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Latent Dirichlet Allocation Models
for Image Classification

Nikhil Rasiwasia, Member, IEEE, and Nuno Vasconcelos, Senior Member, IEEE

Abstract—Two new extensions of latent Dirichlet allocation (LDA), denoted topic-supervised LDA (ts-LDA) and class-specific-simplex
LDA (css-LDA), are proposed for image classification. An analysis of the supervised LDA models currently used for this task shows
that the impact of class information on the topics discovered by these models is very weak in general. This implies that the discovered
topics are driven by general image regularities, rather than the semantic regularities of interest for classification. To address this,
ts-LDA models are introduced which replace the automated topic discovery of LDA with specified topics, identical to the classes of
interest for classification. While this results in improvements in classification accuracy over existing LDA models, it compromises the
ability of LDA to discover unanticipated structure of interest. This limitation is addressed by the introduction of css-LDA, an LDA model
with class supervision at the level of image features. In css-LDA topics are discovered per class, i.e., a single set of topics shared
across classes is replaced by multiple class-specific topic sets. The css-LDA model is shown to combine the labeling strength of topic-
supervision with the flexibility of topic-discovery. lts effectiveness is demonstrated through an extensive experimental evaluation,
involving multiple benchmark datasets, where it is shown to outperform existing LDA-based image classification approaches.

Index Terms—Image classification, graphical models, latent Dirichlet allocation, semantic classification, attributes

1 INTRODUCTION

MAGE classification is a topic of significant interest within

computer vision. The goal is to classify an image into one
of a prespecified set of image classes or categories. This is
usually done by 1) designing a set of appearance features
rich enough to describe the classes of interest, 2) adopting
an architecture for the classification of these features, and
3) learning its parameters from training data. This strategy
has been successful in the recent past, with advances in
various aspects of the problem. With respect to features, a
popular strategy is to model images as orderless collections
of local descriptors, for example, edge orientation descrip-
tors based on the scale invariant feature transform (SIFT).
One successful orderless representation is the bag-of-visual-
words (BoW). This consists of vector quantizing the space of
local descriptors and using the means of the resulting
clusters, commonly known as “visual-words,”! as their
representatives. The set of visual-words forms a codebook,
which is used for image quantization. Images are finally
represented by histograms of visual word occurrence [9].
This representation mimics the time-tested bag-of-words of
text-retrieval [21], with words replaced by visual-words
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[22]. It is the foundation of a number of methods for object
recognition and image classification [14], [27], [6].

The simplest BoW image classification architecture is the
equivalent of the naive Bayes approach to text classification
[20]. Tt assumes that image words® are sampled indepen-
dently from the BoW model, and relies on the Bayes
decision rule for image classification. We refer to this as the
flat model, due to its lack of hierarchical word groupings.
Although capable of identifying sets of words discrimina-
tive for the classes of interest, it does not explicitly model
the inter and intraclass structure of word distributions. To
facilitate the discovery of this structure, various models have
been recently ported from the text to the vision literature.
Popular examples include hierarchical probabilistic models,
commonly known as topic models, such as latent Dirichlet
allocation (LDA) [4] and probabilistic latent semantic
analysis (pLSA) [11]. Under these models, each document
(or image) is represented as a finite mixture over an
intermediate set of topics, which are expected to summarize
the document semantics.

Since LDA and pLSA topics are discovered in an
unsupervised fashion, these models have limited use for
classification. Several LDA extensions have been proposed
to address this limitation, in both the text and vision
literatures. One popular extension is to apply a classifier,
such as an SVM, to the topic representation [4], [5], [18]. We
refer to these as discriminant extensions, and the combina-
tion of SVM with LDA as SVM-LDA. Such extensions are
hampered by the inability of unsupervised LDA to latch onto
semantic regularities of interest for classification [3], [28].
For example, it has been noted in the text literature [3] that,
given a collection of movie reviews, LDA might discover as
topics movie properties, for example, genres, which are not

2. Henceforth, “word” refers to a semantic word in the context of text
documents and visual word in the context of images.
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central to the classification task, for example, prediction of
movie ratings. A second approach is to incorporate a class
label variable in the generative model [10], [3], [25], [13],
[28], [16]. These are denoted generative extensions. Two
popular members of this family are the model of [10], here
referred to as classLDA (cLDA), and the model of [25],
commonly known as supervised LDA (sLDA). The latter
was first proposed for supervised text prediction in [3].
Several other adaptations of LDA have been proposed for
tasks other than classification: correspondence LDA [2] and
topic-regression multimodal LDA [17] for image annota-
tion, labeled LDA [19] (labLDA) for credit attribution in a
multilabeled corpora, semiLDA [26] for human action
recognition in videos, and so on.

In this paper, we focus on generative extensions of LDA
for image classification. We start by showing that even the
most popular supervised extensions, such as cLDA and
sLDA, are unlikely to capture class semantics. This is shown
by 1) a theoretical analysis of the learning algorithms, and
2) experimental evaluation on classification problems.
Theoretically, it is shown that the impact of class information
on the topics discovered by cLDA and sLDA is very weak in
general and vanishes for large samples. Experiments show
that the classification accuracies of cLDA and sLDA are not
superior to those of unsupervised topic discovery. To
address these limitations, we propose the family of topic
supervised (ts) LDA models. Instead of relying on discovered
topics, ts-LDA equates topics to the classes of interest for image
classification, establishing a one-to-one mapping between
topics and class labels. This forces LDA to pursue semantic
regularities in the data. Topic supervision reduces the
learning complexity of topic distributions and improves on
the classification accuracy of existing sLDA extensions. This
is demonstrated by the introduction of topic supervised
versions of LDA, cLDA, and sLDA, denoted ts-LDA, ts-cLDA,
and ts-sLDA, respectively. In all cases, the topic supervised
models outperform the corresponding LDA models learned
without topic-supervision.

However, topic-supervised LDA (ts-LDA) models do not
outperform the flat model. This is partly due to limitations
of LDA itself. We show that the bulk of the modeling power
of LDA, in both existing and topic-supervised models, lies
in dimensionality reduction, the mapping of images from a
high-dimensional word simplex to a low-dimensional topic
simplex, and not in the modeling of class specific distribu-
tions per se. Since all classes share a topic simplex of
relatively low dimensionality, there is limited ability to
simultaneously uncover rich intraclass structure and main-
tain discriminability. By obviating the discovery of this
latent topic simplex, topic supervision increases discrimina-
tion, but sacrifices the model ability to discover unantici-
pated structure of interest for image classification. Hence,
ts-LDA models are not fundamentally different from the
flat model. To combine the labeling strength of topic-
supervision with the flexibility of topic-discovery of LDA,
we propose a novel classification architecture, denoted
class-specific simplex LDA (css-LDA). Inspired by the flat
model, css-LDA differs from the existing LDA extensions in
that supervision is introduced directly at the level of image
features. This induces the discovery of class-specific topic
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simplices and, consequently, class-specific topic distributions,
enabling a much richer modeling of intraclass structure
without compromise of discrimination ability. An extensive
experimental evaluation shows that css-LDA outperforms
both all existing extensions of LDA for image classification
and the flat model on five benchmark datasets.

The paper is organized as follows: Section 2 briefly
reviews the literature on generative models for image
classification. The limitations of existing models are high-
lighted in Section 3 and the motivation for the proposed
approaches is then given in Section 4. Next, Sections 5 and 6
introduce the topic-supervised and css-LDA models,
respectively. An extensive experimental evaluation of all
models is presented in Section 7. Finally, conclusions are
drawn in Section 8.

2 MoDELS FOR IMAGE CLASSIFICATION

We start by reviewing LDA and its various extensions for
classification. Images are observations from a random
variable X, defined on some feature space X’ of visual
measurements. For example, X could be the space of
discrete cosine transform (DCT), or SIFT descriptors. Each
image is represented as a bag of N feature vectors
T ={xi,...,xn}, X, € X, assumed to be sampled inde-
pendently. The feature space X is quantized into |V)| bins,
defined by a set of centroids, V = {1,...,|V|}. Each feature
vector x,, n € {1,..., N}, is mapped to its closest centroid.
Images are represented as collections of visual words,
T =A{wi,...,wy}, w, €V, where w, is the bin containing
x,. Each image in a dataset, D = {Zy,...,Zp}, is labeled
with a class y, drawn from a random variable Y with
values in Y = {1,...,C}. This is the set of classes that
define the image classification problem, making
D= {(Ihyl)a ) (IDa yD)}

A query image Z, is classified with the minimum
probability of error criterion, where the optimal decision
rule is to assign Z, to the class of maximum posterior
probability, i.e.,

y' = arg max Py (ylZ,). (1)

Pyyw(ylZ,), the posterior probability of class y given Z,, is
computed with a combination of a probabilistic model for
the joint distribution of words and classes and Bayes rule.
We next review some popular models.

2.1 Flat Model

Fig. 1a presents the graphical form of the flat model. Visual
words w, are sampled independently conditioned on the
class label. The generative process is

for each image do
sample a class label y ~ Py (y;n), y € Y
forie{1,...,N} do

sample a visual word w; ~ Py y (w;]y; Ag/‘lam)'
end for
end for

Although any suitable distribution can be used as class
prior Py() and class-conditional distribution Py (), these
are usually categorical distributions over Y and V,
respectively:
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Fig. 1. Graphical models for (a) flat model, (b) LDA and ts-LDA, (c) cLDA and ts-cLDA, (d) sLDA and ts-sLDA. All models use the plate notation of [7],

with parameters shown in rounded squares.

C
= [I=“, (2)
c=1

c |V

H H Aﬂat() ¥,0)6(v,w) (3)

c=1v=1

Py (wly; Aﬂat

where 6(z,y) is the Kronecker delta function, which takes
the Value of one if and only if z =y, zero otherwise,
and (1, A{’}f) are model parameters such that } .7, = 1 and
>, Aflet = 1. In this paper, wherever applicable, we assume
a uniform class prior 7, = é, Vy € Y. However, for
completeness, the prior is included in all equations. The
parameters A/ l"/t can be learned by maximum likelihood
estimation as

ZdZnﬁ(yd y) ( d ) (4)
Z Zerz(S( ) ( n7/U)7

where d indexes the training images.

In general, images from a class may contain patches from
others, for example, images of the “Street” class may
contain patches of “Buildings” or “Highways.” Hence,
strictly supervised learning of the class-conditional dis-
tributions requires extensively labeled training sets, where
each image patch is labeled with a class in Y. Such
supervision is not available in image classification pro-
blems, where labels are only provided for entire images.
This is the weakly supervised learning problem also faced by
image annotation [8]. As in that problem, class-conditional
distributions are simply learned from all patches extracted
from all images in the training set of the class. This type of
learning has been shown effective through theoretical
connections to multiple instance learning [24].

2.2 Unsupervised LDA Model

LDA is the generative model of Fig. 1b. The generative
process is as follows:

Aflaf

for each image do
sample @ ~ Py(m; ).
foriec{1,...,N} do
sample a topic, z; ~ Pyn(zi|w), z € T = {1,...,
where 7 is the set of topics.
sample a visual word w; ~ Pyy|z(wi|z;; Az,).
end for
end for

K},

where Py() and Py() are the prior and topic-conditional
distributions, respectively. Py() is a Dirichlet distribution

on 7 with parameter a, and Py;() a categorical distribu-
tion on V with parameters A;x. Although the model
parameters can be learned with the expectation maximiza-
tion (EM) algorithm, the E-step yields intractable inference.
To address this, a wide range of approximate inference
methods have been proposed [1], such as Laplace or
variational approximations, sampling methods, and so on.
In this paper, we adopt variational inference for all models
where exact inference is intractable. Variational inference
for the LDA model is briefly discussed in Appendix I,
which can be found in the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2013.69. In its original formulation, LDA does not incorpo-
rate class information and cannot be used for classification.
We next discuss two models that address this limitation.

2.3 Class LDA

cLDA was introduced in [10] for image classification. In this
model, as shown in Fig. 1c, a class variable Y is introduced
as the parent of the topic prior II. In this way, each class
defines a prior distribution in topic space, conditioned on
which the topic probability vector 7 is sampled. Images are
sampled as follows:

for each image do
sample a class label y ~ Py (y; 1), y € Y
sample 7 ~ Py (w|y; o).
forie{1,...,N} do
sample a topic, z; ~ Pyzu(zi|w), z € T = {1,...
sample a visual word w; ~ Py z(wilz; Az,)
end for
end for

KD

where a, = {oy1,...,ayx }. Parameter learning for cLDA is
similar to that of LDA [10] and detailed in Appendix II,
which is available in the online supplemental material. A
query image Z, is classified with (1), using variational
inference to approximate the posterior Py (y|Z,) [10].

2.4 Supervised LDA

sLDA was proposed in [3]. As shown in Fig. 1d, the class
variable Y is conditioned by topics Z. In its full generality,
sLDA uses a generalized linear model of Y, which can be
either discrete or continuous. Wang et al. [25] applied this
generic framework to the task of image classification, where
Y takes on discrete responses, by making use of the
generalized linear model exponential family relevant to a
categorical response. An alternative extension to binary
image annotation was proposed in [16], using a multi-
variate Bernoulli variable for Y. In [28], the max-margin
principle is used to train SLDA, which is denoted maximum



2668

(a) flat (b) cLDA

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11,

NOVEMBER 2013

(0,1,0)| word 2

élass Specific
Topic Simplices

(c) ts-cLDA (d) css-LDA

Fig. 2. Representation of various models on a three word simplex. Also shown are sample images from two classes: “0” from class-1 and “x” from
class-2. (a) The flat model. (b) The cLDA model with two topics. The line segment depicts a 1D topic simplex whose vertices are topic-conditional
word distributions. Classes define smooth distributions on the topic simplex, denoted by dashed and dotted lines. (c) The ts-cLDA model. Topic-
conditional word distributions are learned with supervision and aligned with the class-conditional distributions of the flat model. (d) The css-LDA

model. Each class defines its own topic simplex.

entropy discrimination LDA (medLDA). In this paper,
sLDA refers to the formulation of [25] since this was the one
previously used for image classification. Images are
sampled as follows:

for each image do
sample @ ~ Py (m; ).
forie {1,...,N} do
sample a topic, z; ~ Py (zilw), z € T ={1,..., K}
sample a visual word w; ~ Pyy|z(wi|z;; Az,).
end for
sample a class label y ~ Py (y|Z;{1.0), y €Y
end for

where Z is the mean topic assignment vector z; =
30 6(z0, k), and

_oexp ((gi)

- i exp (¢iz)
a softmax activation function with parameter (, € R*.
Variational inference is used to learn all model parameters

and to approximate the posterior Py (y|Z,), used in (1) for
classifying an image Z, [25].

Pyz(y12; €) (5)

2.5 Geometric Interpretation

The models discussed above have an elegant geometric
interpretation [4], [23]. Associated with a vocabulary of |V|
words, there is a |V|-dimensional space, where each axis
represents the occurrence of a particular word. A V| — 1-
simplex in this space, here referred to as word simplex,
represents all probability distributions over words. Each
image (when represented as a word histogram) is a point on
this space. Fig. 2a illustrates the 2D simplex of distributions
over three words. Also shown are sample images from two
classes, “0” from class-1 and “x” from class-2, and a
schematic of the flat model. Under this model, each class is
modeled by a class-conditional word distribution, ie., a
point on the word simplex. In Fig. 2a, A/ and AJ"“' are the
distributions of class-1 and class-2, respectively.

Fig. 2b shows a schematic of cLDA with two topics. Each
topic in an LDA model defines a probability distribution
over words and is represented as a point on the word
simplex. Since topic probabilities are mixing probabilities
for word distributions, a set of K topics defines a K — 1

simplex in the word simplex, here denoted the topic simplex.
If the number of topics K is strictly smaller than the number
of words [V|, the topic simplex is a low-dimensional
subsimplex of the word simplex. The projection of images
on the topic simplex can be thought of as dimensionality
reduction. In Fig. 2b, the two topics are represented by A;
and Ay, and span a 1D simplex, shown as a connecting line
segment. In cLDA, each class defines a distribution
(parameterized by a,) on the topic simplex. The distribu-
tions of class-1 and class-2 are depicted in the figure as
dotted and dashed lines, respectively. Similar to cLDA,
sLDA can be represented on the topic simplex, where each
class defines a softmax function.?

3 LIMITATIONS OF EXISTING MODELS

In this section, we present theoretical and experimental
evidence that, contrary to popular belief, topics discovered
by sLDA and cLDA are not more suitable for discrimination
than those of standard LDA. We start by showing, through
an analysis of the variational learning equations of sLDA
and cLDA, that class labels have very weak influence in the
learning of the topic distributions of these models.

In both sLDA and cLDA, the parameters A;.x of the topic
distributions are obtained via the variational M-step as

Ao D0 8(wih,v) by, (6)
d n

where d indexes the images, ) Ay, = 1, 6() is a Kronecker
delta function, and ¢, is the parameter of the variational
distribution ¢(z). This parameter is computed in the E-step:

For cLDA: " =" ¢ + oy, (7)

¢% o Ay exp [Y(7)], (8)

3. Strictly speaking, the softmax function is defined on the average of the
sampled topic assignment labels z. However, when the number of features
N is sufficiently large, z is proportional to the topic distribution . Thus, the
softmax function can be thought of as defined on the topic simplex.
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Fig. 3. Classification accuracy as a function of the number of topics for sSLDA and cLDA, using topics learned with and without class influence and
codebooks of size 1,024, on (a) N13, (b) N8, and (c) S8. Similar behavior was observed for codebooks of different sizes.

ForsLDA: 4" = ¢4+, 9)
n
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i o Mg exp | 0(0f) + 2
, (10)
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where <y is the parameter of the variational distribution
q(m) (see [4] for the details of variational inference in LDA).
The important point is that the class label y¢ only
influences the topic distributions through (7) for cLDA
(where o, is used to compute the parameter ~%) and (10)
for SLDA (where the variational parameter ¢, depends on
the class label y* through (,;./N).

We next consider the case of cLDA. Given that ¢(mr) is a
posterior Dirichlet distribution (and omitting the depen-
dence on d for sin;fplicity), the estimate of 7; has two
components: [, = ) ."_; ¢n, Wwhich acts as a vector of counts,
and a,;, which is the parameter from the prior distribution.
As the number of visual words N increases, the amplitude
of the count vector, 1, increases proportionally, while the
prior a, remains constant. Hence, for a sufficiently large
sample size N, the prior a, has a very weak influence on
the estimate of <. This is a hallmark of Bayesian parameter
estimation, where the prior only has impact on the posterior
estimates for small sample sizes. It follows that the
connection between class label Y and the learned topics I’}
is extremely weak. This is not a fallacy of the variational
approximation. In cLDA (see Fig. 1b), the class label
distribution is simply a prior for the remaining random
variables. This prior is easily overwhelmed by the evidence
collected at the feature-leve, whenever the sample is large.

A similar effect holds for sLDA, where the only
dependence of the parameter estimates on the class label
is through the term (,;/N. This clearly diminishes as the
sample size N increases.* In summary, topics learned with
either cLDA or sLDA are very unlikely to be informative

4. This discussion refers to the sLDA formulation of [25], which was
proposed specifically for image classification. Note that the original sSLDA
formulation of [3] includes a dispersion parameter 6 which provides
additional flexibility in modeling the variance of Y. Inclusion of § makes the
parameter estimates dependent on the class label via (., /(N¢). In this case,
the importance of the class label y? can be controlled by scaling &
appropriately. However, the basic argument still holds in the sense that,
for any 6 > 0, this importance vanishes as the sample increases.

of semantic regularities of interest for classification, and
much more likely to capture generic regularities common
to all classes.

To confirm these observations, we performed experi-
ments with topics learned under two approaches. The first
used the original learning equations, ie., (7) and (8) for
cLDA and (9) and (10) for sLDA. In the second, we severed
all connections with the class label variable during topic
learning by reducing the variational E-step (of both cLDA
and sLDA) to

W=D ¢h+a (11)
n

¢;];;< X Akw',{ €xXp [¢ (72)]7

with o =1. This guarantees that the topic-conditional
distributions are learned without any class influence. The
remaining parameters (a, for cLDA, ¢, for sSLDA) are still
learned using the original equations. The rationale for these
experiments is that if supervision makes any difference,
models learned with the original algorithms should per-
form better.

Fig. 3 shows the image classification performance of
cLDA and sLDA under the two learning approaches on the
N13, N8, and S8 data sets (see Appendix IV, which is
available in the online supplemental material, for details on
the experimental setup). The plots were obtained with a
1,024 words codebook, and between 10 and 100 topics.
Clearly, the classification performance of the original
models is not superior to that of the ones learned without
class supervision. The sLDA model has almost identical
performance under the two approaches on the three
datasets. For cLDA, unsupervised topic discovery is in fact
superior on the N8 and S8 dataset. This can be explained by
poor regularization of the original cLDA algorithm. We
have observed small values of «,;, which probably led to
poor estimates of the topic distributions in (7). For example,
the maximum, median, and minimum values of o, learned
with 10 topics on S8 were 0.61, 0.12, and 0.04, respectively.
In contrast, the corresponding values for unsupervised
topic discovery were 7.09, 1.09, and 0.55. Similar effects
were observed in experiments with codebooks of different
size. These results show that the performance of cLDA and
sLDA is similar (if not inferior) to that of topic learning
without class supervision. In both cases, the class variable
has very weak impact on the learning of topic distributions.

(12)
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Fig. 4. An example of the need for supervision in learning topic
distributions. (a) Images from the class paired—composed of paired line
segments tilted left or right, and singleton—composed of singleton
segments tilted left or right. Shown under each image is the associated
word histogram, based on a set of four natural visual words for this
problem—singleton-right, paired-right, singleton-left, and paired-left
segments. (b) Image groupings based on word histograms uncover
“generic” regularities of the data. (c) Expected topic vectors for the
images in (a) based on topics discovered in (b). (d) Topics discovered
with topic supervision. (e) Expected topic vectors for images in (a) based
on topics discovered in (d).

4 GENERIC VERSUS SEMANTIC REGULARITIES

Since all models discussed so far effectively implement
unsupervised topic discovery, it is worth considering the
limitations of this paradigm.

4.1 Generic versus Semantic Regularities

In this section, we show that unsupervised topic discovery
is prone to latching onto generic image regularities, rather
than the semantic regularities of interest for classification.
Consider a dataset composed by the four types of images of
Fig. 4a. These are images from a toy world of line segments.
The segments have a single orientation, and the world has
two states. Under the first state, segments are placed on the
world in pairs, referred to as the “paired” state. Under the
second, the segments are placed individually, referred to as
the “singleton” state. Inferring the state of the world is not
trivial because, as is common in computer vision, it can be
imaged from two camera angles. Under the first, segments
retain their orientation. Under the second, this orientation is
reversed. Assuming a natural set of visual words for this
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problem (singleton-right, paired-right, singleton-left, and
paired-left segments), each image produces the visual word
histogram shown under it. Close inspection of these
histograms shows that the largest overlap occurs between
those of images shot from the same camera angle as these
contain segments with the same orientation. Indeed, as can
be seen in Fig. 4b, grouping the images by camera angle
produces two topics of perfectly disjoint word histograms.
On the other hand, as shown in Fig. 4d, grouping images by
state of the world generates two topics of highly over-
lapping histograms because it requires grouping segments
of mixed orientation.

Hence, for this dataset, the prevalent regularity is the
grouping of images by segment orientation. Unsupervised
topic discovery will latch onto this regularity, producing the
expected topic vectors shown in Fig. 4c, i.e., grouping
image 1 with image 3 and image 2 with image 4. However,
this is a generic regularity, totally unrelated to the semantic
regularities of the problem, which are the singleton versus
paired states of the world. To reflect these semantic regula-
rities the model must be forced to have the topics of Fig. 4d,
ie., topic learning has to be supervised. Only this will
guarantee the grouping of images land 2 and images 3 and
4, and the expected topic vectors of Fig. 4e. In summary,
supervised topic discovery is usually required for LDA
models to equate topics to states of the world. Unsuper-
vised learning can easily latch onto generic regularities of
the data (in this case the segment orientation), ignoring the
semantic regularities of interest for classification.

4.2 Limitation of Current Models

In Section 3, we have seen that models such as sLDA or
cLDA effectively learn topics without supervision. This
makes them prone to latching onto generic regularities.
An illustration of this problem, on real data, is given in
Fig. 5, which shows some example images from classes
“Sailing” (top row) and “Rowing” (bottom row) of the S8
dataset (see Appendix IV-A, which is available in the online
supplemental material). Fig. 5b shows the topic histograms
corresponding to the images in Fig. 5a, for a four-topic
cLDA model trained on 100 images per class. Note that,
although belonging to different classes, the two images in
each column have nearly identical topic distributions. On
the other hand, the topic distributions vary significantly
within each class (image row). In fact, the topic of largest
probability varies from column to column.

The inability of these topics to reflect semantic regula-
rities is particularly problematic for image classification
with LDA-like models, whose distinctive feature is pre-
cisely to isolate the topic probability vector II from the
features W. Consider, for example, the generative model of
cLDA (see Fig. 1c). When conditioned on the topic-
probability vector II, the class label Y is independent of
the image features W, i.e., Pynw(y|m,Z) = Pym(y|n).
Although this independence is usually desirable—as topics
introduce abstraction over visual features—it becomes a
problem for classification, where it implies that images of
similar topic distribution are assigned to the same class. In
the case of Fig. 5, this means that images in the same
column will receive the same class label, while images in
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Fig. 5. (a) Images of “Sailing” (top row) and “Rowing” (bottom row).
(b) Expected topic vectors produced, for the images in (a), by cLDA with

four topics. (c) Expected topics vectors produced, for the images in (a),
by ts-cLDA.

the same row will likely not. This makes the class assign-
ments of cLDA close to the worst possible.’

5 ToPrIiC SUPERVISION

In this section, we discuss topic supervision for LDA
models and its impact in learning and inference.

5.1 Topics Supervision in LDA Models

The simplest solution to the problem of Fig. 5 is to force
topics to reflect the semantic regularities of interest. This
consists of equating topics to class labels, and is denoted ts-
LDA. For example, in Fig. 4, topics would be defined as
paired and singleton, leading to the image grouping of Fig. 4d
and the topic histograms of Fig. 4e. Images 1 and 2 and
images 3 and 4 would then have identical topic distribu-
tions, and the topic distributions of the paired and singleton
classes would be different. This is unlike Fig. 4c, where the
two classes can have identical topic distributions.

Topic supervision was previously proposed in semi-
LDA [26] and labLDA [19] for action and text classification,
respectively. However, its impact on classification perfor-
mance is difficult to ascertain from these works for several
reasons. First, none of them performed a systematic
comparison to existing LDA methods, preventing any

5. A similar outcome occurs for sSLDA, for which a similar independence
property holds. As can be seen in Fig. 1d, when conditioned on the hidden
topic assignment variables Z, the class label Y becomes independent of the
image features W, i.e., Pyzw(y|z,Z) = Pyz(y|2).
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analysis of the benefits of topic-supervision over standard
LDA. Second, both semi-LDA and labLDA are topic-
supervised versions of LDA. None of the existing works
present topic-supervised versions of the classification
models, such as cLDA and sLDA (which as we shall
see outperform ts-LDA). Third, semi-LDA adopts an
unconventional inference process, which assumes that
P(zn|wr, wa, . .. wy) < p(zn|m)p(z,|wy). It is unclear how this
affects the performance of the topic-supervised model.
Finally, the goal of labLDA is to assign multiple labels per
document. This is somewhat different from image classifi-
cation, although it reduces to a topic-supervised model for
classification if there is a single label per item.

5.2 Models and Geometric Interpretation

To analyze the impact of topic-supervision on the various
LDA models, we start by noting that the graphical model
of the topic supervised extension of any LDA model is
exactly the same as that of the model without topic
supervision. The only subtle yet significant difference is
that the topics are no longer discovered, but specified. It is
thus possible to introduce topic-supervised versions of all
models in the literature. In this paper, we consider three
such versions, viz. “ts-LDA,” “topic-supervised class
LDA (ts-cLDA),” and “topic-supervised supervised LDA
(ts-sLDA).” These are the topic-supervised versions of
LDA, cLDA, and sLDA, respectively, with the following
three distinguishing properties:

e The set of topics 7 is the set of class labels V.

e The samples from the topic variables Z; are class

labels.

e The topic conditional distributions Py ;() are

learned in a supervised manner.

We will see that this has the added advantage of
simpler learning. It should be noted that ts-LDA is
structurally equivalent to semi-LDA [26], but uses more
principled inference.

Fig. 2c shows the schematic of ts-cLDA for a two class
problem on a three word simplex. As with cLDA, Fig. 2b, A;
and A, are topic-distributions. There is, however, a
significant difference. While the topic distributions of
cLDA, learned by topic discovery, can be positioned
anywhere on the word simplex, those of ts-cLDA are
specified and identical to the image classes. This makes
the topic-conditional distributions of ts-cLDA identical to
the class-conditional distributions of the flat model.

5.3 Learning and Inference with Topic-Supervision
In this section, we discuss learning and inference proce-
dures for the ts-LDA models. The introduction of topic-level
supervision decouples the learning of the topic-conditional
distribution Pyy|;() from that of the other model parameters,
reducing learning complexity. In general, learning would
require a strongly supervised training set, where each
image patch is labeled with one of the topics in ) (recall that
T =1)),ie., known zjl for all s and d. However, such a set is
usually not available. As in flat model learning, the
parameters of ts-LDA models are learned with weak
supervision, relying on multiple instance learning. Under
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Fig. 6. Classification accuracy versus codebook size for ts-sLDA, ts-cLDA, sLDA, cLDA, and flat model on (a) N13, (b) N8, and (c) S8. For ts-
sLDA and ts-cLDA the number of topics is equal to the number of classes. For sLDA and cLDA, results are presented for the number of topics

of best performance.

TABLE 1
Classification Results
Dataset
model N15 N13 | N8 S8 C50
css-LDA 76.62 + 0.32 | 81.03 = 0.74 | 87.97 & 0.84 | 80.37 & 1.36 | 46.04
flat 7491 £ 0.38 | 79.60 &+ 0.38 | 86.80 & 0.51 | 77.87 £ 1.18 | 43.20
ts-sSLDA 74.82 + 0.68 | 79.70 + 0.48 | 86.33 £+ 0.69 | 78.37 + 0.80 | 42.33
ts-cLDA 74.38 + 0.78 | 78.92 + 0.68 | 86.25 + 1.23 | 77.43 £+ 0.97 | 40.80
ts-LDA 72.60 £ 0.51 | 78.10 = 0.31 | 85.53 =041 | 77.77 &= 1.02 | 39.20
medLDA [28] || 72.08 4 0.59 | 77.58 4+ 0.58 | 85.16 4+ 0.57 | 78.19 4+ 1.05 | 41.89
sLDA [25] 70.87 £ 0.48 | 76.17 £ 0.92 | 84.95 & 0.51 | 74.95 &+ 1.03 | 39.22
cLDA [10] 65.50 & 0.32 | 72.02 & 0.58 | 81.30 £ 0.55 | 70.33 + 0.86 | 34.33
LDA-SVM 73.19 £ 0.51 | 78.45 4+ 0.34 | 86.82 & 0.93 | 76.32 & 0.71 | 45.46

this form of learning, all patch labels in an image are made
equal to its class label, i.e., 22 = y? Vn,d.

Given z¢, the parameters A; of the topic-conditional
distribution are learned by ML estimation:

n’

x d d
A, = argn}\a}x;;ﬂy ,k)é(wn,v) log Ay, (13)
under the constraint Zl}ill Ay, = 1. The ML solution is
8(y?, k)6 (w?,
Akv Ed Zn (y ) (wn 1}) (14)

N Z/ Zd Zn 6(yd7j)6(w(ril7 U) '

Comparing to (4), it is clear that, when 7 =), the topic
distributions of topic-supervised models are equivalent to
the class-conditional distributions of the flat model.®

The remaining model parameters could also be learned
under the assumption of known 2! (see Appendix III-B,
which is available in the online supplemental material, for
the case of ts-cLDA). However, under weak supervision,
all patches of a given class would be assigned to the same
topic (that of the class), leading to degenerate parameters
for the class conditional distributions. For example, the ts-
cLDA parameters a, would be zero for all topics other
than the class namesake. Hence, although useful for

6. Note that the extension to the case where topics are supervised but
different from the image classes, i.e., 7 # ), would be trivial. For example,
for classes {“Beach,” “Lake”}, topics could be defined as {“sand,” “water,”
“sky,” “trees”}, promoting a natural hierarchy of concepts. In other
applications, topics could be class attributes. All of these would, however,
require additional labeling of training sets with respect to the desired topics.

learning topic-conditional distributions, multiple instance
learning only produces trivial class-conditional distribu-
tions. A better solution, which we adopt, is to learn these
distributions under the assumption of unknown patch
labels, as is done in the original algorithms. In summary,
weakly supervised learning is only used to learn topic-
conditional distributions. Parameter estimation for ts-cLDA
is detailed in Appendix III, which is available in the online
supplemental material.

5.4 Experimental Analysis

Fig. 5c shows the topic vectors produced by ts-cLDA for
the images of Fig. 5a. Note how these vectors are different
across columns but similar across rows, i.e., have the
opposite behavior of those produced by cLDA (see
Fig. 5b). Clearly, ts-cLDA latches onto the semantic
regularities of interest for classification. It is thus expected
to outperform cLDA in image classification. This is
confirmed by Fig. 6, which presents classification results
of ts-LDA, ts-cLDA, and ts-sLDA as a function of
codebook size under the experimental conditions of
Fig. 3. Also shown are the accuracies of cLDA, sLDA,
and the flat model. In all cases, each image is assigned to
the class of highest posterior probability.

All three topic supervised approaches outperform sLDA
and cLDA. This holds for all datasets and codebook sizes
when compared to cLDA, and for all datasets and code-
books with over 1,024 codewords when compared to sLDA.
The best performance across codebook and topic cardinal-
ities is reported in Table 1. On average, topic-supervision
improves the accuracy of cLDA and sLDA by 12 and
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Fig. 7. Top: Images misclassified by cLDA but not ts-cLDA. Bottom:
Expected topic distributions of ts-cLDA (middle) and cLDA (bottom),
using 13 topics. ts-cLDA topics are class labels, and high probability
topics capture the image semantics. cLDA topics lack clear semantics.

5 percent, respectively. This happens despite the fact that
the number of topics of cLDA and sLDA is usually much
larger than those of the topic-supervised models (number
of classes). Among the topic-supervised models, ts-cLDA
and ts-sLDA achieve comparable performance, superior to
that of ts-LDA. Fig. 7 shows images incorrectly classified by
cLDA but correctly classified by ts-cLDA on N13. Also
shown are the topic histograms obtained in each case, with
ts-cLDA in the middle and cLDA in the bottom row.
Again, the figures illustrate the effectiveness of ts-cLDA at
capturing semantic regularities. Topics with high prob-
ability are indeed representative of the image semantics.
This interpretation is only possible as the topic labels in
ts-cLDA have a one-to-one correspondence with the
class labels. For cLDA, topic histograms merely represent
visual clusters.

5.5 Topic Supervision versus the Flat Model

In this section, we discuss the similarities and differences
between ts-LDA models and the flat model.

5.5.1 ts-LDA versus Flat Model

The closest topic-supervised model to the flat model is ts-
LDA. Although the graphical models are different
(cf. Figs. la and 1b), the weakly supervised learning
procedure is similar. In fact, since the learned topic-
conditional distributions of ts-LDA are the class-conditional
distributions of the flat model, the training procedure is
essentially the same. There are, however, significant differ-
ences between the inference procedures of the two models.
For the flat model, assuming a uniform class prior, the class
assignment is

= argm;iXHPW\Y(wn\y)PY(y) (15)
n
= argmax 1:[ Ay, - (16)
For ts-LDA, the class assignment is
y* = argmax-y,, (17)
Y
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where +, is obtained through the iteration (see Appendix I,
which is available in the online supplemental material):

'7; = Z ¢>’ny + «a, (18)
n

¢;y o< Ay, €Xp [¢('Yy)]

While in (16) the word probabilities A,,, are aggregated
via multiplication, in (18) and (19) they are effectively
aggregated via summation. In summary, while the class
assignments of the flat model are primarily driven by the
product of word probabilities, those of ts-LDA are driven
by their sum. The two quantities can be quite different.
Fig. 6 shows that this difference is of consequence as
ts-LDA frequently underperforms the flat model.

(19)

5.5.2 ts-{c,s}LDA versus Flat Model

Like ts-LDA, the topic-conditional distributions of ts-cLDA
and ts-sLDA are identical to the class-conditional distribu-
tions of the flat model. However, since the class-conditional
distributions of ts-cLDA and ts-sSLDA have additional
parameters (@, for ts-cLDA and (, for ts-sLDA), their
learning algorithms are different from that of the flat
model. During inference, the class posterior Py (y|Z)
critically depends on the class specific parameters a,/(,.
These are quite different from the class specific parameters
of the flat model A,. Thus, for ts-cLDA and ts-sLDA, both
training and testing have significant differences from those
of the flat model.

Fig. 6 shows that, although outperforming their unsu-
pervised counterparts, topic-supervised models cannot beat
the flat model. This shows that the differences between
these models are of little consequence. In particular, it
suggests that modeling class distributions on the topic
simplex (see Fig. 2c) does not necessarily improve recogni-
tion performance. This is troubling since such modeling
increases the complexity of both LDA learning and
inference, which are certainly larger than those of the flat
model. It places in question the usefulness of the whole
LDA approach to image classification. This problem has
simply been ignored in the literature, where comparisons
with the flat model are usually not presented.

6 CLASS-SPECIFIC-SIMPLEX LATENT DIRICHLET
ALLOCATION

To overcome this limitation, we introduce a new LDA
model for image classification, denoted css-LDA.

6.1 Motivation

The inability of the LDA variants to outperform the flat
model is perhaps best understood by returning to Fig. 2.
Note that both cLDA and ts-cLDA map images from a high-
dimensional word simplex to a low-dimensional topic
simplex, which is common to all classes. This restricts the
scope of the class models, which are simple Dirichlet
distributions over the topic simplex. Similar pictures hold
for sSLDA and ts-sLDA, where the classes define a softmax
function in the simplex. In fact, even SVM-LDA learns an
SVM classifier on this space. Since the topic simplex is
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Fig. 8. Graphical model of (a) css-LDA and (b) MFM.

common and low-dimensional, too few degrees of freedom
are available to characterize intraclass structure, preventing
a very detailed discrimination of the different classes. In
fact, the main conclusion of the previous sections is that the
bulk of the modeling power of LDA lies in the selection of
the topic simplex, and not in the modeling of the data
distribution in it. Since to capture the semantic regularities
of the data, the simplex has to be aligned with the class
labels—as is done under topic-supervision—there is little
room to outperform the flat model.

This limitation is common to any model that constrains
the class-conditional distributions to lie on a common topic
simplex. This is the case whenever the class label Y is
connected to either the prior II or topic Z variables, as in the
graphical models of Fig. 1. Since the topic simplex is smaller
than the word simplex, it has limited ability to simulta-
neously model rich intraclass structure and keep the classes
separated. For this, it is necessary that the class label Y
affect the word distributions directly, freeing these to
distribute themselves across the word simplex in the most
discriminant manner. This implies that ¥ must be con-
nected to the word variable W, as in the flat model. The
result is the graphical model of Fig. 8a, which turns out to
have a number of other properties of interest.

The first follows from the fact that it makes the topic
conditional distributions dependent on the class. Returning

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 11,

NOVEMBER 2013

to Fig. 2, this implies that the vertices of the topic simplex
are class-dependent, as shown in Fig. 2d. Note that there are
two 1D topic simplices, one for each class defined by the
parameters A} and AJ, y € {1,2}. The dotted and dashed
lines denote the prior distribution on the topic simplices,
which is controlled by the a parameter. Hence, each class is
endowed with its own topic simplex justifying the denomi-
nation of the model as css-LDA.

Second, css-LDA extends both the flat and the LDA
model, simultaneously addressing the main limitations of
these two models. With respect to LDA, it is a supervised
extension that, unlike cLDA or sLDA, relies on the most
expressive component of the model (topic simplex) to
achieve class discrimination. Because there are multiple topic
simplices, the class-conditional distributions can have little
overlap in word-simplex even when topic simplices are
low-dimensional. In particular, topic distributions no longer
need to have the consistency of Fig. 5c. On the contrary, the
distributions from images of a given class are now free to be
all over its topic simplex. Since the simplex is different from
those of other classes, this does not compromise discrimina-
tion. On the other hand, because a much larger set of topic
distributions is now possible per class, the model has much
greater ability to model intraclass structure. In summary,
when compared to LDA, cLDA, or sLDA, css-LDA
combines improved class separation with improved capa-
city to model intraclass structure.

With respect to the flat model, css-LDA inherits the
advantages of LDA over bag-of-words. Consider the
collection of images from the class “Bocce” of the S8 dataset
(see Appendix IV-A, which is available in the online
supplemental material), shown on the left side of Fig. 9.
Note that the game of Bocce can be played indoors or
outdoors, on beach or on grass, on an overcast day or a
sunny day, and so on. Each of these conditions leads to
drastically different scene appearances and thus a great
diversity of word distributions. Under the flat model, the
“Bocce” class is modeled by a single point in the word
simplex, the average of all these distributions, as shown in
Fig. 2a. This is usually insufficient to capture the richness of
each class. Rather than this, css-LDA devotes to each class a
topic simplex, as shown in Fig. 2d. This increases the

Fig. 9. Two-dimensional embedding of the topic vectors discovered by css-LDA (marked #1-#10), and class-conditional distribution of flat model
(marked flat model), for left: “Bocce” (S8) and right: “Highway” (N13) classes. Also shown are the nearest neighbor images of sample topic

conditional distributions.
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expressive power of the model because there are now many
topic-conditional word distributions per class.

Thus, css-LDA can account for much more complex class
structure than the flat counterpart. In the example of Fig. 2,
while the flat model approximates all the images of each
class by a point in word simplex, css-LDA relies on a line
segment. In higher dimensions, the difference can be much
more substantial since each topic simplex is a subspace of
dimension K —1 (K the number of topics), while the
approximation of the flat model is always a point. In
summary, when compared to the flat model, css-LDA has a
substantially improved ability to model intraclass structure.
In fact, it is able to harness the benefits of both topic-
supervision-as each topic learned is learned under class
supervision, and topic-discovery-as several topics are
discovered per class.

6.2 The css-LDA Model
The generative process of css-LDA is

for each image do
sample @ ~ Py (m; ).
sample a class label y ~ Py(y;m), ye Y ={1,...,C}.
forie {1,...,N} do
sample a topic, z; ~ Pyn(zi|w), z € T ={1,...,
where 7 is the set of topics.
sample a visual word w; ~ Pyy|zy (wilzi, y; AY).
end for
end for

K},

Similar to the earlier LDA extensions, Py () is a categorical
distribution over ) with parameter 7, Py() a Dirichlet
distribution on the topic simplex with parameter e, Py;i() a
categorical distribution over 7 with parameter w, and
Pyzyv() a categorical distribution over V with a class
dependent parameter AY.

Like previous models, learning and inference are
intractable. Given an image 7 = {wy,...,wy}, w, €V,
inference consists of computing the posterior distribution

P zwy (7, 20.81Z, y) Pyyw (y|Z),
(20)

Py nzw(y, m,21.8(Z) =

where

PYV[ (y7I)
Z PYV[ (C I)

Both Py w(y,Z) and Py 7w y(m, z1.5|Z,y) are intractable and
approximated using variational methods. The posterior
P zwy(m, 2181, y) is approximated by the variational
distribution

Pyyw(ylZ) = (21)

g(m, 21v) = q(ms ) [ [ a(zai 6,)-

n

(22)

The marginal likelihood Py (y,Z) is approximated by
maximizing the evidence lower bound L(v, ¢;n,a, A) for
different values of y € {1,...,C}, i.e,

Pyy(Z,y) ~ max L(y,¢;m,a,A), (23)
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where  L(7, ¢;m, @, A) = Ey[log P(y, m, z1.x, wi.n)]

— Eqyllog q(m, z1:n)]. (24)

Solving (23) for a given y results in updates similar to the
standard LDA inference equations (see Appendix I, which
is available in the online supplemental material):

V= buk+ o, (25)
n

G < AL, exp[()]-

Note that for css-LDA, where each class is associated with a
separate topic simplex, (26) differs from standard LDA in
that the A parameters are class specific.

Learning involves estimating the parameters (7, a, A}¢.
by maximizing the log likelihood, [ =log Py(D), of a
training image dataset D. This is done with a variational
EM algorithm that iterates between.

Variational E-step approximates the posterior Py z(n?, 2. |
7¢,y") by a variational distribution ¢(w?, 2/, , ) parameterized
by (7%, ¢"), where d indexes the images in the training set.
This leads to the update rules of (25) and (26).

M-Step computes the values of parameters (o, AIS). a is
obtained from

a*_argmaXaZ|: log B(a +Z ar — 1)E, logﬂ'k}:|
d

(26)

(27)
with
E,[logn}] = - 1#(2%[[)7 (28)
1
)= K @

and I'() the Gamma function. This optimization can be
carried out by the method of Newton-Raphson, as
detailed in [15].

The parameters AL€

A= argmaxZZé v’ y)6

such that szl Ay = 1. Using the method of Lagrange
multipliers this results in the closed form update:

N Zdzné(y y) ( W, )d)nk )
Y Zu Z[erLé(y y) ( Wy ) ;fk

Similarly to previous models, we assume a uniform
class prior, ie., 7, :%, Vy. Note that in (27) learning a
requires computing E,[log7d] for d € {1,...,|D|}, i.e., for
all images in the training set. Furthermore, in (31) AZ has
an indirect dependence on a through (25) and (26), in
effect coupling the learning of the topic distributions to
the entire training dataset. However, as we shall see, the
performance of css-LDA is not very sensitive to the
a parameter. Hence, instead of learning it, we set it to a
fixed value. This in turn simplifies the learning of the
topic distributions in (31) since A} depends only on the

. are obtained from

n7 ) d)nk log A]w’ (30)

31)
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images of class y, ie., the topic distributions can be
learned independently for each class, in parallel.

Given an image 7, css-LDA based classification is
performed with the minimum probability of error rule of (1).

6.3 Comparison with Mixture Models

Css-LDA can be interpreted as a mixture of LDA models,
each with its topic simplex. An interesting question is
whether this is the simplest mixture model with the
properties of the previous section. A natural alternative is
the mixture of flat models (MFM) with the graphical model of
Fig. 8b. It models each class as a mixture of K multinomial
distributions:

(32)

Py (wly) = ZPVV\ZA,Y(U)L% Y) Py (2ly)
z

= Z zwpzv (33)
where AY ;. are the parameters of the mixture components
of class y (3, AY, =1) and p!, the mixing probabilities
(>, p¥ = 1). While most mixture models are quite effective
at modeling multimodal probability distributions, this is not
the case for the mixture of multinomials. In this case,

Py (Zly) = Z ZHPM 2y (Wn, 20]Y) (34)
=T1>_ Pviv z(waly, 2) Pzy (2]) (35)
= H 0 (36)

with AY = >~ AY, p’. Hence, the mixture model collapses to
a multinomial distribution whose parameters are an
average of those of the mixture components. It follows that
the MFM is equivalent to the flat model of Fig. 2a.

This suggests that the properties of css-LDA, Fig. 2d, may
not be trivial to achieve with simpler mixture models. In
fact, the image specific mixing prior II of css-LDA appears to

be critical since it makes the class conditional distributions:

Py (Zly) = /dﬂz ZHPW 211y (Wn, 2o, wy)  (37)

Zn

— [ ax [T 3 Porv sty PanGlm) Pute) - (39

= B, [H >, TI'Z:| , (39)
where Ey[] is the expected value under Py;(). Unlike p, in
(33), m, is a random variable. The expectation of (39)
prevents the collapse to a unimodal distribution, as in
MEM. In summary, css-LDA is one of the simplest ways to
endow the flat model framework with multimodal class
distributions. In fact, css-LDA with one topic reduces to the
flat model.
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7 RESULTS

Several experiments were performed to evaluate css-LDA,
using the experimental setup discussed in Appendix IV,
which is available in the online supplemental material.

7.1 Class Specific Topic Discovery in css-LDA

We start with a set of experiments that provide insight on
the topics discovered by css-LDA. Fig. 9 presents a
visualization of the topic-conditional distributions AY
(marked #1 to #10) discovered for classes “Bocce” (S8, left)
and “Highway” (N13, right), using 10 topics per class. Also
shown is the class conditional distribution A/'* (marked flat
model) of the flat model. The visualization was produced
by a 2D embedding of the word simplex, using nonmetric
multidimensional scaling [12] from the matrix of KL
divergences between topic- and class-conditional distribu-
tions. Note how, for both classes, the flat model is very close
to the average of the topic-conditional distributions. This
shows that, on average, topics discovered by css-LDA
represent the class conditional distribution of the flat model.
In fact, the KL divergence between the average of the topic
conditional distributions of css-LDA and the class condi-
tional distribution of the flat model is very close to zero
(0.013 +0.019 for N13, 0.014 + 0.008 for S8). Also shown in
the figure, for some sample topics, are the two images
closest to the topic conditional distribution. Note that the
topics discovered by css-LDA capture the visual diversity of
each class. For example, “Bocce” topics #9, #7, #8, and #1
capture the diversity of environments on which sport can be
played: indoors, sunny-outdoor, overcast-outdoor, and
beach. These variations are averaged out by the flat model,
where each class is, in effect, modeled by a single topic.

7.2 Classification Results

We have previously established that topic-supervision
yields better classification accuracy than LDA models
learned without topic-supervision. However, topic super-
vision is not enough to outperform the flat model. This can
be seen more clearly in Fig. 10, which reports the
performance of ts-sLDA (which has the best performance
amongst the topic-supervised models) and the flat model
for N13, N8, and S8. In all cases, the performance of the
latter is very close to that of the former. This is in stark
contrast to css-LDA, which has a clearly better performance
than the two, across datasets and codebook sizes. Since css-
LDA is an extension of the flat model, this gain can be
attributed to its topic-discovery mechanism. We have also
implemented the MFM model and verified that, as
discussed in Section 6.3, it collapses to a flat model. In all
experiments, the parameters of the collapsed MFM (learned
using EM) were identical to those of the flat model (learned
by maximum likelihood estimation). Hence, the perfor-
mance of MFM is identical to that of the flat model.

Fig. 1la presents the performance of css-LDA as a
function of the a parameter on S8 (for different codebook
sizes and 60 topics). It is clear that css-LDA is not very
sensitive to this parameter. Fig. 11b shows the performance
of css-LDA as a function of the smoothing hyperparameter
of the topic-distributions. Again, the model is not very
sensitive to this parameter. Table 1 summarizes the best
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Fig. 10. Classification accuracy of css-LDA, ts-sLDA, and the flat model, as a function of codebook size on (a) N13, (b) N8, and (c) S8. The reported
css-LDA performance is the best across number of topics, while for ts-sLDA the number of topics is equal to the number of classes.

classification accuracy achieved by all methods considered
in this work, plus SVM-LDA [4], [5], [18], on all datasets.
Note that css-LDA outperforms all existing generative
models for image classification and a discriminative
classifier, SVM-LDA, on all five datasets, with a classifica-
tion accuracy of 76.62 percent on N15, 81.03 percent on N13,
87.97 percent on N8, 80.37 percent on S8, and 46.04 percent
on C50. On average, it has a relative gain of 3.0 percent over
the flat model, 3.5 percent over ts-sLDA, 4.9 percent over
ts-cLDA, 6.7 percent over ts-LDA, 8.5 percent over sLDA,
17.2 percent over cLDA, and 4.0 percent over SVM-LDA.

7.3 Time Complexity

Fig. 12 compares the time required for training and testing of
the different models on N13, using a 1,024-word codebook.
All experiments were conducted on a 2x Intel Xeon E5504
Quad-core 2.00 GHz processor, with average image size of
270 x 250 pixels. The figure does not account for the time
required to compute the BoW representation—800 (20)
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Fig. 11. Classification accuracy of css-LDA (with 60 topics) on S8 as a
function of (a) oy, and (b) hyperparameter of topic-distributions.

milliseconds per image to compute SIFT (DCT) features,
15 minutes to learn a 1,024 codeword codebook (see
Appendix IV-B, which is available in the online supple-
mental material), and 1.5 seconds per image to compute
word histograms—which is common to all methods. Both
training and testing of the flat model are significantly faster
than those of the LDA models. Among the latter, the
decoupled parameter learning of topic supervised models
(ts-cLDA /ts-sLDA) enables an order of magnitude learning
speed-up over the nonsupervised versions (cCLDA/sLDA).
The learning time of css-LDA is quite close to that of cLDA,
and about one order of magnitude smaller than sLDA.
Furthermore, since the topic distributions of css-LDA can be
learned in parallel for the different classes, this time can be
trivially decreased by a factor of K (e.g., 13 for this dataset).
This makes css-LDA one of the fastest LDA models to learn.
This type of computational efficiency is not possible for the
other LDA models, where topics are shared between all
classes. During testing, css-LDA is an order of magnitude

Time (in minutes)
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Fig. 12. Time complexity of various models on N13. (a) Learning time (in
minutes). (b) Inference time per image (in milliseconds).
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slower than the other LDA models. Again, the computations
can be parallelized, in which case test time is equivalent to
those of cLDA and sLDA. In this case, the average inference
time of css-LDA was about 0.1 milliseconds per image for
100 topics.

8 CONCLUSION

In this paper, we proposed two novel families of LDA
models, viz. ts-LDA and css-LDA, for image classification.
We have argued that current supervised extensions of LDA
are driven by generic image regularities, rather than the
semantic regularities of interest for classification, and thus
not suitable for image classification. These arguments were
shown to hold by 1) a theoretical analysis of the algorithms
used to learn these models, which revealed a vanishingly
small impact of class supervision on topic discovery for
large training samples, and 2) experiments where unsuper-
vised topic discovery was shown to achieve performance at
par with these models. To address this limitation, we
proposed ts-LDA models where, instead of automated topic
discovery, topics are specified and equal to the classes of
interest for classification. In particular, we introduced topic-
supervised versions of LDA, cLDA, and sLDA viz. ts-LDA,
ts-cLDA, and ts-sLDA, respectively. In all cases, topic
supervised models outperformed the corresponding mod-
els without topic-supervision.

It was then noted that even the topic supervised models
fail to outperform the much simpler flat model. This was
explained by the fact that the bulk of the modeling power of
LDA rests on a dimensionality reduction from a high-
dimensional word simplex to a low-dimensional topic
simplex, and not on the modeling of class distributions on
the latter. Due to the weak influence of class labels in cLDA
and sLDA topic discovery, the resulting topic simplex has
limited discrimination ability. While this problem is solved
by the topic-supervised extensions, whose topic-conditional
distributions were shown equivalent to the class-conditional
distributions of the flat model, the price is a loss of ability to
discover unanticipated structure of interest for image
classification. Since the topic simplex has to be aligned
with the class labels, there is little room to outperform the
flat model.

It was shown that this limitation is shared by any model
that constrains the class-conditional distributions to lie on a
common topic simplex. This was addressed by the introduc-
tion of css-LDA, where class supervision occurs at the level
of visual features. This induces a topic-simplex per class,
freeing topic distributions to populate the word simplex in
the most discriminant manner. Thus, the model combines
ability to discriminate between classes with capacity to
richly model intraclass structure. In particular, css-LDA was
shown to extend both the flat model and LDA, combining
the labeling strength of the former with the flexibility of
topic discovery of the latter. Its effectiveness was tested
through an extensive experimental comparison to the
previous LDA-based image classification approaches, on
several benchmark datasets. In this evaluation, css-LDA
consistently outperformed all previous models.
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