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Abstract

The problem of localizing specific anatomic structures using ultrasound (US)
video is considered. This involves automatically determining when an US probe
is acquiring images of a previously defined object of interest, during the course
of an US examination.

Localization using US is motivated by the increased availability of portable,
low-cost US probes, which inspire applications where inexperienced personnel
and even first-time users acquire US data that is then sent to experts for further
assessment. This process is of particular interest for routine examinations in
underserved populations as well as for patient triage after natural disasters and
large-scale accidents, where experts may be in short supply.

The proposed localization approach is motivated by research in the area of
dynamic texture analysis and leverages several recent advances in the field of
activity recognition. For evaluation, we introduce an annotated and publicly
available database of US video, acquired on three phantoms. Several experi-
ments reveal the challenges of applying video analysis approaches to US images
and demonstrate that good localization performance is possible with the pro-
posed solution.
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1. Motivation

There are several reasons why 2-D, B-mode ultrasound (US) imaging is one
of the prevalent imaging modalities in today’s medicine. First, it is a highly
versatile and non-invasive technology, applicable to first-care situations, routine
examinations, and even for surgical guidance. Second, since the purchase, oper-
ation and maintenance costs of the equipment are moderate, there are various
economic incentives for the adoption of US technology. Finally, US imaging has

∗Corresponding author at: Kitware Inc., 101 East Weaver St, Carrboro, NC 27510, USA
Email address: roland.kwitt@kitware.com (R. Kwitt)

Preprint submitted to Elsevier May 29, 2013



. . . moving over structure A

Time

B

A

Probe path

. . . moving over structure B

Figure 1: Localization of anatomical structures (e.g., structures A and B) by moving the
Ultrasound probe along a path (dark red) on the human body.

become portable in the last few years, especially with the emergence of probes
that can be connected to tablet PCs and cellphones. All of these properties
make US a particularly attractive imaging modality for underserved areas of
the world, where access to advanced tomographic imaging modalities, such as
MRI or CT, is usually limited or impractical.

While there is little doubt about the diagnostic benefits of US in the hands
of experienced clinicians, these benefits are less clear in situations where imag-
ing must be performed by support staff or even inexperienced users. As with
advanced tomographic imaging equipment, imaging experts are also a scarce re-
source in underserved areas of the world. Other scenarios in which expertise may
be limited include extreme weather events, natural disasters, and other emer-
gencies. Ideally, it would be possible to have non-experts acquire images, which
would then be sent to experts for further analysis. It is therefore worth consid-
ering the development of technology that would allow non-experts to conduct
US examinations. However, most research in medical vision has focused on the
assessment component of the US examination pipeline, such as computer-aided
diagnosis (i.e., predicting disease progression, tumor staging, etc.); however,
very little work has been devoted to the very first step in the US examina-
tion pipeline, i.e., the localization of the area of the human body containing
the anatomic features of interest. As illustrated in Fig. 1, the localization of
these features involves the simultaneous 1) movement of a US probe across the
body, and 2) observation of the resulting video stream, until the desired loca-
tion is found. This task can be complex even for examiners with substantial
experience and knowledge of the human anatomy. For novice users, the loca-
tion of a certain anatomical structure (e.g., an organ) is often quite challenging.
Hence, the development of automated methods for this localization would sig-
nificantly enhance the ability of non-experts to operate US devices. Automated
localization technology could also facilitate the training of radiology interns, by
providing automated ground-truth for the localization task. This could be ex-
plored in the design of quantitative measures of learning progress, which could
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be used to personalize the learning process. In fact, this technology could be
useful even for experienced clinical personnel, since the localization of anatom-
ical structures, such as vessels, tumors, etc., is usually the very first step of
intraoperative ultrasound guidance. The most difficult part of this procedure
is often the interpretation of the US images, namely how they relate to the
physician’s understanding of the anatomy and/or preoperative CT/MR stud-
ies. Automated localization procedures, especially if integrated into ultrasound
scanners, could be used in the development of navigation systems that minimize
these difficulties.

We are particularly interested in those anatomic imaging tasks where the
target locations are pre-defined. For instance, the FAST (Focussed Assessment
of Sonography for Trauma (FAST) [Scalea et al., 1999] procedure defines four
locations on the human body that need to be assessed for the presence of free flu-
ids. The FAST procedure is particularly important in cases of blunt abdominal
trauma (common in car accidents, falls, violent crimes, and sporting accidents).
The timely assessment of the FAST procedure can have drastic impact on pa-
tient treatment and outcome. Whether or not fluid is present then determines
the path to take in a decision tree of triage and patient management.

The FAST procedure and other clinical tasks involving structure localization
motivate the question of whether it is possible to exploit video analysis tech-
niques to capture the discriminative information necessary for identifying what
is imaged at any stage of an US examination. Although mapping a single US
image to a particular anatomical location can be quite difficult, even for experi-
enced physicians, access to the sequence of frames collected immediately before
and after that image substantially simplifies the task. While the video dynamics
may not be needed from a diagnostic point of view (i.e., for detecting disease or
pathologies), they are an important cue for navigating the probe to a desired
location. From this point of view, the problem of continuously searching for cer-
tain target structures in US video data is conceptually equivalent to the event
detection, or activity recognition problems in computer vision. Nevertheless, a
direct transfer of activity or event recognition methods to US imaging can be
challenging, due to the differences in the acquisition of conventional versus US
video (see Sect. 3). For other imaging modalities, such as CT or MRI, which
produce large field-of-view volumetric images, the resulting data does not typi-
cally have a dynamic aspect or ambiguous localization. This could explain why
recent advances in video analysis have received little attention in the medical
imaging literature (see recent work in the recognition of surgical gestures from
conventional video [Bejar et al., 2012], for an exception).

Contribution. The main contribution of this work is to propose an auto-
mated, template-based, approach to tackle the localization problem. This is de-
fined as the ability to detect the presence (or absence) of certain target structures
as the user acquires a continuous US video stream. We propose a recognition by
detection paradigm, where a collection of short video templates, depicting the
desired structures, are acquired at target locations (by expert users), off-line.
These templates are continuously compared to the current video stream, using
a similarity measure based on statistical models of the video. The proposed lo-
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calization procedure exploits the fact that similarity is highest when the probe
is moved over a target structure. The statistical models are based on the kernel
dynamic texture, a recently introduced joint model of video appearance and dy-
namics. We extend this model with an enhanced observation component, based
on the popular bag-of-words (BoW) representation from computer vision. For
quantitative evaluation, we introduce a publicly-available and fully annotated
database of US videos, acquired on three different phantoms. This facilitates
assessment of the localization performance of the proposed system and estab-
lishes a baseline for future recognition experiments with US data. A number
of experiments with this dataset demonstrate the feasibility of the proposed
approach to US localization. A preliminary version of this work appeared in
[Kwitt et al., 2012].

2. Related Work

The work presented in this article is conceptually related to various previous
approaches to the problem of recognizing human activity in conventional video.
There are, however, a number of significant differences. First, due to the strong
emphasis on human activities, many of these approaches are specifically tailored
to human behavior, e.g., relying on silhouette information [Blank et al., 2005],
tracks [Kläser et al., 2010], or human pose information [Lv and Nevatia, 2007])
as important recognition clues. Second, activity recognition methods tend to
depend on an effective temporal segmentation of the video into coherent parts,
which depict a single activity at a time. However, because temporal segmen-
tation can itself be quite challenging, the boundary between the two tasks is
quite blurry. To account for this, recent works formulate recognition and tem-
poral segmentation as a joint problem [Chen and Grauman, 2012; Hoai et al.,
2011], or optimize the temporal segmentation according to the performance of
an activity classifier [Satkin and Hebert, 2010]. In the context of continuous,
real-time localization, it is impossible to assume either knowledge of the video
clip boundaries, or availability of the full video.

The prevalent strategy for activity recognition is to build upon some mid-
level representation of temporally segmented video clips. A video is represented
by a collection of spatio-temporal descriptors, such as HOF/HOG [Laptev et al.,
2008], HOG3D [Kläser et al., 2008], or extended SURF [Willems et al., 2008].
The descriptors are either computed at the nodes of a dense grid or at locations
identified by interest point detectors (e.g., [Laptev and Lindeberg, 2003; Dollar
et al., 2005; Willems et al., 2008]). Descriptor quantization with a sufficiently
large codebook then produces the popular BoW representation, which can be fed
to a discriminant classifier. Recently, representations at a higher, more abstract,
level (e.g., action templates [Sadanand and Corso, 2012]) have achieved state-
of-the-art results on various datasets.

An alternative strategy is to consider a video as a realization of a dynam-
ical system. In this context, variants of the so called dynamic texture model
[Doretto et al., 2003] have become increasingly popular for activity recognition.
In particular, dynamic textures have been kernelized [Chan and Vasconcelos,
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2007a], so as to capture a wide variety of motion patterns, used as components
of mixture models [Chan and Vasconcelos, 2008], or even as codebook elements
in a bag-of-dynamical-systems [Ravichandran et al., 2009; Coviello et al., 2012].
One characteristic that differentiates dynamic texture approaches from other
works is that they capture both the appearance and the dynamics of the video,
using a generative model. With the kernelized extension of Chan and Vascon-
celos [2007a] it is even possible to capture the dynamics of features other than
pixel values, e.g., histograms [Chaudhry et al., 2009], as long as a suitable kernel
can be defined.

In this work, we explore the use of kernel dynamic textures (KDTs) for
localization of anatomical features in US, using two different configurations.
In the first, similar to [Chan and Vasconcelos, 2007a], we use KDTs to model
the appearance and dynamics of raw B-mode intensity values in US video. In
the second, we extend the approach proposed by Chaudhry et al. [2009] to
model optical-flow histograms, by modeling US video with KDTs based on a
mid-level BoW representation. The intuition is that augmenting the, already
discriminative, BoW representation with a representation of feature dynamics
should lead to a better, more robust, localization approach.

3. Ultrasound Video Acquisition

In this section, we briefly review the basics of the US acquisition process.
This is mostly to facilitate the understanding of the difficulties involved in trans-
ferring, or extending, conventional video processing approaches to the domain
of US. For a thorough introduction to US imaging we refer the reader to [Block,
2004].

From a physical point of view, the acquisition of US images can be sum-
marized as follows. A US transducer emits short, directed, sound waves which
are reflected and scattered by the underlying tissue layers. The reflected signal
intensity is a function of the depth of the reflected structure. This intensity
is displayed as a gray value. The prevalent form of US visualization is 2-D
(realtime) B-mode, where a slice-view of underlying structures is acquired by
composing single scanline measurements into an image. Depending on how the
piezoelectric elements are arranged in the US probe (e.g., a linear or curved
array), the resulting images are either rectangular or fan-like.

Due to the slice-view nature of US imaging, there is no clear notion of an
object in a single US frame. This is in contrast to conventional video cameras,
which capture snapshots of the surrounding environment at a specific frame rate.
In fact, US only allows the observation of a very limited portion of any actual
physical object. This induces large variations in visual appearance, depend-
ing on the angle of the imaging plane, and obviously confounds the adoption
of frame-based object detectors developed for conventional images. Two US
transducer movements, illustrated in Fig. 2 for a schematic liver model, are
particularly common in clinical practice: translation and tilting. Translation
shifts the imaging plane, while titling leads to fan-like acquisitions. An anatom-
ical structure, such as an organ, visible in one frame can suddenly disappear, if
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(a) Translation

Acquisition fanLiver

(b) Tilting

Figure 2: Illustration of the acquisition fan — on a schematic liver model (dark red) — when
moving the US probe according to two common probe movements: translation and tilting.

the imaging plane no longer intersects the target object. This changes the ap-
pearance of image patches over time and precludes the assumption of brightness
constancy. Since this is a core assumption in optical-flow estimation [Sun et al.,
2010], approaches that rely on the measurement of displacement vectors (e.g.,
[Chaudhry et al., 2009]) are ill-suited for US video.

Another characteristic of US data are image acquisition artifacts, most no-
tably speckle noise and acoustic shadowing. Speckle noise results from the in-
terference of sound waves and is common in any coherent imaging modality.
Acoustic shadowing occurs when the signal is either totally reflected (e.g., at
air) or absorbed (e.g., at bone material). This results in either completely black
or white regions in the US image.

4. Localization in Ultrasound Video

The proposed localization procedure has two components. The first is a tem-
plate acquisition step, performed offline, by an US examination expert. This
consists of acquiring a database of short video sequences, referred to as tem-
plates, by moving the probe over a set of target regions on the human body.
These target regions are chosen so as to ensure that a set of predefined un-
derlying structures are clearly visible. They could be the four regions of the
FAST procedure (see Sect. 1) for instance. Multiple templates could be imaged
per anatomic structure, using multiple patients and probe orientation/angle
settings. The second component, which is executed during the actual US exam-
ination, follows a recognition by detection paradigm. It consists of comparing,
in real-time, a sliding-window of the current video stream to all templates. As
new frames are acquired, the sliding window is moved forward. By defining
a similarity measure between two video sequences, or corresponding statistical
models, it is possible to evaluate whether the video in the sliding window re-
sembles one of the database templates. This facilitates to provide immediate
feedback to the user and specifically enables localization during the procedure.
Since, there can be sequences which resemble none of the templates, there is a
need to consider a Null class.

To model US video, we resort to statistical models of joint video appearance
and dynamics from the computer vision literature. In particular, we leverage
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the non-linear extension of the dynamic texture model of [Doretto et al., 2003]
known as the kernel dynamic texture (KDT) [Chan and Vasconcelos, 2007b].
KDTs offer several advantages over dynamic textures as a model of video dy-
namics, including the ability to capture non-linear dynamics and the ability
to rely on observations other than intensity values. There are also a variety
of KDT similarity measures, including the (kernelized) variant of the Martin
distance of [Martin, 2000; Chan and Vasconcelos, 2007b], or the Binet-Cauchy
kernel of Vishwanathan et al. [2007]. In what follows, we will discuss two con-
figurations of KDTs. The first relies on the raw intensity values of B-mode US
as observations. The second uses BoW histograms. The latter configuration is
denoted as Bag-of-Word Dynamics (BoWDyn). We also show how to use the
similarity measurements in a kernel density estimation framework to naturally
facilitate inclusion of the Null class.

4.1. Notation

Unless otherwise stated, we adhere to the following notational conventions.
Vectors are always column vectors, denoted by lower case boldface letters (e.g.,
x). x> denotes the vector transpose. Matrices are denoted by upper case
boldface letters (e.g., X). By Xij , we refer to the (i, j)-th entry of matrix X.
The notation X = [x1, . . . ,xN ],xi ∈ Rd, denotes that matrix X is composed of
N d-dimensional vectors, hence X is a d ×N matrix. Lower-case letters (e.g.,
γ) denote scalars, upper-case letters (e.g., Y ) usually denote random variables.
Further, I denotes the identity matrix and e denotes a vector of all ones.

4.2. Kernel Dynamic Textures

Since dynamic texture models and their kernel extension form the core of
our approach, we briefly review these models and the associated parameter
estimation procedures. For further details, we refer to the original works of
Doretto et al. [2003] and Chan and Vasconcelos [2007a,b].

In the following, an US video is considered as an ordered sequence of T video
frames, arranged in an observation matrix Y = [y0, . . . ,yT−1], where yt ∈ Rd is
the frame observed at time t, represented by its intensity values. Under the DT
framework of Doretto et al. [2003], these observations are modeled as samples
of a linear dynamical system (LDS). At time t, a vector of state coefficients
xt ∈ RT is first sampled from a first-order Gauss-Markov process, and the
state coefficients are then linearly combined into the observed video frame yt,
according to

xt = Axt−1 +wt, (1)

yt = Cxt + vt, (2)

where A ∈ RT×T is the state-transition matrix and C ∈ Rd×T is the generative
matrix that governs how the state determines the observation. Further, wt ∈
RT and vt ∈ Rd denote state and observation noise with wt ∼ N (0, I) and
vt ∼ N (0,R), respectively.
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Figure 3: Generative model for DTs and KDTs.

Assuming that the observations are centered (which is straightforward by
subtracting the column-wise means of Y ) and following the system identification
strategy of Doretto et al. [2003], C can be estimated by computing an SVD
decomposition of the observation matrix Y as Y = UΣV > and setting C = U .
The state matrix X = [x0 · · ·xT−1] is estimated as X = ΣV > and A can
be computed using least-squares as A = [x1 · · ·xT−1][x0 · · ·xT−2]†, where †

denotes the pseudoinverse. When restricting the DT model to N states, C is
restricted to the N eigenvectors corresponding to the N largest eigenvalues,
computed in the SVD decomposition of Y . The rest follows accordingly.

In the non-linear DT extension of Chan and Vasconcelos [2007b], the gener-
ative matrix C is replaced by a non-linear observation function C : RT → Rd,
i.e.,

yt = C(xt) + vt, (3)

while the state equation remains linear, cf. (1). The corresponding dynami-
cal system, denoted a kernel dynamic texture (KDT), is illustrated in Fig. 3.
Due to the non-linearity of C, the KDT requires a different, although con-
ceptually equivalent, set of parameter estimates. The idea is to learn the in-
verse mapping D : Rd → RT from observation to state space, using a ker-
nel principal component analysis (KPCA). The KPCA coefficients then repre-
sent the state variables. Given the kernel matrix Kij = k(yi,yj) arising from
a suitable1 kernel function k, the computation of KPCA coefficients is per-
formed in three steps. First, the kernel matrix is centered in feature space, i.e.,
K̃ = (I − 1/Nee>)K(I − 1/Nee>)2. The eigenvector/eigenvalue pairs (λi,vi)
of K̃ are then determined. Finally, the KPCA coefficients X are computed as
X = α>K̃, where α is the T × N KPCA weight vector matrix [α1, . . . ,αN ]

with αi = λ
−1/2
i vi.

The ability of the KDT to capture the appearance and dynamics of US se-
quences is illustrated in Fig. 4. The middle row of the figure presents a clinical
US video, acquired by sweeping a US probe on the surface of a patient liver
(shown in top row), during a radio-frequency tumor ablation. The bottom row
shows a synthetic sequence sampled from the KDT model of 10 states (using a

1(conditionally) positive definite
2 e is a N -dimensional column vector of all ones.
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Frame 1 Frame 11 Frame 21 Frame 31 Frame 41 Frame 51 Frame 61 Frame 71 Frame 81 Frame 91

Blood vessel

Figure 4: Clinical data from one patient, acquired during a radio-frequency ablation of a
liver tumor. The probe sweeps from left to right and back (see arrows) on the liver surface.
The top row shows a video of the probe movement; the middle row shows a subset of the
actual US frames with a blood vessel moving in and out of the imaging plane (highlighted);
the bottom row shows the same set of frames, synthesized from a KDT model with 10 states
(using a RBF kernel) that was estimated from the original US sequence.

RBF kernel) that best fits the US sequence. The quality of the reconstruction
supports the claim that the KDT can capture the dynamics of clinical US ma-
terial. However, recent work in computer vision has shown that a frame-based
representation is not necessarily the most robust to noise, appearance changes
due to pose variability, variable imaging conditions, etc. In domains like US,
where these types of nuisances are prevalent, it is advisable to adopt histogram-
based representations, which usually exhibit significantly greater robustness to
imaging variability. An important point, in this context, is that KDTs are not
restricted to intensity observation matrices, but can rely on any kind of features
for which it is possible to define a kernel (e.g., RBF).

4.3. Bag-of-Word Dynamics

In the dynamic texture recognition literature, DTs and KDTs were originally
proposed to model the appearance and dynamics of video frames (cf. [Doretto
et al., 2003; Chan and Vasconcelos, 2007b; Vishwanathan et al., 2007]). Re-
cently, Chaudhry et al. [2009] have shown that the application of KDTs to
histograms of oriented optical flow (HOOF) achieve state-of-the-art results for
human activity recognition. While, as discussed in Sect. 4, HOOF features are
not applicable to US, the use KDTs as models of the dynamics of mid-level
features has properties of interest for US localization. In addition to greater
robustness to imaging variability, these representations enable reduced model
estimation complexity, since mid-level features are usually lower-dimensional
than video frames. This leads to smaller observation matrices Y , allowing a
faster computation of KPCA. We will later see that the similarity computation
also benefits from this reduced dimensionality, which also leads to a smaller
memory footprint for the whole model. This is particularly interesting in the
context of mobile devices.

To leverage recent advances in mid-level video representation (cf. Sect. 2),
a video of T frames is first divided into G overlapping frame groups, using a
sliding window denoted as the grouping window. Each group of frames is then
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Figure 5: Composition of the observation matrix Y — for the first sliding window W0

— either based on a raw pixel-intensities or b mid-level feature histograms computed from
sub-sequences within W0 (in this example, the subsequences do not overlap).

represented as a BoW histogram, built upon some low-level spatio-temporal
descriptor. As illustrated in Fig. 5b, each column of the observation matrix Y
contains a normalized BoW histogram, instead of a vector of intensity values.
The KDT model, estimated from Y , captures the dynamics of the histogram
change from frame group to frame group. This is more discriminative than a
frame-based BoW model, since it accounts for video dynamics. When compared
to standard dynamic textures, the use of the mid-level representation guarantees
improved robustness to appearance variability.

In this work, the descriptors are based on HOG3D [Kläser et al., 2008] and
sampled on an evenly spaced spatio-temporal grid. We do not rely on interest
point detectors, since their computation in US is highly susceptible to speckle
noise. While the use of HOG3D descriptors is somewhat arbitrary, we empha-
size that the concept of modeling the dynamics of a mid-level representation is
generic and not tied to a specific low-level descriptor.

4.4. Sliding-Window Localization

In this section, we discuss the proposed localization strategy. A database
of M US video templates T0, . . . , TM−1, acquired from C different anatomical
structures, is first assembled. Usually this includes multiple templates per struc-
ture, C � M , e.g., acquired from different directions. A KDT is then learned
for each template. Let m = median(|Ti|) be the median length (in frames) of the
template videos. A temporal sliding window Wt, containing the last m frames
of the current video stream, is used to estimate a KDT. This KDT is then com-
pared to the M template KDTs in the database3. The window is finally shifted
forward by s frames, as s new frames are acquired by the US system, and the
process repeated.

Assuming a suitable similarity measure between KDTs, this produces M
similarity measurements d0t , . . . , d

M−1
t at location t. In what follows we assume

3If the goal is to localize one particular structure, the comparison can be restricted to the
subset of template models corresponding to that particular structure.
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that lower values of djt indicate a higher degree of similarity. To account for
the fact that no target structure may be present at the location (i.e., the Null
class), an indicator function i : N0 → {1, . . . , C} ∪ {Null} is defined as follows

i(t) :=

{
c(p), if dpt < γ

Null, else.
with p := arg min

j
djt . (4)

The function c : {0, . . . ,M − 1} → {1, . . . , C} is a label function that maps a
template index p to one of the C target structures. Depending on the threshold
γ, i(t) indicates the presence, or absence, of one of the target structures. The
assumption is that templates containing the structure that is currently observed
will not only lead to the minimum distance measurement but will also have a
characteristically low value.

While many activity recognition methods employ a support vector machine
(trained on positive and negative instances) as the final recognition stage (cf.
Duchenne et al. [2009]; Willems et al. [2009]; Kläser et al. [2010]), we propose a
non-parametric strategy for threshold determination. This enables better con-
trol of the false-positive rate. Let H0 denote the null-hypothesis of no matching
template (i.e., the Null class). The goal is to control α = P(dpt < γ|H0), i.e.,
the probability of the indicator function being non-Null when H0 holds. Given
α, the determination of γ requires an estimate of the probability density of
dpt under H0, i.e., p(dpt |H0). This can be accomplished with a Parzen window
estimate

p̂(d|H0) =
1

S

S−1∑

s=0

w(d− ds, h), (5)

based on a collection {ds}Ss=1 of measurements under H0. These are similarity
values collected from US videos that do not contain any instance of a template
in the database. The function w(d, h) is a kernel (e.g., Gaussian) of width h.
Since d is one-dimensional, the tuning of the kernel width h is not difficult4.
Given p̂(d|H0), γ is computed with recourse to the inverse of the correspond-
ing cumulative distribution function, i.e., γ = F−1(α) (solved numerically).
An interesting property of this threshold computation strategy is that it only
requires negative training data. While negative samples are relatively easy to
acquire, even by novice users, the assembly of positive examples (matches to the
templates) requires more knowledge and experience in the US imaging process.

4.5. Measuring model-to-model similarity

Several measures of similarity between linear dynamical systems have been
proposed in the literature. The Martin distance [Martin, 2000], the Binet-
Cauchy kernel of Vishwanathan et al. [2007], and information-theoretic measures
such as the KL-divergence of Chan and Vasconcelos [2005] are popular choices.

4In practice, even the normal distribution approximation h = 1.06σ̂S−1/5 works well,
where σ is an (robust) estimator for the spread of the data.
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Recently, both the Martin distance and the Binet-Cauchy kernel have been
extended to KDTs [Chan and Vasconcelos, 2007b; Chaudhry et al., 2009]. In
this work, we adopt the Martin distance. Given two videos, represented by
their DT models, Ma = (Aa,Ca) and Mb = (Ab,Cb) (of N states each), this
distance is defined as [Martin, 2000; De Cock and Moore, 2000]

d2(Ma,Mb) = − log

N∏

i=1

cos2(φi), (6)

where φi are subspace angles between the infinite observability matrices Oa =
[C>a (CaAa)> (CaA

2
a)> · · · ]> and Ob = [C>b (CbAb)

> (CbA
2
b)> · · · ]>. It

can be shown that the cos(φi) terms are the N largest eigenvalues λi of the
generalized eigenvalue problem

[
0 Oab

Oba 0

] [
x
y

]
= λ

[
Oaa 0
0 Obb

] [
x
y

]
(7)

with
Oab = O>aOb (8)

subject to x>Oaax = 1 and y>Obby = 1. For DTs, computation of Oab is
straightforward, since

Oab =

∞∑

n=0

(An
a)>C>aCbA

n
b (9)

and the terms C>aCb can be evaluated. For KDTs, it can be shown that the
computation of C>aCb reduces to computing the inner products between the
principal components of kernel matrices Ka

ij = k(ya
i ,y

a
j ) and Kb

ij = k(yb
i ,y

b
j),

i.e.,

Oab =

∞∑

n=0

(An
a)>α̃>Gβ̃An

b , (10)

where α̃ = [α̃0 · · · α̃T−1], β̃ = [β̃0 · · · β̃T−1] are the (normalized) KPCA weight

matrices with α̃i = αi − 1/N(e>αi)e , β̃i = βi − 1/N(e>βi)e and G is the
kernel matrix with entries Gij = k(ya

i ,y
b
j). In the remainder of this work, we

use (6) – (10) to measure similarity between US sequences, modeled as KTDs,
and a standard RBF kernel for all kernel computations5. It should be noted
that, since the computation of G requires the observations ya

i and yb
j , these

must be stored along with the template KDT parameters. Hence, replacing
raw intensities with the mid-level BoW representation of groups of frames can
considerably reduce the memory footprint of each model.

5For KPCA, the kernel width is set to σ2 = mediani,j‖yi − yj‖2; to compute Gij , it can

be shown [Chan and Vasconcelos, 2007b] that ya
i and yb

j must be scaled by σa and σb.
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(b)

(a)

Soba noodle

Figure 6: Schematic illustration of the US phantom (left); three images of one of our test
phantoms at different viewing angles (right).

5. Experiments

The localization performance of the proposed approach was evaluated on
phantom data. However, conventional phantoms have significant limitations
for recognition. This follows from the fact that medical imaging phantoms are
designed for applications, such as surgical training and evaluation of registration
or segmentation algorithms, with limited variability in visual appearance and
relatively small amounts of noise and artifacts. This is particularly true for
small-scale phantoms. For these reasons, we decided to prepare three custom
phantoms, made of gelatin and Soba noodles. These allow some control over
the variety of the underlying structures and have been previously shown useful
for US image analysis [Aylward et al., 2002].

To create these localization phantoms, we first loosely attached a set of noo-
dles to a grid of thin strings, laid out across a large bowl. We then filled the
bowl with hot gelatin and let it cool. As the gelatin changed state from liquid to
solid, it formed the embedding mass. The resulting phantoms have a number of
interesting properties for recognition: noodles are self-similar at a small scale,
have ambiguous patterns of bends at medium and large scales and, in general,
present a rich set of structures that are difficult distinguish through casual in-
spection. A schematic illustration of a typical gelatin phantom is shown in Fig.
6, together with a set of images of actual phantoms, taken from various viewing
angles. In all experiments, phantoms are mounted on a plastic plate, causing
reflections due to the reflectance of sound waves on the plastic surface. Further
artifacts result from small air pockets within the gelatin, causing the signal to
scatter. All these artifacts lead to realistic US data.

The US database consists of videos from three different phantoms, denoted
as phantoms A, B and C. While the three contain roughly the same number of
noodles, these vary in length, radius and structure. Imaging was based on the
Telemed LogicScan 128 INT-1Z kit, which allows video capture in uncompressed
AVI format. The US frequency was set to 5Mhz, and the penetration depth to
90mm. Speckle reduction was enabled in the US acquisition software and all
videos were acquired freehand, without tracking.

5.1. Acquisition protocol

Nine different noodle structures were first identified, including straight noodle
segments, crossing noodles, and loops. The gelatin medium turned out to be
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Path for search sequence
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→ Template(s) Tn
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Wt−
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Wt+
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Figure 7: Acquisition of the search path and template sequences (left). Definition of the
earliest and latest localization times t+, t−(right).

particularly convenient for the purpose of locating interesting targets, since its
transparency allows for visual inspection of the underlying structures.

Search path video acquisition. For each target structure, one search
path video was recorded as illustrated in Fig. 7. Video lengths range from
188 to 322 frames, with a medium length of 249 frames. In absolute time,
this translates into 6.4 to 10.7 seconds. Probe movement was restricted to
translation. While six out of nine search path sequences were acquired along
a roughly linear path (from one end of the phantom to the other, cf. Fig. 7)
and only contain a target once, the remaining three show two occurrences of the
target (acquired by moving the probe along a circle, visiting the target twice).
We adhered to the guideline of keeping the probe as perpendicular as possible
to the phantom’s surface. While this not a strict requirement, it ensures that
the US fan sufficiently penetrates the underlying tissue.

Template video acquisition. To acquire the template videos to be stored
in the database, the nine targets were first visually located on the phantoms.
Short strokes were then performed at the identified locations. The probe orien-
tation was roughly similar to the probe orientation used to acquire the search
path videos. It should be noted, however, that the templates were not acquired
immediately after the search paths. To avoid biasing the experiments, templates
and search paths were collected at different acquisition times, typically on dif-
ferent days. All templates were (temporally) clipped to the median template
video length of m frames. Since US video usually contains meta information
about the device settings, we further clipped each video (both templates and
search paths) spatially, to a 128 × 128 pixel region. To minimize biases due
to this cropping, we randomly displaced the cropping window by d pixels in
each direction and added the clipped videos to the template database. In all
experiments, we used d = 10 and sampled 10 positions per template, leading to
a database of 90 templates in total.

5.2. Ground truth annotation

To create ground truth annotations, i.e., marking the appearance and dis-
appearance of a target structure, we used VATIC [Vondrick et al., 2012]. This
allows a user to quickly draw and modify bounding boxes, on a keyframe ba-
sis, around structures of interest. While the actual bounding boxes are of less
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15 17 19 21 23 25

373533312927

Figure 8: Annotation example for a search path; bounding boxes around the structure of
interest, i.e., a loop, (positioned using VATIC [Vondrick et al., 2012]) are shown in yellow.
Frame numbers 17 and 37 correspond to positions t+ and t− (best viewed in color).

interest in our context, the placement of the first and last bounding box are par-
ticularly important, since they mark the points where a target structure moves
in and out of the imaging plane. Since video annotation is an inherently subjec-
tive task, we provided our template database to five different persons and asked
them to review the corresponding search sequences (one at a time). Comparing
the search path video with the templates was allowed, to simplify the task and
simulate the situation of an expert ground truth annotator. We also allowed
the annotator to move back and forth in the search path video and modify, or
remove, bounding boxes. Each annotator was given the objective of placing a
bounding box around the area where a target structure moves into the imag-
ing plane; then adjust the bounding box as long as the structure is present or
changes its appearance; and finally remove the bounding box once the structure
is no longer visible. Figure 8 presents an example of an annotated search path.
As shown in Fig. 7, the frame numbers for the first and last bounding box make
up the tuple (t+, t−). The ground-truth localization interval of each search path
sequence was defined as the component-wise median over the five tuples (one
per annotator).

5.3. Evaluation Metrics

The evaluation metric for the localization task requires careful consideration,
since different metrics highlight different characteristics [Ward et al., 2011]. Al-
though performance was evaluated on a frame-by-frame basis, it should be noted
that the finest possible granularity for localization is the sliding window shift.

Under the threshold determination strategy of Sect. 4.4, it is possible to
set a desired false-alarm rate α and define a simple event-based performance
criterion. Given the minimum distance dpt at position t (associated with the
p-th database template), true and false positive rates (TP,FP) are defined for
search path j according to

TP = (i(t) = j) ∧ (t+ < t < t−) (11)

FP = (dpt < γ) and t /∈ [t+, t−]. (12)
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Figure 9: Definition of false positive/negatives and true positives/negatives in the context
of the localization problem, illustrated on a toy example with three target structures. The
similarity curve shows the similarity measure dpt (cf. Sect. 4.4) for a search path containing
structure B.

Whether c(p) = j does not make a difference for a false positive. Fig. 9 illus-
trates the definition of the performance measures on an example similarity curve,
for a fictional search path containing structure B. To visualize performance, it is
customary to vary α and obtain precision/recall (PR) curves. We also compute
the average precision (AP) per search path. As a summary statistic, we adopt
the mean AP (mAP), taken over all search path AP values.

5.4. Implementation

The proposed localization method was implemented with a combination of
C++ and MATLAB. In this implementation, KDTs are estimated using the
KPCA-based strategy of Chan and Vasconcelos [2007a], briefly outlined in Sect.
4.2. As low-level features for BoWDyn, we use dense HOG3D descriptors [Kläser
et al., 2008]6 and standard K-Means clustering for codebook generation (initial-
ized using K-Means++). All experiments used a Gaussian RBF kernel, with
kernel-width σ set to the column-wise median of the observation matrix. Fur-
ther configuration details are given in the discussion of the corresponding ex-
periments.

5.5. Results

We started by evaluating the performance of 1) KDTs estimated from inten-
sity values (IntDyn) and 2) KDTs estimated from BoW histograms (BoWDyn).
The two methods were compared to a commonly-used SVM classifier. In all
cases, the localization window length was set to the median template length of
m = 40 frames, and the sliding window shift to s = 2 frames, so as to ensure a
smooth change in the localization measure. For BoWDyn, the internal grouping
window size was set to ten frames, with a shift of two frames.

Tables 1a and 1b list the mAP value for each configuration of IntDyn and
BoWDyn, the minimum and maximum AP value, and the Precision/Recall
(PR) values at the threshold γ determined with α = 0.05. For both IntDyn and

6Online available from http://lear.inrialpes.fr/people/klaeser/research_hog3d
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States mAP min/max AP PR, α = 0.05
2 50.6 2.8 / 94.0 50.5 / 55.7
5 58.7 0.0 / 96.9 62.9 / 58.2
8 55.5 1.4 / 95.6 58.4 / 57.8

(a) IntDyn

States #Codewords mAP min/max AP P/R, α = 0.05

2
50 48.8 16.3 / 88.5 63.1 / 48.6
100 59.3 19.1 / 94.2 67.6 / 57.6
400 58.9 45.4 / 80.7 74.5 / 59.2

5
50 52.3 9.4 / 88.8 65.2 / 54.0
100 51.6 15.1 / 88.9 66.0 / 66.4
400 61.1 39.0 / 87.6 70.1 / 58.5

8
50 46.9 5.1 / 73.8 63.5 / 49.5
100 50.4 26.5 / 96.7 64.4 / 54.6
400 63.4 45.9 / 91.3 70.8 / 53.4

(b) BoWDyn

Table 1: Localization results for a IntDyn and b BoWDyn with a varying number of states
and codebook size on 64× 64 videos.

BoWDyn, the number of KDT states was varied from 2 to 8. For BoWDyn,
the codebook size ranged from 50 to 400. A comparison of the mAPs achieved
with IntDyn and BoWDyn shows that the latter can achieve equal, or better,
localization performance even at moderate codebook sizes (100 codewords). In
fact, a KDT with 2 states and a 100-dimensional BoW histogram achieves bet-
ter mAP performance (59.3%) than the best result of Table 1a (58.7%). This
is appealing for several reasons. First, a 100-dimensional BoW histogram only
requires a fraction of the storage required per US frame. Second, a BoW his-
togram is only required per frame grouping (15 histograms per template in these
experiments), while each frame must be stored for IntDyn. Hence, the latter
has a much larger memory footprint.

Regarding the sensitivity to the number of KDT states, Tables 1a and 1b
suggest that performance usually improves with the number of states. However,
this trend is not evident for all configurations. For IntDyn, an increase in the
number of states from 5 to 8 actually leads to a decrease in performance. This
could be explained by the fact that 5 states may be sufficient to capture the
appearance variability of the US videos. In fact, when KPCA is used, only a very
small portion of the variation in the kernel-induced feature space is explained
by the additional three eigenvalues. This leads to a less stable estimate of
the KDT parameters, rendering the similarity measurement more difficult. For
BoWDyn, a higher number of states appears to be beneficial only for larger
codebooks. For example, with a codebook size of 400, additional states lead to
a localization performance increase from 58.9% to 63.4%, the highest mAP value
of this experiment. A comparison of the PR curves (per search path) for the

17



best IntDyn and BoWDyn configuration is shown in Fig. 10. The figures reveal
that none of the two approaches clearly outperforms the other. Given this, the
advantages of BoWDyn in terms of storage make it a superior representation.

While providing a good summary of localization performance, mAP values
can be sometimes misleading. For example, by inspecting the PR values at
α = 0.05, it can be seen that precision tends to be higher than recall. While
high precision implies that whatever is identified as target is very likely to be a
target, recall summarizes the percentage of targets identified by the human an-
notator that are actually detected. Low recall values are somewhat inevitable,
since the human ground truth localization interval [t+, t−] tends to be large.
This simply means that, as shown in Fig. 8, the human annotators are par-
ticularly good at identifying target structures once they start to appear in the
imaging plane, and track them until they completely disappear. In contrast,
the proposed localization methods typically detect targets once the localization
window substantially overlaps the structure. Our evaluation metric, however,
is designed to consider a measurement dpt > γ, c(p) = j as a false negative on
search path j as long as the localization window overlaps the ground truth in-
terval [t+, t−]. On the one hand, we consider this as a reasonable choice since,
in principle, it is possible to detect the structure at all those positions. On the
other hand, this evaluation setup has the effect that the overall performance ap-
pears mediocre when compared to the human annotations. In practice, though,
the only concern is if we can recognize a structure or not. While this objec-
tive is better captured by a solely event-based evaluation metric7, our limited
sample size would only allow for a very coarse (since we only have nine events)
comparison between approaches. Nevertheless, performance improvements can
be achieved in multiple ways. One strategy could be to shrink the length of the
localization window to an optimal choice. This essentially means balancing the
gains in reduced detection delay against potential losses in robustness due to re-
duced information within one window. In general, however, system parameters
will eventually depend on the size of the target structure(s).

Comparison to the State-of-the-Art. In Sect. 3 we noted that optical-
flow based approaches are ill-suited for US video. An experiment was designed
to confirm this, by learning KDTs over the HOOF features of Chaudhry et al.
[2009]. The number of HOOF bins was varied from 8 to 100 and optical flow was
computed with both the original formulation of Horn and Schnuck [Horn and
Schnuck, 1981], and the Classic+NL method of [Sun et al., 2010]. As expected,
the performance was poor. We could not find a combination of optical-flow
technique and bin size capable of reaching mAP values beyond 9%. This is
worse than random choice, for all search paths.

Finally, we evaluated the popular strategy, for activity recognition, of using
the BoW mid-level representation as feature space for an SVM classifier. The
configuration is similar to BoWDyn. Dense HOG3D descriptors were extracted
from 1) the templates and 2) a random sample of Null class sliding windows

7 BoWDyn, for instance, allows localization in 8/9 cases at α = 0.05.
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Figure 10: Precision/Recall (PR) curves for the best configuration of BoWDyn (8 states,
400 codewords) and IntDyn (5 states), on all nine search paths.

(randomly sampled from the search paths on which we do not test on in a given
cross-validation run). This sample contained half as many Null class representa-
tives as there were positive instances. Codebooks of 50, 100 and 400 words were
learned from all descriptors, using k-means++, and used to compute normal-
ized BoW histograms. A C-SVM classifier (learned with LIBSVM [Chang and
Lin, 2011]) with an RBF kernel and probability outputs was then trained on the
BoW histograms. SVM parameters were optimized via five-fold cross-validation
on the training data. For localization, all descriptors within a sliding window
were quantized, and the BoW histogram fed to the SVM, resulting in a class
prediction and a vector π ∈ [0, 1]C+1 of posterior class-probabilities. The proba-
bility vectors were used for computing PR values. Codebook sizes of 50, 100 and
400 codewords produced mAPs of 31.3%, 24.9% and 22.4%. This is well below
any of the mAP values obtained with either BoWDyn or IntDyn, regardless of
the configuration. Only RBF kernels were considered. While other kernels (e.g.,
a histogram intersection kernel) could potentially improve the SVM results, it
is unlikely that they could bridge the large performance gap with respect to the
proposed solution. A better explanation for the low mAP values is the limited
spatio-temporal information captured by BoW histograms. BoWDyn extends
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this mid-level representation with a dynamic modeling component that appears
essential to achieve good performance.

6. Discussion

In this work, we have studied the problem of automated localization of target
structures in US video. This could be of interest in situations where US exam-
inations need to be performed by non-experts, e.g., in underdeveloped areas of
the world or during emergencies when fast access to advanced health care facili-
ties is limited. The main contribution was to show that modeling the dynamics
of US video can have significant gains for localization. For this, we have pro-
posed an extension of a recent joint model of video appearance and dynamics,
the kernel dynamic texture, so as to capture the dynamics of a BoW repre-
sentation of probe movement. This enables a reduced memory footprint and
localization results competitive, or even superior, to those obtained with inten-
sity information only. The comparison to an equivalent representation without
any dynamic modeling showed substantially superior localization performance.
We have also introduced a new, annotated, database of US videos, acquired
on three different phantoms, designed to evaluate recognition approaches. This
facilitates the quantitative evaluation of localization performance, using conven-
tional precision/recall metrics. To the best of our knowledge, this is the first
publicly-available US video database of this kind.

While we acknowledge that experiments on phantom data are no substitute
for testing on actual patient data, clinical relevance is still high for several
reasons. In particular, we argue that the multitude and similarity of noodle
structures in our phantoms actually compounds the localization task, due to
the inherent ambiguity in noodle constellations. Some of those constellations
(e.g., knots) are very similar to each other, particularly in 2D. The fact that
our approach still exhibits reasonable localization performance in such cases,
gives reason to believe that similar performance could be achieved in a clinical
context in which vessels and surrounding structures are typically more unique.
To underpin that argument, Fig. 4 shows a synthesis result for a clinical US
video, acquired by sweeping an US probe on the liver surface during a radio-
frequency ablation of a tumor. While this does not allow any conclusions about
localization performance, it at least demonstrates that a KDT-based approach
allows to capture the dynamics of clinical US data material.

We emphasize that access to clinical US images is not the crucial factor for
resorting to a purely phantom-based study, since this data is readily available
or could easily be obtained from clinical partners. It is the access to suitable
video material that inhibits experiments at that point. In fact, it is worth com-
menting on the multiple aspects of this issue: First, US videos are rarely stored
in clinical practice; only images relevant for clinical decisions or treatment are
typically archived. Second, US examinations in hospitals are usually performed
by experienced physicians, for which localization of structures is straightforward
and often involves rapid probe movements or even loss of surface contact. Con-
sequently, even if we assume existence of video data, chances are low that this
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data is suitable for processing by our algorithm(s). Asking physicians to follow
a specific protocol to ensure good quality videos can only be argued in case
the benefits of acquiring this data outweigh the negative aspects for the patient
(and physician), such as prolonged examination times. We believe that this
study provides enough evidence to support such a request for controlled data
acquisition to evaluate our approach on clinical data and, in case of success, in
the field.

Another issue worthy of further investigation is the robustness of the pro-
posed localization method. Of particular importance is the robustness to vari-
ability of anatomic structures, due to differences among patients and variability
of probe orientation/angle. We note that the proposed method leverages a num-
ber of properties that are known to enhance this robustness, such as the possibil-
ity of acquiring multiple templates per structure and the use of the bag-of-words
representation. In general, the number of templates required per structure will
be dictated by the degrees of freedom of the imaging process. In many scenarios
of interest, however, these are constrained, primarily since the probe is limited
to traversing the surface of the human body. Hence, it may be possible to assure
good performance with a limited number of templates. This is, for example, the
case of the FAST procedure, where we envision a simple examination protocol
which restricts probe movement to a roughly regular grid that can be covered by
translation and slight tilting. This limits appearance variation and bounds the
number of required templates. In any case, the number of templates controls
the trade-off between the complexity and accuracy of the proposed localization
method. The optimal trade-off is likely to be application specific.

With respect to future improvements, the main limitation of all solutions
studied in this work is a delay in localization time, with respect to annotations
of human annotators. This is a consequence of the use of a sliding window. All
tested approaches require a substantial amount of the sliding window to cover
the target before localization can occur. In contrast, human annotators tend to
localize the target structures as soon as they intersect the imaging plane.

Other possible improvements are in the area of video representation. While
we have adopted a standard spatio-temporal descriptor for the BoW represen-
tation of small groups of frames, non-trivial gains could potentially be obtained
by developing mid-level features specific to the US image acquisition process.
This could, for instance, include features extracted directly from the RF signal,
before it is encoded into pixel intensities.
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