

q =
{x1

1,x
1
2, . . . ,x

1
n} and I2

q = {x2
1,x

2
2, . . . ,x

2
n}, the probability of the com-

posite query IC
q = {x1

1,x
1
2, . . . ,x

1
n,x

2
1,x

2
2, . . . ,x

2
n} given class Y = y is

PX|Y (IC
q |y) =

n∏
k=1

PX|Y (x1
k|y)

n∏
l=1

PX|Y (x2
l |y)

= PX|Y (I1
q |y)PX|Y (I2

q |y). (7.16)

The MPE decision for the composite query is obtained by using
the Gaussian mixture of (4.8) as PX|Y (x|y) in (7.16), and combin-
ing with (2.3). Under QBSE, there are at least three possibilities for
query combination. The first is equivalent to (7.16), but based on the
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probability of the composite query IC
q given semantic class W = w,

PX|W (IC
q |w) =

n∏
k=1

PX|W (x1
k|w)

n∏
l=1

PX|W (x2
l |w)

= PX|W (I1
q |w)PX|W (I2

q |w), (7.17)

which is combined with (5.13) and Bayes rule to compute the posterior
concept probabilities of (7.1). We refer to (7.17) as the ‘LKLD com-
bination’ strategy for query combination. It is equivalent to taking a
geometric mean of the probabilities of the individual images given the
class.

A second possibility is to represent the query as a mixture of SMNs.
This relies on a different generative model than that of (7.17): the
ith query is first selected with probability λi and a count vector is
then sampled from the associated multinomial distribution. It can be
formalized as

PT(CC
q ;πq) =

n!∏L
k=1 ck!

L∏
j=1

(λ1π
j
1 + λ2π

j
2)

cj , (7.18)

where PT(CC
q ;πq) is the multinomial distribution for the query combi-

nation, of parameter πq = λ1π1 + λ2π2. π1 and π2 are the parameters
of the individual multinomial distribution, and λ = (λ1,λ2)T the vector
of query selection probabilities. If λ1 = λ2, the two SMNs are simply
averaged. We adopt the uniform query selection prior, and refer to this
strategy as ‘SMN combination’. Geometrically, it sets the combined
SMN to the centroid of the simplex that has the SMNs of the query
images as vertices. This ranks highest the database SMN which is clos-
est to this centroid.

The third possibility, henceforth referred to as ‘KL combination’, is
to execute the multiple queries separately, and combine the resulting
image rankings. For example, when similarity is measured with the KL
divergence, the divergence between the combined image SMN, πq, and
database SMNs, πy, is

sKL(πq,πy) =
1
2

KL(π1||πy) +
1
2

KL(π2||πy). (7.19)
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It is worth noting that this combination strategy is closely related to
that used in QBVE. Note that the use of (7.16) is equivalent to using
the arithmetic average (mean) of log-probabilities which, in turn, is
identical to combining image rankings, as in (7.19). For QBVE, the
two combination approaches are identical.

7.7 Experimental Evaluation

To evaluate QBSE, we have used the image annotation system trained
with the Corel5K set-up of Section 5. Overall, there are 371 keywords
in the data set, leading to a 371-dimensional semantic simplex. With
respect to image representation, all images were normalized to size
181 × 117 or 117 × 181 and converted from RGB to the YBR color
space. Image observations were derived from 8 × 8 patches obtained
with a sliding window, moved in a raster-scan fashion. A feature trans-
formation was applied to this space by computing the 8 × 8 DCT of the
three color components of each patch. The parameters of the semantic
class mixture hierarchies were learned in the subspace of the resulting
192-dimension feature space composed of the first 21 DCT coefficients
from each channel. In all experiments, the SMN associated with each
image was computed with these semantic class-conditional distribu-
tions. Various datasets were used as query and retrieval databases, so
as to enable the evaluation of retrieval performance both inside and
outside the semantic space.

Inside the semantic space. Retrieval performance inside the semantic
space was evaluated by using Corel5K (here referred to as Corel50) as
both retrieval and query database. More precisely, the 4,500 training
images served as the retrieval database and the remaining 500 as the
query database. This experiment relied on clear ground-truth regarding
the relevance of the retrieved images, based on the theme of the CD to
which the query belonged.

Outside the semantic space. To test performance outside the seman-
tic space, we relied on two additional databases. The first, Corel15,
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consisted of 1500 images from 155 previously unused Corel CDs. Again,
the CD themes (non-overlapping with those of Corel50) served as the
ground truth. We also collected a database from www.flickr.com. The
images in this database were extracted by placing queries on the flickr
search engine, and manually pruning images that appeared irrelevant
to the specified queries. Note that the judgments of relevance did not
take into account how well a content-based retrieval system would per-
form on the images, simply whether they appeared to be search errors
(by flickr) or not. The images are shot by flickr users, and hence dif-
fer from the Corel Stock photos, which have been shot professionally.
This database, Flickr18, contains 1,800 images divided into 18 classes
according to the manual annotations provided by the online users.
For both databases, 20% of randomly selected images served as query
images and the remaining 80% as the retrieval database.

QBVE only requires a query and a retrieval database. In all exper-
iments, these were made identical to the query and retrieval databases
used by QBSE. Since the performance of QBVE does not depend on
whether queries are inside or outside the semantic space, this estab-
lishes a benchmark for evaluating the generalization of QBSE.

7.7.1 Effect of the Similarity Function

Table 7.1 presents a comparison of the seven similarity functions dis-
cussed in the text. It is clear that L2 distance and histogram intersection
do not perform well. All information theoretic measures, KL divergence,
symmetric KL divergence, and Jensen–Shannon divergence have supe-
rior performance, with an average improvement of 15%. Among these,
the KL divergence performs the best. Its closest competitors are the cor-
relation and normalized correlation metrics. Although they outperform
KL divergence inside the semantic space (Corel50), their performance is
inferior for databases outside the semantic space (Flickr18, Corel15).
This suggests that the KL divergence has better generalization. We
thus adopted the KL divergence for all remaining experiments.

5 ‘Adventure Sailing’, ‘Autumn’, ‘Barnyard Animals’, ‘Caves’, ‘Cities of Italy’, ‘Commercial
Construction’, ‘Food’, ‘Greece’, ‘Helicopters’, ‘Military Vehicles’, ‘New Zealand’, ‘People
of World’, ‘Residential Interiors’, ‘Sacred Places’, and ‘Soldier’.
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Table 7.1. Effect of the similarity function on the MAP score of QBSE.

Similarity function MAP score

Corel50 Corel15 Flickr18
KL divergence 0.1768 0.2175 0.1615
Symmetric KL 0.1733 0.2164 0.1602
Jensen–Shannon 0.1740 0.2158 0.1611
Correlation 0.2108 0.1727 0.1392
Normalized correlation 0.1938 0.2041 0.1595
L2 distance 0.1461 0.1830 0.1408
Histogram intersection 0.1692 0.2119 0.1600
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Fig. 7.3 Average precision–recall of single-query QBSE and QBVE; left: inside the semantic
space (Corel50); right: outside the semantic space (Flickr18).

7.7.2 Performance Within the Semantic Space

Figure 7.3 (left) presents the PR curves on Corel50 with QBVE and
QBSE. The precision of QBSE is significantly higher than that of
QBVE, at most levels of recall. At low recall, there are always some
database images which are visually similar to the query and QBVE is
competitive with QBSE. However, performance decreases much more
dramatically than that of QBSE as recall increases, confirming the bet-
ter generalization of the latter. The MAP scores for QBSE and QBVE
are 0.1665 and 0.1094, respectively, and the chance MAP performance
is 0.0200. Figure 7.4 shows that QBSE outperforms QBVE for almost
all classes.

The advantages of QBSE are also illustrated by Figure 7.5, where
we present the results of some queries, under both QBVE and QBSE.
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Fig. 7.5 Some examples where QBSE performs better than QBVE. The second row of every
query shows the images retrieved by QBSE.

Note, for example, that for the query containing “white smoke” and a
large area of “dark train”, QBVE tends to retrieve images with whitish
components, mixed with dark components, that have little connection
to the “train” theme. Furthermore, the arch-like structure highlighted
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in Figure 7.2 seems to play a prominent role in visual similarity since
three of the five top matches contain arches. Due to its higher level of
abstraction, QBSE is successfully able to generalize the main semantic
concepts of “train”, “smoke” and “sky”, realizing that the white color is
an irrelevant attribute to this query (as can be seen in the last column,
where an image of a “train with black smoke” is successfully retrieved).

7.7.3 Multiple Image Queries

Figure 7.6 (left) shows the MAP values for multiple image queries, as a
function of query cardinality, under both QBVE and QBSE for Corel50.
In the case of QBSE, we also compare the three possible query com-
bination strategies: ‘LKLD’, ‘SMN’, and ‘KL Combination’. It is clear
that, inside the semantic space, the gains achieved with multiple QBSE
queries are unparalleled on the visual domain. Among the various com-
bination methods, combining SMNs yields best results, with a gain of
29.8% over single image queries. ‘LKLD’ and ‘KL Combination’ exhibit
a gain of 17.3% and 26.4%, respectively.

For QBSE-SMN, MAP increases with query cardinality for 76%
of the classes. For the remaining classes, poor performance can be
explained by (1) significant inter-concept overlap (e.g., ‘Air Shows’
vs. ‘Aviation Photography’), (2) incongruous concepts that would be
difficult even for a human labeler (e.g., ‘Holland’ and ‘Denmark’), or

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

Query Cardinality

M
A

P
 s

co
re

QBSE−SMN

QBSE−KL

QBSE−LKLD

QBVE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

M
A

P
 s

co
re

Query Cardinality

QBSE−SMN

QBSE−KL

QBSE−LKLD

QBVE

Fig. 7.6 MAP as a function of query cardinality for multiple image queries. Comparison
of QBSE, with various combination strategies, and QBVE. Left: inside the semantic space
(Corel50); right: outside the semantic space (Flickr18).
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Fig. 7.7 Best precision–recall curves achieved with QBSE and QBVE on Corel50. Left:
inside the semantic space (Corel50), also shown is the performance with meaningless seman-
tic space. Right: outside the semantic space (Flickr18).

(3) failure to learn semantic homogeneity among the images, e.g., ‘Spirit
of Buddha’. Nevertheless, for 86% of the classes QBSE outperforms
QBVE by an average MAP score of 0.136. On the remaining QBVE is
only marginally better than QBSE, by an average MAP score of 0.016.
Figure 7.7 (left) presents the average precision–recall curves, obtained
with the number of image queries that performed best, for QBSE and
QBVE on Corel50. It is clear that QBSE significantly outperforms
QBVE at all levels of recall, the average MAP gain being of 111.73%.

7.7.4 Performance outside the semantic space

Figure 7.3 (right) presents PR curves on Flickr18, showing that out-
side the semantic space single-query QBSE is marginally better than
QBVE. When combined with Figure 7.3 (left), it confirms that, over-
all, single-query QBSE has better generalization than visual similarity:
it is substantially better inside the semantic space, and has slightly
better performance outside of it. As was the case for Corel50, multi-
ple image queries benefit QBSE substantially but have no advantage
for QBVE. This is shown in Figure 7.6 (right). Regarding combination
strategies, ‘SMN’ once again outperforms ‘KL’ (slightly) and ‘LKLD
Combination’ (significantly).

An illustration of the benefits of multiple image queries is given
in Figure 7.8. The two top rows present query images from the class
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Fig. 7.8 Examples of multiple-image QBSE queries. Two queries (for “Township” and “Heli-
copter”) are shown, each combining two examples. In each case, two top rows presents the
single-image QBSE results, while the third presents the combined query.

‘Township’ (Flickr18) and single-query QBSE retrieval results. The
third row presents the result of combining the two queries by ‘SMN
combination’. It illustrates the wide variability of visual appearance
of the images in the ‘Township’ class. While single-image queries
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Fig. 7.9 SMN of individual and combined queries from class ‘Township’ of Figure 7.8. Left
column shows the first query SMN, center the second and, right the combined query SMN.

Table 7.2. MAP of QBVE and QBSE on all datasets considered.

Database Chance QBVE QBSE % increase

Corel50 0.0200 0.1067 0.2259 111.73
Corel15 0.0667 0.2176 0.2980 36.95
Flickr18 0.0556 0.1373 0.2134 55.47

fail to express the semantic richness of the class, the combination of
the two images allows the QBSE system to expand ‘indoor market
scene’ and ‘buildings in open air’ to an ‘open market street’ or even
a ‘railway platform’. This is revealed, by the SMN of the combined
query, presented in Figure 7.9 (right), which is a semantically richer
description of the visual concept ‘Township’, containing concepts (like
‘sky’, ‘people’, ‘street’, ‘skyline’) from both individual query SMNs.
The remaining three rows of Figure 7.8 present a similar result for the
class ‘Helicopter’ (Corel15).

Finally, Figure 7.7 presents the best results obtained with multi-
ple queries under both the QBSE and QBVE paradigms. It shows
that QBSE significantly outperforms QBVE, even outside the semantic
space. Table 7.2 summarizes the MAP gains of QBSE, over QBVE, for
all datasets considered. In Flickr18, the gain is of 55.47%.

Overall, QBSE significantly outperforms QBVE, both inside and
outside the semantic space. Since the basic visual representation (DCT
features and Gaussian mixtures) is shared by the two approaches, this
is a strong indication that there is a benefit to the use of semantic rep-
resentations in image retrieval. To further investigate this hypothesis,
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we performed a final experiment based on QBSE with a semantically
meaningless space. Building on the fact that all semantic models are
learned by grouping images with a common semantic concept, this
was achieved by replicating the QBSE experiments with random image
groupings. That is, instead of a semantic space composed of concepts
like ‘sky’ (learned from images containing sky), we created a ‘semantic
space’ of nameless concepts learned from random collections of images.
Figure 7.7 (left) compares (on Corel50) the precision–recall obtained
with QBSE on this ‘meaningless semantic space’, with the previous
results of QBVE and QBSE. It is clear that, in the absence of semantic
structure, QBSE has very poor performance, and is clearly inferior to
QBVE.



8
Conclusions

In this monograph, we have reviewed the MPE principle for image
retrieval, and shown how it can be used to design optimal solutions for
practical retrieval problems. We have characterized the fundamental
performance bounds of the MPE retrieval architecture, and used these
bounds to derive optimal components for retrieval systems. We have
also shown that many alternative formulations of the retrieval prob-
lem are closely related to the MPE principle, typically resulting from
simplifications or approximations to the MPE architecture. The MPE
principle was then applied to the design of retrieval systems that work
at different levels of abstraction. QBVE systems are strictly visual,
matching images by similarity of low-level features, such as texture or
color. With MPE image labeling techniques, it is possible to start rep-
resenting images in terms of more abstract visual concepts, producing
semantic descriptions. QBSE represents images in the resulting concept
spaces, enabling example-based retrieval by similarity of semantics.

We finish by emphasizing some important points. First, it should
be clear that the design of systems which understand images well
enough to enable effective search of large databases remains a chal-
lenging problem, and current retrieval systems are not useful for
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all applications. The trend is positive, however, as shown by the
improvements of retrieval performance from QBVE to QBSE. The
retrieval community has also only just begun to explore avenues of
tremendous potential, such as the use of semantic taxonomies [115,
132]. Second, the representations discussed here are far from exhaust-
ing what is possible in image analysis. In fact, recent work has already
shown that (1) MPE image classifiers designed in the space of seman-
tic features have improved performance over what is possible at visual
level [93], (2) contextual relationships between visual concepts can be
extracted by modeling probability distributions in semantic space [94],
and (3) it is even possible to model the joint statistics of image and
text, so as to enable seamless retrieval across the two modalities [92].

Finally, it should also be stressed that an image retrieval system
is much more than an image similarity engine. In addition to image
matching, it should address the problems of indexing to enable fast
searches [122]; accounting for prior information, which can be used to
weigh some images more strongly than others; and exploring the users
presence in the retrieval loop. Information about the users preferences
is usually collected by relevance feedback algorithms [127], operating
at both short and long time scales [128]. Within a single session, the
retrieval system can exploit user feedback to refine particular searches.
As the user provides more information, the system becomes more con-
fident about the users needs, and retrieval accuracy increases. Across
sessions, the system can use relevance feedback to build user profiles or
improve semantic labeling of the database images. All of these opera-
tions can be formulated under the MPE retrieval framework, and opti-
mal solutions are available for a number of them [121, 122, 127, 128].



A
Proofs

In this appendix, we include the proofs of all mathematical results
discussed in this monograph.

A.1 Proof of Theorem 2.1

The theorem follows from the application of two bounds. The first
is that, for a problem with class conditional densities PX|Y (x|i),
equiprobable classes PY (i) = 1/M,∀i, class-conditional density esti-
mates p̂X|Y (x|i), and a feature space X ,

Prob[g(X) �= Y ] − L∗
X ≤ 1

M

∑
i

∫
|PX|Y (x|i) − p̂X|Y (x|i)|dx. (A.1)

The second is a well known bound in information theory, usually
referred to as Pinsker’s inequality1 [88], see e.g., Lemma 12.6.1 of [22]
or Theorem 7.11.1 of [12],∫

|PX(x) − QX(x)|dx ≤
√

2ln2KL[PX(x)||QX(x)].

1 The general inequality relates relative entropy to variational distance, only the version for
continuous distributions is considered here.
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The proof of (A.1) is an extension of that given in [28] for M = 2. To
extend this proof to multiple classes we note that

Prob[g(X) �= Y ] − L∗
X = EX[

∑
i

(δg∗(X),i − δg(X),i)PY |X(i|X)]

=
∫

E
∆(x)PX(x)dx,

where

E = {x|x ∈ X ,PX(x) > 0, g(x) �= g∗(x)}

and

∆(x) =
∑

i

(δg∗(x),i − δg(x),i)PY |X(i|x).

Defining the sets

E∗
i = {x|x ∈ E,g∗(x) = i}
Ei = {x|x ∈ E,g(x) = i},

it follows that, ∀x ∈ E∗
i ∩ Ej ,

∆(x) = PY |X(i|x) − PY |X(j|x).

We next note that, from (2.1),

PY |X(i|x) − PY |X(j|x) ≥ 0, ∀x ∈ E∗
i , ∀j �= i

and, from (2.5) and the fact that PX(x) > 0, ∀x ∈ E,

p̂X|Y (x|j)p̂Y (j)
PX(x)

−
p̂X|Y (x|i)p̂Y (i)

PX(x)
≥ 0, ∀x ∈ Ej , ∀i �= j.

Defining

p̂Y |X(i|x) =
p̂X|Y (x|i)p̂Y (i)

PX(x)
,

it follows that, ∀x ∈ E∗
i ∩ Ej ,

∆(x) = PY |X(i|x) − PY |X(j|x)

≤ PY |X(i|x) − PY |X(j|x) + p̂Y |X(j|x) − p̂Y |X(i|x)

= |PY |X(i|x) − PY |X(j|x) + p̂Y |X(j|x) − p̂Y |X(i|x)|

≤ |PY |X(i|x) − p̂Y |X(i|x)| + |PY |X(j|x) − p̂Y |X(j|x)|
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and∫
E∗

i ∩Ej

∆(x)PX(x)dx ≤
∫

E∗
i ∩Ej

|PX|Y (x|i)PY (i) − p̂X|Y (x|i)p̂Y (i)|dx

+
∫

E∗
i ∩Ej

|PX|Y (x|j)PY (j)− p̂X|Y (x|j)p̂Y (j)|dx.

Using the fact that both collections of sets E∗
i and Ej partition E, we

obtain∫
E

∆(x)PX(x)dx =
∑
i,j

∫
E∗

i ∩Ej

∆(x)PX(x)dx

≤
∑

i

∫
E∗

i

|PX|Y (x|i)PY (i) − p̂X|Y (x|i)p̂Y (i)|dx

+
∑

j

∫
Ej

|PX|Y (x|j)PY (j) − p̂X|Y (x|j)p̂Y (j)|dx

=
∑

i

[∫
E∗

i

|PX|Y (x|i)PY (i) − p̂X|Y (x|i)p̂Y (i)|dx

+
∫

Ei

|PX|Y (x|i)PY (i) − p̂X|Y (x|i)p̂Y (i)|dx
]

≤
∑

i

∫
|PX|Y (x|i)PY (i) − p̂X|Y (x|i)p̂Y (i)|dx,

where we have also used the fact that E∗
i ∩ Ei = ∅.

A.2 Proof of Theorem 2.2

The fact that the sequence of vector spaces is embedded follows
from (2.12) since, ∀i ∈ {1, . . . ,d − 1},

Xi = πi+1
i (Xi+1) (A.2)

and, consequently, there is a sequence of one-to-one mappings

εi(x) = (x,0) (A.3)

for which

εi(Xi) ⊂ Xi+1. (A.4)
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Inequality (2.13) then follows from (A.2), (2.9) and the fact that the
mappings πi+1

i (x) are non-invertible. To prove (2.16), we start from
Theorem 2.1, i.e.,

∆gi,Xi =

√
2ln2
M

∑
k

√
KL[PXi|Y (xi|k)||p̂Xi|Y (xi|k)], (A.5)

where PXi|Y (xi|k) is the class-conditional likelihood function for Xi

under class k. Since, from (A.2), Xi+1 = (Xi,Xi+1), where Xi+1 is the
i + 1th coordinate of Xi+1, we have

KL[PXi+1|Y (xi+1|k)||p̂Xi+1|Y (xi+1|k)]

=
∫
PXi+1|Y (xi+1|k) log

PXi+1|Y (xi+1|k)
p̂Xi+1|Y (xi+1|k)

dxi+1

=
∫
PXi+1|Y (xi+1|k) log

PXi+1|Xi,Y (xi+1|xi,k)
p̂Xi+1|Xi,Y (xi+1|xi,k)

dxi+1dxi

+
∫
PXi+1|Y (xi+1|k) log

PXi|Y (xi|k)
p̂Xi|Y (xi|k)

dxi+1dxi

=
∫
PXi+1|Y (xi+1|k) log

PXi+1|Y (xi+1|k)
p̂Xi+1|Xi,Y (xi+1|xi,k)PXi|Y (xi|k)

dxi+1dxi

+
∫
PXi|Y (xi|k) log

PXi|Y (xi|k)
p̂Xi|Y (xi|k)

dxi

= KL[PXi+1|Y (xi+1|k)||p̂Xi+1|Xi,Y (xi+1|xi,k)PXi|Y (xi|k)]

+KL[PXi|Y (xi|k)||p̂Xi|Y (xi|k)]

≥ KL[PXi|Y (xi|k)||p̂Xi|Y (xi|k)],

where we have used the non-negativity of the KL divergence [22]. It
follows from the fact that the square root is a monotonically increasing
function that √

KL[PXi+1|Y (xi+1|k)||p̂Xi+1|Y (xi+1|k)]

≥
√
KL[PXi|Y (xi|k)||p̂Xi|Y (xi|k)]

which, combined with (A.5), leads to (2.16).
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A.3 Proof of Lemma 4.1

From the properties of symmetric block matrices [2], it is known that if

M =
[

A B
BT D

]
where A and D are symmetric matrices, then

M−1 =

[
A−1(I + BP−1BTA−1) −A−1BP−1

−P−1BTA−1 P−1

]
(A.6)

= Γ(A−1) + EP−1ET (A.7)

and |M| = |A||P| with

Γ(A−1) =
[
A−1 0
0 0

]
, E =

[
A−1B

−I

]
and P = D − BTA−1B. Hence, for any vector zT = [xTyT ], where x
and y have the appropriate lengths for ||z||M to make sense,

||z||M = ||x||A + (BTA−1x − y)TP−1(BTA−1x − y)

= ||x||A + ||BTA−1x − y||P. (A.8)

Using the decomposition

Πj =

[
Πj−1

eT
j

]
,

where ej is the jth vector of the canonical basis of R
p (jth coordinate

equal to 1, all others to 0), and defining Sj = ΠjΣΠT
j , it follows that

Sj =

[
Sj−1 uj−1

uT
j−1 σj,j

]
and Πjd =

[
Πj−1d

dj

]
,

where dj is the jth element of d. Making M = Sj , A = Sj−1, B = uj−1,
D = σj,j , and defining pj = P, and ψj = E, it follows that

ψT
j = (uT

j−1S
−1
j−1,−1)

pj = σj,j − ||uj−1||Sj−1 ,

= −(uT
j−1,σj,j)ψj

S−1
j = Γ(S−1

j−1) +
1
pj
ψjψ

T
j .
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Letting z = Πjd, x = Πj−1d, y = dj , and applying (A.8),

||Πjd||Sj = ||Πj−1d||Sj−1 +
1
pj

(ψT
j Πjd)2.

Since Mj = ||Πjd||Sj , this leads to (4.11)–(4.14). Furthermore, from
|M| = |A||P|, it follows that |Sj | = pj |Sj−1|, which leads to (4.15).
Finally, since the steps of (4.11)–(4.15) have complexity O(j) or O(j2),
the overall complexity is O(

∑d
j=1 j

2) = O(d(d + 1)(2d + 1)/6 = O(d3).

A.4 Proof of Theorem 6.1

We start by noting that

PN (x) =
1
K
PC(x) +

1
NK

N∑
i=1

K−1∑
j=1

G(x,µi
j ,Σ

i
j)

=
1
K
PC(x) +

1
K

K−1∑
j=1

1
N

N∑
i=1

G(x,µi
j ,Σ

i
j)

For any x, it follows, from the strong the law of large numbers that, as
N → ∞, PN (x) converges almost surely to

P (x) =
1
K
PC(x) +

1
K

K−1∑
j=1

Eµ,Σ[G(x,µ,Σ)]

=
1
K
PC(x) +

(
1 − 1

K

)
Eµ,Σ[G(x,µ,Σ)].

Using the independence of µ and Σ,

Eµ,Σ[G(x,µ,Σ)]

=
∫
PΣ(Σ)

∫
G(x,µ,Σ)G(µ,µ0,Σ0)dµdΣ

=
∫
PΣ(Σ)G(x,µ0,Σ + Σ0)dΣ

= EΣ[G(x,µ0,Σ + Σ0)]
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and, with probability one, for all x

lim
N→∞

PN (x)

=
1
K
PC(x) +

(
1 − 1

K

)
EΣ[G(x,µ0,Σ + Σ0)]

= f(x) +
(

1 − 1
K

)
[EΣ[G(x,µ0,Σ + Σ0)] − G(x,µ0,S + Σ0)].

Using (6.6), leads to (6.9).
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