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Abstract—A biologically inspired discriminant object tracker is proposed. It is argued that discriminant tracking is a consequence of
top-down tuning of the saliency mechanisms that guide the deployment of visual attention. The principle of discriminant saliency is then
used to derive a tracker that implements a combination of center-surround saliency, a spatial spotlight of attention, and feature-based
attention. In this framework, the tracking problem is formulated as one of continuous target-background classification, implemented in
two stages. The first, or learning stage, combines a focus of attention (FoA) mechanism, and bottom-up saliency to identify a maximally
discriminant set of features for target detection. The second, or detection stage, uses a feature-based attention mechanism and a
target-tuned top-down discriminant saliency detector to detect the target. Overall, the tracker iterates between learning discriminant
features from the target location in a video frame and detecting the location of the target in the next. The statistics of natural images are
exploited to derive an implementation which is conceptually simple and computationally efficient. The saliency formulation is also
shown to establish a unified framework for classifier design, target detection, automatic tracker initialization, and scale adaptation.
Experimental results show that the proposed discriminant saliency tracker outperforms a number of state-of-the-art trackers in the
literature.

Index Terms—Obiject tracking, discriminant tracking, saliency, attention, motion saliency, automatic target initialization, scale adaptive
tracking, discriminant center-surround architecture, video modeling
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1 INTRODUCTION

OB]ECT tracking is a classical problem in computer vision
and a prerequisite for many of its important applica-
tions, such as surveillance, activity or behavior recognition,
and video retrieval. Decades of research on this topic have
produced a diverse set of approaches and a rich collection of
tracking algorithms [74]. Many of these are based on
appearance modeling. They learn (and maintain) a model of
target appearance, which is used to locate the target as time
evolves [9], [19], [39], [42]. The main limitation of these
methods is that they uniquely rely on models of object
appearance and do not take the background into account.
This limits tracking accuracy when backgrounds are
cluttered or targets have substantial amounts of geometric
deformation, such as out-of-plane rotation. To address this
limitation, various authors have noted that it is frequently
easier to model the differences between target and back-
ground than to model the target itself. This has led to the
idea of discriminant tracking, where the tracking problem is
framed as one of continuous object detection, through
incremental target versus background classification [6], [18],
[31]. Discriminant tracking has two main steps. Given an
initial target bounding box, say at time ¢, the first step
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consists of classifier design: A classifier is trained by selecting
visual features that discriminate between target and back-
ground, and a decision rule is learned based on these
features. In the second step, denoted target detection, the
classifier is applied to every location of the visual field, so
as to determine the most likely location of the target at time
t + 1. The target bounding box is moved to this location and
the process iterated. This generic formulation has been used
to design various trackers [6], [7], [18], [31], [32].

In the biological world, object tracking is a requirement
for fixating objects of interest. The goal is to keep an object on
the fovea of the observer, even when either or both are
moving [53]. Given the evolutionary advantage of solving
this problem, it is not surprising that biological vision has
evolved extremely efficient tracking mechanisms in terms of
accuracy, robustness, and speed. In the biological vision
literature, it has been suggested that tracking is 1) imple-
mented by attentional mechanisms [5], [14] and 2) dependent
on the distinctiveness of target appearance features [49]. It is
also known that a distinct target can be tracked as it changes
appearance, even when spatially superimposed on a dis-
tractor [10]. Conversely, it has been shown that attentional
tracking fails when target features cannot be individuated
[13], [70]. With regard to motion, targets can be easily
tracked among distractors of identical appearance as long as
they are spatiotemporally distinguishable from the latter
[38], [55]. While this suggests that both spatial and
spatiotemporal target features are used in object tracking
[10], itis believed that biological tracking mechanisms do not
rely on motion extrapolation [44]. In fact, experiments based
on the “bouncing-streaming” [58] paradigm have shown
that the perceived correspondence of an object in successive
time slices depends much more on the similarity of its
features (shape, orientation, color, texture, etc.) than on the
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predictability of the resulting trajectory [23]. In summary,
biological tracking requires target-distractor discrimination,
in terms of appearance or motion.

Noting that these are also the distinguishing properties of
the center-surround saliency mechanisms that guide the
deployment of attention [40], and which are prevalent in
biological vision [15], [30], we frame discriminant tracking as
a by-product of saliency detection. This is done with recourse
to a recent computational formulation of visual saliency,
denoted discriminant saliency [30], which has enabled a
number of contributions to both biological and computer
vision. We start by showing that discriminant tracking can be
implemented with a combination of operations that are well
documented in the biological attention literature: center-
surround saliency [41], a spatial spotlight of attention [54], and
feature-based attention [66]. It is then shown that, under the
discriminant saliency formulation, these operations are
mapped into statistical operations such as feature selection
or target detection. This enables the derivation of trackers that
can be implemented with simple and highly efficient computa-
tions, two important requirements for the practical feasibility
of any tracker. The saliency formulation is next shown to also
establish a unified framework for classifier design, target
detection, automatic tracker initialization, and scale adaptation.
While the steps of classifier design and target detection are
addressed by all discriminant trackers in the literature,
previous solutions cannot cope with the initialization and
scale adaptation problems. Finally, it is shown that the
proposed discriminant tracker outperforms a number of
state-of-the-art tracking approaches in the literature.

The paper is organized as follows: Section 2 reviews the
tracking literature. Visual saliency and the discriminant
saliency principle are then briefly reviewed in Section 3.
Section 4 introduces the saliency-based discriminant tracker,
and derives efficient implementations for feature selection,
classifier design, target detection, and parameter learning. A
number of extensions that improve tracking robustness,
enable scale adaptation, and automate tracker initialization
are also presented. An extensive experimental evaluation is
then presented in Section 5, and some conclusions are finally
drawn in Sections 6 and 7.

2 RELATED WORK ON OBJECT TRACKING

Many popular approaches to object tracking are based on
appearance modeling. They learn and maintain a model of
target appearance, which is used to locate the target as time
evolves. Conditional density propagation [39] is one of the
most popular methods in this class. Targets are represented
by some type of visual features, e.g., their contours or
deformable templates [75], and the temporal evolution of
these features is modeled with a particle filter. Alternatively,
target appearance is frequently represented by kernel
weighted color histograms, which are combined with the
mean shift procedure to identify the most likely position of
the target in the next frame [19]. Representations of the target
and/or background with probabilistic models, e.g., a
mixture of Gaussian (MoG) models, have also been proposed
[33], [62]. Equally popular are subspace methods, which
maintain a low-dimensional representation of target appear-
ance [9], [36]. Recently, there has been an interest in making
these representations adaptive by updating subspaces

incrementally, using online principal component analysis
[57]. More sophisticated appearance models include a
combination of short-term descriptors and long-term stable
representations [42], specialized representations tailored to
specific entities such as people [56], or multiple image patch
representations such as “FragTrack” [3].

Appearance-based trackers have limited accuracy when
backgrounds are cluttered or targets have substantial
amounts of geometric deformation, such as out-of-plane
rotation. Discriminant trackers frequently achieve better
performance in these scenarios [31] by framing tracking as
incremental target versus background classification [6], [18].
The superior performance of discriminant trackers over
models that rely on motion prediction is consistent with
what is known about biological tracking. One of the earliest
discriminant trackers, proposed by Collins et al. [18], relies
on a feature set composed of histograms of filter responses
to the R, G, B channels of the visual stimulus. Discriminant
features are selected with a variant of the Fisher discrimi-
nant, and the classifier is implemented with a likelihood-
based decision rule. Fisher discriminants are also used to
classify foreground from background in [45] and [51]. The
“ensemble tracking” method of Avidan [6] uses a combina-
tion of histograms of oriented gradients [20] and R, G, B pixel
values as features. A set (“ensemble”) of weak hyperplane
classifiers is trained to separate target from background and
combined into a decision rule using AdaBoost [24]. Grabner
and Bischof [31] have proposed an alternative ensemble
tracker, based on online boosting. This maintains a set of
weak learners that are updated at every time step. More
recently, online boosting has been combined with a semi-
supervised update of the weak learners to increase tracker
robustness [32]. A multiple instance learning (MIL)-based
approach has also been proposed in [7] to minimize the
ensemble tracker sensitivity to outliers due to misalignment
of the target bounding box.

The robustness of biological tracking mechanisms has
inspired computer vision researchers to augment conven-
tional trackers with focus of attention (FoA) mechanisms. For
instance, Toyama and Hager [64] proposed an incremental
FoA procedure to combine multiple trackers, leading to
increased robustness.

3 DISCRIMINANT SALIENCY

We start by reviewing the main concepts of discriminant
saliency. A more extensive discussion can be found in [25],
[26], [30], and [48].

3.1 Visual Saliency

The perception of complex scenes by biological vision
systems is heavily dependent on attentional mechanisms.
These mechanisms allocate the limited perceptual resources
available to the scene regions that matter the most,
increasing efficiency and robustness to clutter. Attention is
itself driven by saliency mechanisms, which assign to each
region of the visual field a degree of saliency or importance.
The different regions of the scene are then explored
sequentially, according to their saliency. There are two types
of saliency mechanisms, commonly denoted bottom up and
top down. Bottom-up saliency is completely stimulus driven,
i.e., independent of the higher level goals of the perceptual
system. It is, for example, responsible for the high saliency of
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a “danger” sign posted on a wall, which pops out [52] even
when we are not looking for danger signs. Top-down
saliency mechanisms can be tuned by feedback from high-
level cortical areas according to the tasks to be performed.
For example, the eye fixations of a subject trying to identify a
person in a photograph will be overwhelmingly located on
the faces present in that picture [72]. Two main types of
tuning are possible: a spatial focus of attention mechanism,
also known as the spotlight of attention [54], and feature-based
attention [66], which manipulates attention by inhibiting or
enhancing groups of features.

In the following sections, we show that both spatial and
feature-based attention play a prominent role in saliency-
based tracking.

3.2 Discriminant Saliency

Discriminant saliency is a mathematical formulation for
visual saliency. Two classes of visual stimuli are first defined:
a target class of stimuli of interest and a background or null
hypothesis of nonsalient stimuli. The visual stimulus is not
observed directly, but through projection into a number of
features. Saliency is the result of optimal classification (in a
decision-theoretic sense) of feature responses into the target
and background hypotheses [27]. More precisely, the saliency
of each location of the visual field is equated to the expected
classification accuracy for the features extracted from it.
Locations of smallest probability of error are most salient.

This formulation can be applied to various vision
problems by suitable definition of target and null hypoth-
eses. For example, it can be used to implement one-versus-all
object detection by defining the target as an object class and
the null hypothesis as the set of natural images [27]. This is
an instance of top-down saliency, due to the necessity of
specifying task-related object classes. Alternatively, target
and null hypotheses can be defined as the visual stimuli
contained in a pair of center and surround windows at every
location of the visual field [30]. This is a purely stimulus
driven definition, which implements bottom-up saliency.
Implementations of the discriminant saliency principle have
various properties of interest for both biological and
computer vision. In the area of biological modeling, they
can be mapped into a biologically plausible neural archi-
tecture, which has been shown to 1) replicate the computa-
tions of the standard neurophysiological model of the visual
cortex [30], 2) predict a large body of psychophysics of
human saliency [26], and 3) accurately predict human
fixations in natural scenes [28]. In computer vision, they
have been shown successful for interest point detection [29],
background subtraction in highly dynamic scenes [48], and
object recognition [25], [34]. We next review the discriminant
formulation of both bottom-up and top-down saliency in
greater detail.

3.3 Mathematical Formulation of Bottom-Up
Saliency

Let V be the visual stimulus and [ a location of interest. Two
windows are defined around this location: a center window
W} containing /, and a surrounding annular window W
containing background. The union of the two windows is
denoted the total window, W, = W) UW;]. Stimuli in the
center window are drawn from a center class, of label
C(l) = 1. Stimuli in the surround window are drawn from a
background class, of label C(I) = 0. A set of features Y, from a

predefined feature space ), are computed for each of the
windows Wi, i € {0, 1}. Features Y extracted from the center
have probability py|c()(y|1) and those from the background
have probability py|c)(y]0). The saliency of location I, (1), is
quantified by the mutual information between feature
responses, Y, and class label, C:

50 = 1070 = Y [ prco (9o %dy W
i=0 [

Il
MH

po) (1) K Lipy|co) (y19) lpy ()], (2)

Il
o

C

where KL(px|lqx) = [, px(x) log% dr is the Kullback-
Leibler (KL) divergence between the probability distribu-
tions px (z) and ¢x(z). Since the KL divergence measures the
disparity between its two arguments and Py(y) is the
average of pyc()(y|1) and pyc()(y]0), the mutual informa-
tion can also be interpreted as a measure of distance between
the distribution of feature responses under the two classes.
Hence, S(I) measures the extent to which the features Y
discriminate between the two classes.

3.4 Mathematical Formulation of Top-Down
Saliency
For top-down saliency problems such as object recognition
[25], [27], the target class, of label C' = 1, is the object class to
recognize, and the background class, with label C' = 0, the
class of natural images. Feature Y has probability py|c(y|1)
under the target hypothesis and probability py|-(y|0) under
the background hypothesis. Unlike bottom-up saliency,
where the absence of any objects can be salient (e.g., a void
region is salient within a textured background), recognition
requires the detection of the object of interest. This implies
that top-down saliency measures must have a bias toward
target presence.

This bias is accomplished with a two-step saliency
measure. A likelihood ratio test is first used to identify the
setof likely targetlocations S = {Z|Py<l)|g(y|1) >Pyyc(y|0)}.
These are the locations where the likelihood of the feature
responses is larger under the hypothesis of target presence
than target absence. As before, the saliency of location [ is
defined by the amount of information in the visual stimulus
for optimal classification into one of the two classes, using the
information measure:

1 .
. pY(l).C(Y> i)
I1C;Y(H)=y) = P yl|i)log—————.

(GY(1)=y) ; y()jc(¥19) 8 pr o (3)pc(d) (3)

However, to guarantee that only locations likely to contain

the target are declared salient, the saliency computation is

restricted to S. This leads to the saliency measure [25], [34]:

_JICY()=y), ifles,

50 = { 0, otherwise. (4)

Locations where this measure is large have both 1) larger

likelihood under the target than background hypothesis,

and 2) feature responses that are highly informative for
classification.
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(d)

(e) ()

Fig. 1. lllustration of saliency-based tracking. (a) Two disks, one red and one brown are salient among green distractors; (b) defining the red disk as
the target, at time ¢, focuses spatial attention on it; (c) computing center surround saliency at this location leads to the selection of the feature “red”
as the most salient; (d) the position of the disks at time ¢ + 1, shown with the focus of attention from time ¢; (e) feature-based attention suppresses all
but the red feature channel, which has nonzero response only at the locations of the red and brown disks; (f) the location of the target has the largest

saliency inside the focus of attention.

4 DISCRIMINANT TRACKING

The central hypothesis of this work is that discriminant
tracking can be implemented with a combination of bottom-
up and top-down saliency detection. In this section, we
build on this hypothesis to propose a saliency-based
discriminant tracker.

4.1 The Connection to Saliency

We start by relating discriminant tracking to saliency. Given
an initial target location [* at time ¢, the first step of
discriminant tracking is to design a target/background
classifier. The target and background hypotheses are
defined by the feature responses in a window centered at
I*, the target window, and a surrounding annular background
window. Hence, like bottom-up saliency, discriminant track-
ing requires the computation of the discriminant power of
each feature in Y with respect to a center-surround
discrimination problem. The main difference is that, while
bottom-up saliency performs the computation at each
location of the visual field, discriminant tracking only
requires it at location {*. This is equivalent to computing
bottom-up saliency after application of a spatial focus of
attention mechanism tuned to the target location. Given a
measure of how discriminant each feature is for target/
background discrimination at time ¢, the next step is to find
the target in the next frame, ie., at time ¢+ 1. This is
formulated as a target detection problem. It requires the
selection of the most discriminant features in ¥ and a
decision rule for target detection. Since the discriminant
power of each feature is already known, feature selection
reduces to suppression of nondiscriminant features and
enhancement of discriminant ones. This type of manipula-
tion is exactly the function of a feature-based attention
mechanism. Finally, target detection can be implemented
with a top-down saliency measure trained from the feature
responses in the target and background windows at time t.
The position of the target at time ¢ 4+ 1 is determined by a
search for the location of largest saliency within a neighbor-
hood of the target position at time ¢. This restriction of the
search space reduces the computation needed to identify
the new target location by ignoring regions peripheral to the
current focus of attention. It is consistent with the “center
bias” observed in the human visual system, where a saccade
to a new fixation location is biased to be close to the current
center of view [63], [67].

The overall process is illustrated in Fig. 1. The display in
(a) shows two disks (one red, one brown) moving against a
background of green distractors. Assume that the red disk is
the target and that the feature set ) consists of a number of

color detectors. At time t, the spatial focus of attention
mechanism narrows the field of view to the neighborhood of
the target, as shown in (b). This makes the target salient.
Computation of center-surround saliency as in (c) finds the
red color to be the most discriminant feature. Training a top-
down saliency measure for target/background classification
in this area produces a detector of red disks. For simplicity,
we assume this to be a threshold on the red channel of the
visual stimulus. Target detection at time ¢ + 1 starts with the
application of feature-based attention, which strengthens
the red channel and inhibits all others. This is illustrated in
(d) and (e), where we present the display at time ¢ + 1, and
its projection on the selected feature, i.e., its red color
channel. Note how the feature-based manipulation of
attention eliminates much of the clutter in the scene. In
fact, only the red disk elicits a strong response after feature
selection. Further application of the top-down saliency
detector (red threshold classifier), followed by a search for
maximum saliency within a neighborhood of the previous
target location, leads to the identification of the red disk, as
shown in (f).

4.2 The Core Tracking Procedure

The discussion of the previous section suggests that
discriminant tracking can be implemented with discrimi-
nant saliency measures. Starting with the target location {*
at time ¢ and the associated target (W).) and background
(W) windows, the tracker is implemented as follows:

1. Learning. At time t, estimate the probability
distributions pyc()(yli), i€ {0,1}, using the
feature responses in W), as training samples
and the distribution py(y) from the responses
in Wi =W UWL.

2. Feature selection. Among the NN available features,
select the subset of K < N that maximizes the
saliency measure of (2).

3. Classification. Using these K features compute, at
time t + 1, the top-down saliency of each location !
of the visual field, using the saliency measure of (4).
Find the location of largest saliency within a
neighborhood of [*, and set this as the new [*. Set
t=1t+1 and go to Step 1.

Note that the first two stages, learning and feature selection,
implement a bottom-up saliency measure, while top-down
saliency is used in the third, i.e., classification. The overall
procedure has a number of practical limitations. First, the
saliency measures of (2) and (4) require the evaluation of the
joint probability distribution of the features in Y. This is too
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complex for most applications of saliency and infeasible for
tracking, where there is a premium on computational
efficiency. Various simplifications can be achieved by
restricting the features to bandpass filters and exploiting
the statistical regularities of the responses of such features to
natural images. However, a classifier built from bandpass
features may not have the robustness necessary to track
complex objects subject to nonplanar motion. This type of
robustness usually requires more abstract features. Finally,
the classifier should operate across multiple scales so as to
enable scale adaptation as the distance between objects and
camera varies. These issues are addressed in the remainder
of this section.

4.3 Salient Feature Selection

Feature selection is naturally implemented under discrimi-
nant saliency since the saliency measure is itself a measure of
discrimination. In fact, extremely efficient implementations
are possible when the features belong to the class of
bandpass filters. Assuming this to be the case, let the feature
space Y have dimension N, and denote Y = (Y7,...,Yy).
Salient feature selection involves the identification of the
subset of K < N features that maximizes discrimination
between target and background. One possibility to accom-
plish this is to define Y;; = (Y3,...,Y}), and expand the
mutual information of (1) into [68]

ZI (Vi C

5
+Z (Ye; ClY 15-1) = I(Vis Yig-1)), ©

where

Py ciz(y,i|z)

Iy;c .
12) py\z(.V|Z)pC|z(Z|Z)

Z/Pycz y,i,2)log
(6)

is the conditional mutual information between Y and C given
the observation of Z. In (5), the term I(Y}; C) is the marginal
mutual information (MMI) between the kth feature and the
class label. It measures how discriminant the kth feature is
individually. The terms I(Y}; Y ;-1|C) — I(Yy; Y14-1) quan-
tify the discriminant information contained in feature
dependencies between the kth feature and the set of k — 1
previously selected features [68]. This decomposition allows
a substantial simplification of the mutual information by
exploiting a well-known property of band-pass features
extracted from natural images: that such features exhibit
consistent patterns of dependence across an extremely wide
range of natural image classes [12], [37]. This implies that the
dependencies between features carry little information about
the class from which the features are extracted, allowing the
approximation of (5) by

1(Y;0) ~

ZI Vi C (7)

As noted in Section 3.3, the mutual information 1(Y}; C)
measures the extent to which feature Y, discriminates
between target and background classes. However, a large
mutual information does not imply that the feature is
characteristic of the target. In fact, a feature that is totally

absent from the target region but prevalentin the background
is highly discriminant for target/background classification.
In the tracking context, it is usually undesirable to rely on
such features since the background can vary drastically as the
target, the camera, or both, move. For example, the target can
move from an area of the scene where the background is
highly textured (e.g., vegetation) to an area where that has
virtually no texture (e.g., a white wall). A tracker that relies on
features characteristic of the background texture to detect the
target can lose the latter as it moves into the textureless
regions of the scene. Hence, features that are discriminant but
absent from the target region can lead to unstable tracking
and should be discarded.

For bandpass features whose responses to natural images
have zero mean and probability density functions that decay
with the distance to the origin, the detection of features
expressed in the target is fairly straightforward. These are
the features of larger average response magnitude for target
than background. Since the responses have zero mean, they
can be identified as the features of larger variance under the
target class than under the background class, i.e.,

Ey,clyill] > By cly;l0]- (8)

This condition can be combined with (7) to obtain a very
efficient salient feature selection mechanism. Since the
mutual information is always nonnegative, the selection of
the optimal subset of K (K < N) salient features reduces to
1) ordering the N features by decreasing MMI, I(Y;;C),
2) discarding features that do not satisfy the variance
condition of (8), and 3) selecting the first K. This is denoted
feature selection by maximum marginal diversity in [69].

4.4 Efficient Computation of Saliency Measures

In addition to efficient feature selection, the combination of
(7) and the statistics of bandpass responses to natural
images also simplifies the discriminant saliency measures of
(2) and (4). This follows from the well-known observation
that the probability distribution of feature responses of a
bandpass feature to natural images follows a generalized
Gaussian distribution (GGD) [37]:

B |y
2al'(1/5) Xp( oﬂ>’ ©)

whereI'(z) = [[* e 't*"!dt, t > 0, is the Gamma function, v a
scale parameter and (3 a shape parameter. Note that this holds
for both the class-conditional densities Py (yli), i € {0,1},
and the marginal distribution Py (y). Although the latter is a
mixture Py (y) = Y1, Pyic(yli)Po(i) of GGDs, it is still the
density of responses of a bandpass feature to natural images
and thus well approximated by a GGD.

The (B parameter controls the rate of decay of the
probability density from its peak value (e.g., Laplacian when
[ =1 or Gaussian when [ = 2). It has been shown that § €
(0.5,0.8) provides a good fit to large corpora of natural
images [61]. We found § = 0.7 to work best and adopt this
value in our work. The scale parameter o can be estimated by
the method of moments [60]. This exploits the fact that the
scale ay,; of the response of feature Y}, to imagery from class
C=1is

Py(y;a, ) =




546 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 3, MARCH 2013

with

or; = By c[vili] e Z (%)27

Jly,.€D;

(11)

where o7 ; is the variance of the responses of Y} to class i,
D; = {y},...,y}} is a training sample from this class, and we
have used the fact that the responses of bandpass filters have
zero mean. In summary, given a sample of feature responses
from the target and background windows, the estimation of
the scale parameters is trivial.

We next note that, under the approximation of (7), the
bottom-up saliency measure of (2) reduces to the sum of
the marginal mutual informations between features and
class label:

S() = L(Y;C0) =~ > 1(Yi; C) (12)
k
= Z Z Pey (1) K L[ Py, c) (yrli) | Py, (yr)].- (13)
b i=0

Combining this with the KL divergence between two
GGDs [21],

KL[Py (y; o, B)| Py (y; o, B)] = log <§> +% <(%)ﬂ—1) ;
(14)

leads to the simplified bottom-up saliency measure:

S(l) = zk:i;ﬂ <log<%> +% ((2)3—1» (15)

where m; = Po(i) is the prior for class i, and oy, ay; are the
scale parameters of Py, (yr), Py,c) (Yxli)-
With respect to top-down saliency, (4) reduces to

SO =380, S0 = { O =), 1L S
(16)
St = {I| Prayic(well) > Priaye(url0) }- (17)

We next note that [30] when Py, c(yxi), i € {0,1}, are GGDs
with scale parameters oy,

s(gr(yx))
7Tgl(—qu,(yk))

+ s(—gi(yr)) log =——==,
0

I(C; Yy = yi) = s(gr(yr)) log
(18)

with s(y) = (1+ e*y)_1 a sigmoid function, 7; = P (i), and

= : 1 1 Q1T
- k170
9e(y) = &lyl” =Tk, &=—F5——5 Tp=log——.
ko Q0T
(19)

From (19) and (10), the variance condition of (8) is
equivalent to & > 0, and the sets Sy can be simplified into

1 L\ 7
Sk = {l|lyx| > tx} with ¢, = (—bg%) . (20)
k
Using this in (16) leads to the simplified top-down saliency
measure:

1
B .
Sie(l) = ; hi (§k|yk| - T/\)7 if ly| > t, (21)
0, otherwise,

with h;(z) = s((—1)""'z) log(L s((~1)""'z)). The form of (21)
suggests the interpretation of salient features as matched
filters for the detection of visual attributes of the target
class. This is due to the constraint |y;| > t;, which only
assigns saliency to the regions where the kth feature
response has large magnitude. These are regions where
the visual stimulus resembles the feature.

In summary, for bandpass features, both salient feature
selection and saliency detection are quite simple. Given a
sample of responses from feature Y; in the target and
background windows, the parameters oy, o, &, Tr, and t;
are estimated with (10), (19), and (20). Features Y}, for which
& < 0 are then discarded. The remaining are ordered by
decreasing mutual information /(Y}; C), using (13) and (14),
and the top K selected. Saliency detection is then performed
with these features, using (16) and (21). The simplicity of all
these operations is crucial for discriminant tracking, where
they have to be repeated at each time step.

4.5 Spatial Importance Maps

The implementation of a discriminant tracker requires
tradeoffs between detector robustness, computational com-
plexity, and adaptivity. Typically, robustness requires
decision functions learned from a large training sample.
Such functions are difficult to learn and adapt. Adaptation is
particularly challenging since both the feature subset added
ata given time step and the examples from which itis learned
tend to be overwhelmed by those of the previous steps. The
more robust a classifier becomes, the more difficult it is to
adapt to variations in the statistics of the two classes.
However, adaptation is crucial for tracking, where the
difficulty is to exactly track objects as they change appearance
due to variations in lighting, pose, background, etc. The
saliency-based discriminant tracker of the previous section is
highly adaptive since the learning of salient features is
performed at each frame. The price is that, due to limited
training data and computation available it can only use a
small number of simple features. Hence, as an object detector
it is not very robust.

One of its major limitations is that no positional informa-
tion is stored for the filter responses. As a result, the saliency
assessments of (21) do not require spatial consistency of
feature responses. For example, it is indifferent if a feature
only has large response in the top or bottom half of the target
window. Since salient features are usually not expressed in
the entire target window, this can lead to noisy saliency maps
for target detection. An obvious improvement is to define a
feature for each combination of bandpass filter and location
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Fig. 2. (a) Spatial importance map (SIM): For each feature, a saliency template of the target is stored at time ¢. (b) Target localization at ¢ + 1: For
each selected feature, a top-down saliency map is computed with (21), and then correlated with the SIM from time ¢ using (23). These saliency maps
are combined to produce the overall saliency map, the maximum of which is taken to be the new location of the target.

within the target window, as is popular in face detection [71].
This is, however, infeasible for tracking due to the extensive
amounts of computation and training data required. A better
alternative is to learn a second layer of features that model
configurations of feature responses. This is inspired by recent
work in HMAX networks [59]. These are biologically
inspired object recognition networks, composed of two
layers. The first layer can be seen as a (weak) object detector,
based on simple bandpass features (Gabor functions) such as
those used in this work. The second is an equivalent
classifier, but uses more complex features. These are
obtained by randomly sampling the responses of the first
layer to objects in the target class, and can be interpreted as
representative templates of first layer response. In fact, the
first layer of the HMAX network can be expanded to perform
top-down saliency detection [34], in which case the second-
layer filters are saliency templates. These summarize the
saliency configurations that appear during training, provid-
ing a rough characterization of object shape. In this way, the
addition of the second HMAX layer increases the robustness
of the saliency detector implemented by the first [34].
While the training complexity of a full HMAX network is
too large for tracking, the idea of accounting for positional
information through the inclusion of saliency templates can
still be used. In fact, there is a very natural template to use
at time step ¢ + 1: the map of saliency responses, within the
target window W;., of each salient feature at time ¢. This is
denoted the spatial importance map and computed as

. <Si(l)>
Dewr, <Sk(D)> 7

where <S;(I)>, is a local average over 4 x 4 pixels of the
kth saliency response at time ¢. The proposed normalization
guarantees that 7 () sums to 1, giving it the interpretation of
a weighting function that emphasizes regions of strong
feature response. Since 1) salient features are discriminant for
target/background classification and 2) bandpass features
respond to image landmarks, such as edges, corners, or
texture, these are regions of landmarks that distinguish target
from background. In summary, the spatial importance map

T(0) le Wy, (22)

models the spatial configuration of a set of distinctive target
landmarks. This is illustrated in Fig. 2a.

The consistency of the saliency patterns of (21), at times ¢
and ¢t + 1, can be verified by computing the cross-correla-
tion between the saliency map S; at time ¢+ 1 and the
spatial importance map 7, learned at time ¢,

Rk(l) = <Sk|W} ) Tk>7

where Sy|,y1 is the restriction of S, to the target window wi,
and < -,- > a dot-product. The final saliency measure for
the set of K feature responses is

(23)

Sr(l) = Re(l).

k=1

(24)

Its computation is illustrated in Fig. 2b.
The location Ij,; of largest saliency within a neighbor-
hood W of the last known target position [} is selected as
the new position of the target at time ¢ + 1. The feature
statistics of target and background windows are updated in
an online manner, using

1-A

3 (W) + At (), ift>0,
Jlv,€Di

Uz,i(t +1) = 1

D ONCAR

|y, €D;

(25)
if ¢ = 0,

where D; is the sample of examples collected from class i at
time ¢ + 1, and A a decay factor. These statistics are then used
for target detection at time ¢+ 2, and the procedure is
iterated.

4.6 Scale Adaptive Tracking

Target scale can vary significantly as targets move toward or
away from the camera. Trackers that do not adapt to these
variations end up relying on a target window that either
1) includes background (when the target shrinks) or
2) excludes foreground (when it grows) and can easily drift.
This has motivated a number of scale adaptive extensions of
tracking algorithms, ranging from the combination of
tracking and scale space representations [11] to specific
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Fig. 3. Saliency-based scale adaptation. The mutual information between the selected salient features and the class label is evaluated over a scale
space. The scale at which saliency peaks is chosen as the optimal tracker scale. This is the scale of largest discrimination between target and

background.

enhancements applicable only to some trackers, e.g., mean
shift [8], [17], [73]. However, scale adaptivity has received
little attention in the discriminant tracking literature.
Saliency-based tracking offers a natural solution to this
problem since scale and saliency are strongly related [43]. In
fact, scale adaptation can be achieved as a byproduct of
discriminant center-surround saliency: The scale of the
target is simply that of the center-surround operator that
maximizes target/background discrimination. To determine
this scale at a given target location, it suffices to search over a
discrete scale space s € {Smin, Smaz} Of target and back-
ground window sizes. For each s, the GGD parameters
a;;, of are computed from the feature responses in the
target and background windows. This can be done effi-
ciently through the use of integral images [71]. For each
feature k, an integral i image of the second moment of feature
responses Z;(l) = E]jl(yk) where j < [ if location j is not
below or to the right of location [, is first computed. The
variance estimate of (25) within a window D; of scale s
determined by bottom-right, upper-right, bottom-left, and
upper-left coordinates i}, I’ , I;;, 5, is then

: () + ().

(Ui,i)s ~ (I( br) - (lé )

where n is the number of pixels in D;. The GGD parameters
are finally estimated with (25) and (10).

Given a set of estimates of the GGD parameters «; ;, o}
at all window sizes s € {s,,i, Smas }, the optimal scale is that
at which the center-surround saliency measure peaks:

s* —argmaXZI Yy; ©),
B
)

5:5€S), A
ag(Zk (Yk?

L z(lg() ;((
Js 0s?

5= (s ADLLOKC) _

(26)

D<ol
(27)

As illustrated in Fig. 3, this is the scale of largest target-
background discrimination.

4.7 Features

Discriminant tracking can be implemented with any set of
bandpass features. In this work, we rely on a combination of
discrete cosine transform (DCT) filters to account for spatial
information and 3D spatiotemporal Gabor filters to account
for motion. DCT features are computed by representing
each frame as a Gaussian pyramid and convolving each
layer of the pyramid with 8 x 8 DCT basis functions. The
spatiotemporal features are based on the 3D Gabor filters of

[4], [35], which comply with the physiology and psycho-
physics of the early stages of the visual cortex [4]. Filters
tuned to a single spatial frequency of 0.25 cycles/pixel and
temporal frequencies of 0 cycles/frames (stationary objects)
and £0.25 cycles/frames (objects moving to the left or right)
were chosen, for a total of three motion-based filters.

It should be noted that while the discriminant tracker
does not require explicit modeling of target dynamics (e.g.,
through Kalman or particle filtering [39]), the inclusion of
spatiotemporal features guarantees their implicit modeling.
For example, if a target is moving to the right at time ¢, the
associated spatiotemporal filter is likely to be discriminant
at that time. The selection of this filter as a salient feature
implies that locations of right-moving objects are more
likely to be declared salient at time ¢ + 1. Hence, the tracker
has some ability to predict the dynamics of the target. This
ability obviously increases with the addition of spatiotem-
poral filters to the feature set. The limited set used in this
work is mostly due to the desire to guarantee low complex-
ity. The implicit modeling of target dynamics is further
reinforced by the restriction of the target search to the
window W;.. This assumes that targets do not instanta-
neously jump beyond the region of the focus of attention,
i.e., that target motion is smooth.

4.8 Automatic Tracker Initialization

Most tracking algorithms assume a known initial target
location /* and bounding box W}, [6], [18]. However, these are
not available in most tracking applications. While many
initialization strategies, such as background subtraction and
blob or motion detection, have been proposed [18], they are
mostly heuristic. A more principled approach, based on
bootstrapping a weak and generic target model for automatic
initialization, was proposed in [65]. However, it requires a
prespecified target model and some degree of supervision to
adapt it to different scenes. Saliency-based tracking provides
a more natural solution to the initialization problem: to
declare as targets the locations of largest bottom-up saliency.
This is implemented by evaluating (15) at all locations of the
visual field, and finding the most salient (or the set of most
salient locations if multiple objects are to be tracked). If
desired, the search can also be performed over target size, i.e.,

(I',s*) = argmalez,s (Vi ©), (28)
ls k
where
1 ls s B
oy 1 Qi
Ls(Yis0) =Y mi | log (Tk) += <T’“> -1, (29
=0 as) B\ \
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Fig. 4. Features selected in the first 50 frames on (a) “karlsruhe” and (b) “sylvester.” The spatial features are numbered from 1 to 64, and correspond
to the zig-zag scanning order of the DCT basis functions, while the three spatiotemporal features are numbered from 70 to 72.

l,s

and the parameters ai‘;_sl.,ozk are learned, with (10), from
feature responses in the windows associated with a center-
surround operator of size s = (s,, s,), centered at location [.
As before, these parameters can be computed efficiently
with resort to integral images. Overall, this initialization
finds the regions whose motion and appearance is most
distinct from those of the background.

The use of (28) has a number of appealing properties.
First, it can be seen as a form of background subtraction. In
fact, it is a simplification of a state-of-the-art formulation of
background subtraction that performs well even on highly
dynamic backgrounds [47]. The proposed simplification
sacrifices the ability to model complex dynamics for the
sake of computational tractability. Second, while the use of
spatiotemporal features enables it to account for both target
appearance and motion, it is robust to camera motion. This
follows from the fact that only motion different from that of
the background can be declared salient. For example, an
object followed by a panning camera is considered salient.
Third, it reduces initialization to a special case of
discriminant tracking. In the absence of prior information
about which features are discriminant for target detection,
the tracker simply uses all of them. This unification of
tracker initialization and operation is not possible for most
previous trackers.

5 EXPERIMENTS AND RESULTS

The performance of the proposed saliency-based tracker
was evaluated with an extensive set of experiments. We
next report the results of this evaluation.

5.1 Comparison to Previous Trackers

The saliency-based tracker was compared to four trackers in
the literature: three discriminant trackers, the MILTracker of
[7], the method of Collins et al. [18], and the ensemble tracker
of [6], and the incremental visual tracker (IVT) of [57]. The
latter represents the state of the art in appearance-based
tracking. Software for the MILTracker and IVT was obtained
from the authors” webpages. Since no implementations are
publicly available for the Collins and ensemble trackers,
these algorithms were implemented according to the
descriptions in [6], [18].

The performance of all five methods was evaluated
against manual groundtruth. The definition of tracking error
followed [22]. At time t, the error was defined as the

normalized lack of overlap between the groundtruth target
bounding box, G, and that produced by the tracker, B'. The
average tracking error, over the T’ frames in a video sequence,

>_GiBi,
€= lz 1-— i
T4 D G+ Bl - GLB
1) 1) i

was then used as the measure of tracker performance. This
ranged between e =0, for perfectly correct tracking, and
€ = 0o, for complete loss of tracking.

The test video sequences were selected from diverse
sources (e.g previous works, standard databases, and the
web). All sequences include challenging tracking problems,
such as varying illumination, occlusion, out-of-plane object
rotation, or changes in perspective. For instance, the
“motinas” sequence of [46] shows a person turning by
360° in extremely low light (Fig. 5a), while the “athlete”
sequence includes extreme variations of appearance, due to
occlusion and strong video compression artifacts (Fig. 5b).
The “skater” (Fig. 5d) and “CAVIAR” sequences (from [1])
include severe partial occlusions. To further increase the
tracking difficulty, all sequences were converted to
grayscale. This required a reimplementation of the Collins
tracker with DCT features, instead of the R, G, B color
features originally used in [18]. All algorithms were
manually initialized with a target bounding box, in the first
frame. The background bounding box had sides four times
larger than the corresponding sides of the target box.

The saliency-based tracker used a two-level Gaussian
pyramid, for a total of N =3 + 64 x 2 = 131 features (8 x 8
DCT features per level plus three spatiotemporal Gabor
features). The number of selected salient features, K, is a
tunable parameter. To understand its impact on tracking
performance, it was varied in the range [1,29], for two
representative sequences. Good performance was obtained
for any K > 3, albeit tracking accuracy improved with the
number of features, at the expense of increased computation.
To guarantee a realistic balance between tracking perfor-
mance and computation, K was set to 5 in all subsequent
experiments. Fig. 4 shows the five features selected in the
first 50 frames of two representative sequences. Note that
the same, or very similar, features are selected at successive
frames, leading to a fairly stable set of selected features over
time. The search neighborhood, Wj., was centered at the
current target position [* and had twice the size of the object

(30)
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TABLE 1
Average Tracking Error of the Five Trackers Compared

Sequence | vT | Collins | Ensemble | MIL | Sal | Sal+SIM | Sal+STF | Sal+SIM+STF |
cokel1 0.97 (82%) | 0.76 (4%) | 0.71 (22%) | 0.68 (0%) | 0.62 (2%) | 0.68 2%) | 0.63 (2%) | 0.68 (0%)
tiger2 0.80 (60%) | 0.78 (38%) | 0.88 (72%) | 0.38 (0%) | 0.64 (28%) | 0.77 (20%) | 0.78 (50%) | 0.44 (2%)
karls 0.64 (32%) | 0.47 (11%) | 0.93 (52%) | 0.29 (0%) | 0.52 37%) | 0.51 (0%) | 0.53 (37%) | 0.31 (0%)
dmeu 0.93 (91%) | 027 (0%) | 0.96 (82%) | 049 (3%) | 0.21 (0%) | 021 (0%) | 0.15 (0%) | 0.26 (0%)
plushioy 0.11 (0%) | 037 (0%) | 038 (0%) | 0.17 (0%) | 0.16 (0%) | 0.26 (0%) | 0.21 (0%) | 0.25 (0%)
ram 0.77 (51%) | 0.86 (69%) | 0.87 (64%) | 0.64 (36%) | 0.36 3%) | 0.77 (59%) | 0.33 (0%) | 0.33 (0%)
ballroom 0.62 (51%) | 0.38 (0%) | 0.70 (26%) | 0.34 (0%) 0.39 (0%) 0.46 (0%) 0.38 (0%) | 0.44 (0%)
roadcrossing 0.51 (0%) | 0.74 (45%) | 0.83 (52%) | 0.46 (0%) | 0.87 (81%) | 0.78 (44%) | 0.77 (56%) | 0.45 (0%)
motinas 0.60 (50%) | 0.47 (21%) | 0.73 (60%) | 0.61 (31%) | 0.95 (88%) | 0.22 (0%) | 0.92 (85%) | 0.24 (0%)
athlete 0.98 (97%) | 0.78 (55%) | 0.94 (90%) | 0.92 (68%) | 0.75 (58%) | 0.41 (0%) | 0.75 (55%) | 0.37 (0%)
skater 0.94 (88%) | 0.49 (0%) | 0.62 (20%) | 0.93 (80%) | 0.47 (0%) | 0.33 (0%) | 0.36 (0%) | 0.30 (0%)
CAVIAR 0.34 (0%) 0.56 (0%) | 0.96 (67%) | 0.48 (0%) | 0.73 (66%) | 0.33 (0%) 0.29 (0%) | 0.31 (0%)
seq10 0.03 (0%) | 0.99 (99%) | 0.94 (29%) | 0.08 (0%) | 0.89 (96%) | 0.14 (0%) | 0.94 (98%) | 0.14 (0%)

[ average [ 063 | 061 | 08 | 050 [ 055 | 045 | 051 [ 035 ]

0 indicates perfect tracking, 1 complete lack of overlap between groundtruth and target bounding box produced by the tracker. The number in

parentheses indicates the percentage of frames for which there was no overlap between groundtruth and target bounding boxes.

bounding box. Finally, to evaluate the contribution of all
tracker components, namely, the spatial DCT features, the
spatial importance map (SIM) and the spatiotemporal
features (STF), we implemented four variants of the tracker.
These are denoted “Sal” (tracker including only the saliency
measure of (16) and the spatial DCT features), “Sal+SIM”
(saliency plus SIM), “Sal+STF” (saliency plus spatiotempor-
al) and “Sal+SIM+STE” (saliency plus spatiotemporal fea-
tures and SIM).

Table 1 presents the errors measured on a set of
13 sequences. For each value of the error, the table also
shows in parentheses the fraction of frames for which there
was no overlap between the target bounding box obtained
by the tracker and the groundtruth bounding box. A number
of conclusions can be drawn from these results. First, the
baseline “Sal” tracker is already quite competitive with
the state of the art. Its average error is only inferior to that of
the MIL tracker and by a small amount. While these results
could be improved by including more than five DCT
features, we found that a better tradeoff between accuracy
and complexity is provided by the other extensions. Second,
both the addition of STFs and SIMs strengthen tracking
performance. The larger improvement of Sal+SIM indicates
that it is particularly important to account for the spatial
configuration of the target features. Third, the effects of the
two tracker extensions are complementary, with the
“Sal+SIM+STF” tracker achieving the clear best average
performance. In the following discussion, we refer to this
version as the discriminant saliency tracker (DST).

Overall, the DST or its variants achieve the top
performance on eight sequences. In all these, the DST
achieves the best performance over the previous four
methods (IVT, Collins, Ensemble, and MIL). Among these,
MIL is the best performer, with lowest error rates on three
sequences, followed by IVT, with two. When compared to
MIL, DST has a very similar tracking error in the sequences
where the latter performs the best. On the other hand, in the
sequences where it is the top performer, the error of DST can
be substantially smaller than that of MIL. With respect to
IVT, the DST is also clearly superior. While IVT oscillates

7Z7i

between some very small (“plushtoy”, “seq10”) and mostly
large errors, the DST error is small for all sequences. The
overall superiority of the DST is captured by the fact that its
average error, across sequences, is about 64 percent that of
the next best method (MIL). Alternatively, it can be seen
from the fact that, while DST never loses track, this happens
for all other methods in four of the sequences (“ram,”
“skater,” “motinas,” and “athlete”).

Fig. 5 illustrates the tracking results on four of the
sequences considered. The qualitative performance of IVT
and the ensemble tracker is quite poor as these methods lose
the target in most scenes. Somewhat better performance is
achieved by the Collins and MIL trackers, which only lose
the target when it undergoes extreme appearance variations
due to partial occlusions, illumination changes, or rotation.
On the other hand, DST tracks the targets successfully in all
sequences. The results on “seql0,” a very long sequence
used in [32], show that DST is also able to track over long
durations reliably without drifting (Fig. 5c). Overall, it is
clear that DST has the best performance. Videos of all
tracking results are available from [2].

5.2 Scale Adaptive Tracking

To test scale adaptivity, the performance of the DST was
evaluated on various sequences of widely varying target size.
The comparison was restricted to IVT since no scale adaptive
extensions are available for the other methods. The initial
position and size of the target were manually specified since
IVT has no ability for automatic initialization. Examples of
the tracking results are shown in Fig. 6. Note that these
sequences are challenging in many ways. Besides wide scale
variability, the target can change appearance quite drama-
tically due to a 360 degree rotation and nonrigid motion (on
“gravel” the subject turns, picks up a rock, and throws it in
the water), as well as perspective effects (on “dirtbike” the
motorcycle approaches the camera from the left and leaves to
the right), and the background varies substantially (sky, then
sand dunes, then strongly shaded background on “dirt-
bike”). While IVT loses track in both cases, DST is able to
maintain track throughout the sequences, accurately tracking
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Fig. 5. Tracking results on (a) “motinas_toni_change_ill” [46]—the person turns around and the illumination changes drastically, (b) “athlete’—a
person running inside a stadium. The video is very noisy and the target appearance changes widely, (c) “seq10”—an extremely long video sequence
used in [32] to test for drifting, (d) “skater” on a pedestrian walkway—the target undergoes partial occlusions on multiple occasions. Target locations:
DST—thick red box, Collins—thick green box, ensemble—cyan dashed box, IVT—blue dashed box, MIL—magenta dashed box.
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Fig. 6. Scale adaptive tracking on (a) “gravel” and (b) “dirtbike.” Target locations: DST—red box, IVT—dashed blue box. Plots of target scale,
expressed as the ratio of target size at a frame to size in the initial frame for the respective sequences are shown in the extreme right.

the target position. This robustness is due to the continuous
updating of the features used to represent both target and
background and the discriminant nature of the tracker.
Panels on the extreme right of Fig. 6 present plots of the
variation of target scale over time. Itis clear that DST is able to
handle a wide variability of target scales, closely matching
the scale of the groundtruth, while IVT loses track (“gravel”)
or dwindles into an infinitesimal target box (“dirtbike”).
Table 2 summarizes the errors measured on these and two
other sequences, confirming the superior performance of
DST. Videos of the sequences are again available from [2].

5.3 Automatic Initialization

Finally, we performed a set of experiments designed to
evaluate automatic tracker initialization using DST. Since
none of the other methods have this capability, no compar-
ison was performed for these sequences. Examples of DST
results are shown in Fig. 7. The tracker uses the bottom-up

discriminant saliency procedure of Section 4.8 to identify the
object to track. The region of maximal saliency is then input to
the scale adaptive DST algorithm, which tracks the target
through the remaining frames. The leftmost column of Fig. 7
shows the bottom-up saliency map, and the columns on the

TABLE 2
Average Tracking Error of IVT and DST
When Target Scale Varies Widely

| Name | IVT | DST |
dirtbike | 0.86 (76%) | 0.33 (0%)
speedboat 0.45 (0%) | 0.38 (0%)
gravel 0.76 (8%) | 0.44 (0%)
baseball | 0.96 (75%) | 0.44 (0%)

| average | 0.76 | 0.40 |

The number in parentheses indicates the fraction of frames in which the
groundtruth and target bounding box had no overlap.
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(@)
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Fig. 7. Automatic initialization and tracking. The bottom-up saliency map used to initialize the tracker is shown in the left column. Target bounding
boxes are shown in red. (a) “surfer,” (b) “dog.” Target locations in subsequent frames are shown in red.

right show a few of the subsequent frames (target bounding
box shown in red). The tracker initializes the target correctly,
and tracks it through substantial variations of scale and pose
(note the 3D rotation in “dog”). Table 3 presents the error
measures obtained for these sequences. The error of DST with
automatic initialization is compared to that obtained when
the tracker is manually initialized with the groundtruth
target bounding box. There is no substantive difference.
Overall, these results demonstrate the ability of the DST to
perform robust target initialization and accurate scale
adaptive tracking, in scenes with complex motion. Videos
of all sequences are available in [2].

6 DiscussioN AND CONNECTIONS TO OTHER
DISCRIMINANT TRACKERS

At an abstract level, the proposed DST is similar to previous
discriminant trackers [6], [7], [18]. Like the DST, these are
center-surround discriminators, equating target to center
and background to surround. In fact, they rely on classifier
design and target detection operations that are similar in
spirit to those of DST. There are, nevertheless, differences of
detail that significantly affect tracking performance.

With respect to feature selection and classifier design, all
discriminant trackers analyze the feature set for target/
background discrimination. Collins et al. [18] first compute
histograms of filter responses on the R, G, B channels of both
target and background, and construct a log likelihood ratio
between the two class histograms, considering this a new
nonlinear feature. Feature discrimination is evaluated by a
Fisher discriminant-like variance ratio that measures how
tightly clustered the log-likelihood ratios are for the two
classes. This is equivalent to transforming the features into a
nonlinear space and learning a linear classifier in that space.
It is optimal, in the minimum probability of error sense, only
when the classes are Gaussian and have equal covariance,

TABLE 3
Comparison of Automatic and Manual Tracker Initialization

| Name | Auto Init | Manual Init |

dirtbike | 0.33 (0%) 0.33 (0%)
surfer | 0.33 (0%) 0.32 (0%)
dog | 0.38 (0%) 0.37 (0%)
skiing | 0.27 (0%) 0.28 (0%)

The number in parentheses indicates the fraction of frames in which the
groundtruth and target bounding box had no overlap.

after the feature transformation. Overall, the tracker suffers
from the fact that this discrimination measure is somewhat
heuristic. The distribution of log-likelihood ratios is hard to
characterize [16], the assumption of unimodality (Gaussian-
ity) does not hold in general (i.e., for all features), and is
especially troubling when there is background clutter. There
is even less evidence in support of the assumption of equal
class variance. These observations could account for the
limited effectiveness of the tracker.

The ensemble tracker [6] relies on a set (“ensemble”) of
weak hyperplane classifiers to separate target from back-
ground. Each weak learner implements a threshold on a
linear combination of the original features. A simpler
approach is used by the MIL tracker [7], where each weak
learner is a decision stump, i.e., a threshold on one of the
original features. Both trackers rely on the classification
error rate as measure of discrimination for feature selection.
While this is a close approximation to the mutual
information used by the DST [69], the feature selection
procedure is quite different: Both the ensemble and MIL
trackers rely on boosting (AdaBoost and MILBoost, respec-
tively). Boosting is sensitive to outliers. This is a limitation
in tracking since the target and background classes of a
tracking problem are rarely exclusive. On the contrary, a
certain amount of background is usually covered by the
target window and vice versa. The sensitivity of boosting to
outliers is well known in machine learning, where a
number of extensions have been proposed to address the
problem [50]. This is indeed the difference between the
ensemble and MIL trackers. The latter implements boosting
under the MIL formalism exactly to decrease outlier
sensitivity. By minimizing this problem, MIL achieves
significantly better results.

7 CONCLUSION

In this work, we have shown that discriminant tracking
follows naturally from the discriminant formulation of visual
saliency. In particular, tracking can be implemented with a
combination of bottom-up center-surround discriminant
saliency and spatial attention for learning, feature-based
attention for feature selection, and top-down saliency for
target detection. This was exploited to construct a simple and
computationally efficient framework for tracking, which is
consistent with what is known about the attentional
mechanisms of biological vision, and provides a unified
solution to the problems of classifier design, target detection,
automatic tracker initialization, and scale adaptation. Ex-
perimental results show the improved performance of the
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proposed discriminant saliency tracker over existing ap-
proaches. An implementation of this tracker in C, without
any optimization, currently runs at ~1.5 frames per second
(fps), on a standard PC without special hardware. On the
same machine, the running times of other discriminant
trackers are comparable (~4 fps for MIL and ~3 fps for the
Collins tracker).

Among its shortcomings, DST does not explicitly retain
target features that appear in the previous frames. There-
fore, it cannot handle prolonged partial or complete
occlusions. Also, as the approach depends on finding
features that can discriminate the target from the back-
ground, DST is not suitable when there are objects very
similar to the target in the background or for tracking large
targets with inadequate backgrounds. Finally, DST has been
designed for tracking single targets. To track multiple
targets, DST has to be augmented with additional modules
such as an identity management scheme.
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