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Supplemental Material to
Anomaly Detection and Localization
In Crowded Scenes
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APPENDIX B
ALGORITHMS

Algorithm 3: CRF_inference

Input : previous prediction{y®)}7_'; initialization
Yo = {¥0,1," - ,¥Yo,)s}; Observation up to current
framer {x®1}7_,, cooling timeT., sampling
period T, number of sampled/,, thresholdy.

In this appendix, we summarize the algorithms us€@utput: predicted anomaly labels for current fram€).
to compute the hierarchical spatial anomaly maps (Algg; . ¢, 4/ « samplelabel field({y® 17} T.):

rithm D) of Section 4.4 in the main manuscript, the infefor 4, 1 to N, do
ence procedure of the proposed CRF filter (Algorithin
and Algorithn3) discussed in Section 5.2.2 and the procs-
dure used to predict anomalies by combining hierarchic
anomaly maps and the CRF filter (Algorittith 4), discussez(lj(T) 7

in the same section.

Algorithm 1: spatial anomaly

t=1 7y07

y' « samplelabel field({y "}/, y', T,);
Yy y+xy

(y = ~1), wherel(-) is the element-wise
indicator function.

Algorithm 4: anomaly detector

nf

Input : a videox, a set of frameqt;},’,, observation
sitesS, multi-scale spatial supportsR*}EZ_,

Output: spatial anomaly map&S*}£_, with multi-scale
spatial surrounds

foreach framet; do
extract spatio-temporal patches aroupd

{pat;} = extract patchx(t;));
learn a MDT:{DT;} = clustering{pat;}) with (A.6)
and [A11);
compute intra-component KLs:

KL(4,5) = KL(DT;, DT;), Vi # j, with (9);

foreach observation sitész.i in t; do

foreach spatial support with the size dtﬁj do

compute spatial anomal§” (i, j) using

Input : a query video clipz, a set of framegt;}7/,,
observation site§, CRF filter ®, multi-scale
spatial support§{R¥}!* }£_, and associated
temporal MDTs{{M ")} VL.

Parameter: cooling timeT,, sampling periodl’s, number
of samplesN,, thresholdy.

Output  : predicted anomaly labels for each site of

nkf

each frame{y "} 741

foreach framet; do
compute spatial anomaly maps:
{SF}L_ « spatial anomalyg, {t;}, S, {R});
foreach observation site&5; do
foreach spatial scalek do
compute hidden state sequengefor each

KL(i, ) and the segmentation maps of (4) (8) MDT component using (A 12]-(A22);
and (10); compute temporal anomaly maﬂ?C with (3)
end and [A.23);
end end
end end

Algorithm 2: samplelabel field

Input : previous predictio{y¥}7_'; initialization y,;
number of iterationd".

Output: predicted label fieldy’.

Y < Yo,

for i + 1to T do

foreach j € S(™) do
draw y’; from

v o ply{e) (v Y 5 0),

using (23)-(25) and (12)-(15), where
yLJ - {yiv e 79571#/;417 e 7y|/5|}:

end

end

draw the initial label field by logistic regression, using
(22): g ~ plylzt); w);

infer labels using/gf;’)) as the starting point:

yt) « CRF_inference(S*}, {T*}, {y"} <,

Yoy Ter To, N, );

end

APPENDIX C
EXPERIMENT

C.1 Descriptor Comparison

In this appendix, we present ROC curves corresponding
to the comparisons of Table 2 and Table 3. These provide a
more detailed picture of the results presented in the tables
and may be useful for performance comparison with future
methods. Fig[Cl2 presents ROC curves for the various
descriptors of Table 2. Fig._Q.3 presents ROC curves for
the filters of Table 3. In general, the ROC figures confirm
the conclusions derived from the tables.
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Fig. C.1. Anomaly detection performance (pixel-level criterion) on Ped1. Left: RD v.s.number of MDT components. Middle:
ROC curves of temporal anomaly detection v.s. number of training clips. Right: RD of spatial anomaly detection v.s. number
of frames used for segmentation.

C.2 Parameter Sensitivity C.3 Error Analysis

In this appendix, we briefly discuss the errors made by
the different detector components. Some of these turned

The performance of the proposed anomaly detectBit to be mislabeled instances on the two datasets. For
depends on a few parameters. These include descrigi§fMPle. the first column of Fig. 0.4 depicts a pedestrian

settings, such as the number of MDT components, and thit suddenly redirects her route, unexpectedly moving
I?cross the walkway. Similarly, the third column of the

size of the training data. In particular, temporal anoma _ )
maps degrade when MDTs are learned from small trainifigure depicts a pedestrian who takes a very unorthodox
rqute, so as to clear the way for an incoming cart. It is,

samples. Spatial anomaly detection is more flexible, as; - <
has no memory. This is illustrated in the second row df OUr opinion, positive that the detector flags these eyents

Fig. 6, for an anomalous cart at the bottom of the framdemonstrating ability to detect subtle anomalies that @oul

Since no events have been previously observed in tmgt even be necessarily detected by a human without close

region, there is no training data for the temporal MDT4NSPection. This also confirms the well known fact that
Some time is thus required to learn these models, and fz°Pmalies are, by definition, difficult to define a priori.
temporal map does not capture this anomaly. This is unlike® Seécond type of false-positives, which are technically
the spatial map, where the cart is robustly detected. On tlﬁ!@orrect detections, arise due to normal events that are
other hand, the segmentation required for spatial anom&her unusual or occur in unusual scenes. For example, in
detection can be computationally more intensive than tifa€ second column of Fi§. @.4, a person walking leftwards

detection of temporal anomalies, depending on how mafy the bottom of the scene is identified as an anomaly by
video frames it requires. the temporal detector. This is because the overwhelming

majority of the training events in this region are of verliiga

Several experiments were performed to evaluate theoving pedestrians (the south-north walkway leads to a
impact of these parameters on anomaly detection accuraoych busier area of the campus than the east-west one).
Fig.[C characterizes the performance of one-layer te-more careful training set collection, using standard boot
poral/spatial anomaly detection under different parametgtrap procedures|3], would eliminate these false positive
settings. The figure on the left shows that both tempordlith regards to spatial anomalies, unusually sparse scenes
and spatial anomaly detection improve with the number on be a source of concern. For example, in the fourth
DT components, with best performance flirc {5,6,8}. column of Fig.[CH, a pedestrian entering a very sparsely
Note, in particular, the significant improvement over thpopulated walkway is denoted a spatial anomaly. These
DT (K = 1). Above K = 8 there is some potential errors are not very serious, since spatial anomaly detectio
for overfitting and performance can degrade. Since moteuld simply be disabled for sparse scenes, or the anomaly
components imply more computation, we Use= 5 in all detector could be complemented by vision techniques that
our experiments. The center figure presents ROC curves farform well in these scenes.(§, pedestrian detection).
temporal anomalies on Pedl, as a function of the numbemMore problematic are errors due to pedestrians that move
of MDT training clips. Performance increases quickly fronfagainst the flow” of the surrounding crow. This is the
1 to 15 clips (200 to 3000 frames), saturating after 2Base of the fifth column of Fid._0.4, where a left moving
The right figure characterizes the trade-off between tlpedestrian enters the walkway when all other pedestrians
efficiency and accuracy of spatial anomaly detection, ase moving right. This behavior could be considered anoma-
more frames are considered in the segmentation procdess in some cases but not in others, depending on the
Increasing the number of frames from 10 to 40 improvestene context. For example, if the crowd was fleeing from
RD by more thari0%. Beyond that, performance saturatesa dangerous occurrence on the left of the sceng, (fire)
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Fig. C.2. Descriptor ROC curves on UCSD anomaly dataset. Plots relative to frame-level criterion are shown on the top
row, pixel-level criterion on bottom row. Left: Pedl. Right: Ped2. Shown in brackets are the areas under the curve (AUC). For
frame-level, chance performance is the diagonal from (0, 0) to (1, 1). For pixel-level, it is close to a line at 0.

the pedestrian should be stopped. Otherwise, there is no

anomaly. Again, we believe that these errors are acceptable

in principle, although further studies would be required
to verify that they do not overwhelm the operator of the

surveillance system when there are no anomalies.
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Fig. C.3. Filter ROC curves (pixel-level) on UCSD anomaly dataset. Left: Ped1. Right: Ped2.

Fig. C.4. False positive anomalies. Left two columns: temporal anomaly detector. Top row shows anomaly predictions in
red, the bottom the temporal anomaly maps in “jet” colormap. Right three columns: spatial anomaly detector. Top rows shows
the crowd segmentations, bottom row shows the spatial anomaly maps.



